Chapter 4 concepts

Independence of directions
 (relation of 2D to 1D motion)

© Projectile motion
Uniform circular motion

4. Motion in Two-Dimensions

4.1 The Displacement, Velocity, and Acceleration Vectors

Displacement in a plane
The displacement vector \mathbf{r} :

$$
\Delta \vec{r} \equiv \vec{r}_{f}-\vec{r}_{i}
$$

Displacement is the straight line between the final and initial position of the particle.

That is the vector difference between the final and initial position.

Average Velocity

Average velocity \mathbf{v} :

$$
\Delta \overline{\vec{v}} \equiv \frac{\Delta \vec{r}}{\Delta t}
$$

Average velocity: Displacement of a particle, $\Delta \mathbf{r}$, divided by time interval Δt.

Instantaneous velocity \mathbf{v} : Limit of the average velocity as $\Delta \mathrm{t}$ approaches zero.

The instantaneous velocity equals the derivative of the position vector with respect to time.

The magnitude of the instantaneous velocity vector $v \equiv|\vec{v}|$ is called the speed (scalar)

Average Acceleration

Average acceleration:

$$
\overline{\vec{a}} \equiv \frac{\vec{v}_{f}-\vec{v}_{i}}{t_{f}-t_{i}}=\frac{\Delta \vec{v}}{\Delta t}
$$

Average acceleration: Change in the velocity $\Delta \mathbf{v}$ divided by the time Δt during which the change occurred.

Change can occur in direction and magnitude!
Acceleration points along change in velocity $\Delta \mathbf{v}$!

Instantaneous Acceleration

Instantaneous acceleration:

$$
\vec{a} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}
$$

Instantaneous acceleration: limiting value of the ratio $\frac{\Delta \vec{v}}{\Delta t}$ as $\Delta \mathrm{t}$ goes to zero.

Instantaneous acceleration equals the derivative of the velocity vector with respect to time.

4.2 Two-dimensional motion with constant acceleration a

Trick 1:

The equations of motion (kinematic equations) we derived before are still valid, but are now in vector form.

Trick 2 (Superposition principle):
Vector equations can be broken down into their x - and y components. Then calculated independently.

Position vector:

$$
\begin{aligned}
& \vec{r}=x \vec{i}+y \vec{j} \\
& \vec{r}=\binom{x}{y}
\end{aligned}
$$

Velocity vector:

$$
\begin{aligned}
& \vec{v}=v_{x} \vec{i}+v_{y} \vec{j} \\
& \vec{v}=\binom{v_{x}}{v_{y}}
\end{aligned}
$$

Assume a constant acceleration.

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{v}}{d t}=\langle\vec{a}\rangle: \text { constant } \\
& \frac{\vec{v}-\vec{v}_{0}}{t-0}=\vec{a} \quad \Longrightarrow \vec{v}=\vec{v}_{0}+\vec{a} t \\
& \vec{v}=\frac{d \vec{r}}{d t}, \quad d \vec{r}=\vec{v} \cdot d t \\
& \vec{t} \vec{r}=\int_{0}^{t} \vec{v} \cdot d t \\
& \vec{v}=\frac{d \vec{r}}{d t}, \quad d \vec{r}=\vec{v} \cdot d t \\
& \vec{r}-\vec{r}_{0}=\int_{0}^{t}\left(\vec{v}_{0}+\vec{a} t\right) \cdot d t=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}
\end{aligned}
$$

In (\mathbf{x}, \mathbf{y})-coordinates

$$
\left.\begin{array}{l}
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}, \\
\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}, \\
\vec{v}_{0}=v_{0 x} \hat{i}+v_{0 y} \hat{j} \\
\vec{r}=x \hat{i}+y \hat{j}, \\
\vec{r}_{0}=x_{0} \hat{i}+y_{0} \hat{j}
\end{array}\right\} \Rightarrow \begin{aligned}
& v_{x}=v_{0 x}+a_{x} t \\
& v_{y}=v_{0 y}+a_{y} t
\end{aligned}
$$

$\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}$

$$
x \hat{i}+y \hat{j}=x_{0} \hat{i}+y_{0} \hat{j}+v_{0 x} t \hat{i}+v_{0 y} t \hat{j}+\frac{1}{2} a_{x} t^{2} \hat{i}+\frac{1}{2} a_{y} t^{2} \hat{j}
$$

$$
x \hat{i}+y \hat{j}=\left(x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}\right) \hat{i}+\left(y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2}\right) \hat{j}
$$

$$
\Longrightarrow \begin{aligned}
& x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
& y=y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2}
\end{aligned}
$$

Read example 4.1

Example

A particle starts at origin when $t=0$ with an initial velocity $\overrightarrow{\boldsymbol{v}}=(\mathbf{2 0} \hat{\boldsymbol{i}} \mathbf{- 1 5} \hat{\boldsymbol{j}}) \mathbf{m} / \mathrm{s}$. The particle moves in the ry plane with $a_{x}=4.0 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Determine the components of velocity vector at any time, t.
(b) Compute the velocity and speed of the particle at $\mathrm{t}=5.0 \mathrm{~s}$
(c) Determine the x and y components of the particle at $\mathrm{t}=5.0 \mathrm{~s}$.
(d) Can you write down the position vector at $\mathrm{t}=5.0 \mathrm{~s}$?
(a)

$$
\begin{gathered}
v_{x f}=v_{x i}+a_{x} t=20+4.0 t(\mathrm{~m} / \mathrm{s}) \quad v_{y f}=v_{y i}+a_{y} t=-15(\mathrm{~m} / \mathrm{s}) \\
{[\vec{v}(t)=\{(20+4.0 t) \hat{i}-15 \hat{j}\} \mathrm{m} / \mathrm{s}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (b) } \\
& \vec{v}=\{(20+4.0 \times 5.0) \hat{i}-15 \hat{j}\} m / s=(40 \hat{i}-15 \hat{j}) m / s \\
& \text { speed }=|\vec{v}|=\sqrt{\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}}=\sqrt{(40)^{2}+(-15)^{2}}=43 m / s \quad \text { Magnitude }
\end{aligned}
$$

Direction

$$
\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{-15}{40}\right)=\tan ^{-1}\left(\frac{-3}{8}\right)=-21^{\circ}
$$

(c)

$$
\begin{aligned}
& x_{f}=v_{x i} t+\frac{1}{2} a_{x} t^{2}=20 \times 5+\frac{1}{2} \times 4 \times 5^{2}=150(\mathrm{~m}) \\
& y_{f}=v_{y i} t=-15 \times 5=-75(\mathrm{~m})
\end{aligned}
$$

(d)

$$
\vec{r}_{f}=x_{f} \hat{i}+y_{f} \hat{j}=(150 \hat{i}-75 \hat{j}) m
$$

Now in a real Problem

Projectile Motion

4.3 Projectile Motion

Two assumptions:

1. Free-fall acceleration \mathbf{g} is constant.
2. Air resistance is negligible.

- The path of a projectile is a parabola (derivation: see book).
- Projectile leaves origin with an initial velocity of \mathbf{v}_{i}.
- Projectile is launched at an angle θ_{i}
- Velocity vector changes in magnitude and direction.
- Acceleration in y-direction is \mathbf{g}.
- Acceleration in x-direction is 0 .

Projectile motion

Superposition of motion
in x -direction and motion in y-direction

Acceleration in x-direction is 0. (Constant velocity)	Acceleration in y-direction is \mathbf{g}.
$x_{f}=x_{i}+v_{x i} t$	$y_{f}=y_{i}+v_{y i} t+\frac{1}{2} a_{y} t^{2}$
$v_{x f}=v_{x i}$	$v_{y f}=v_{y i}+g t$

Equations

- \boldsymbol{x}-Component

- \boldsymbol{y}-Component

$$
\begin{aligned}
& y_{f}=y_{i}+v_{y i} t-\frac{1}{2} g t^{2} \\
& v_{y f}^{2}=v_{y i}^{2}-2 g \Delta y \\
& v_{y f}=v_{y i}-g t \\
& v_{x i}=v_{i} \cos (\theta) \\
& v_{y i}=v_{i} \sin (\theta)
\end{aligned}
$$

$$
\text { Vectors } v_{y f}=v_{y i}-g t
$$

Vertical: $a_{y}=-g$
$\frac{\mathrm{v}_{y i}+\mathrm{v}_{y f}}{2}=\frac{\Delta y}{t}$
$\mathrm{v}_{y f}=\mathrm{v}_{y i}-g t$
$\Delta y=\mathrm{v}_{y i} t-\frac{1}{2} g t^{2}$
$\mathrm{v}_{y f}^{2}=\mathrm{v}_{y i}^{2}-2 g \Delta y$

Horizontal: $a_{X}=0$
$\mathrm{v}_{x f}=\mathrm{v}_{x i}=\mathrm{v}_{x}$ $\Delta x=\mathrm{v}_{x i} t$

The two components are independent, but linked by the common time, t.

Horizontal Range and Max Height

Based on what we have learned in the previous pages, one can analyze a projectile motion in more detail

- Maximum height an object can reach
- Maximum range

At the maximum height the object's
vertical motion stops to turn around!!

$$
\begin{aligned}
& v_{y f}=v_{y i}+a_{y} t \\
& =v_{i} \sin \theta_{t}-g t_{A}=0
\end{aligned}
$$

$$
\therefore t_{A}=\frac{v_{i} \sin \theta_{i}}{g}
$$

$$
\begin{aligned}
& y_{f}=h=v_{y i} t+\frac{1}{2}(-g) t^{2} \\
&=v_{i} \sin \theta_{i}\left(\frac{v_{i} \sin \theta_{i}}{g}\right)-\frac{1}{2} g\left(\frac{v_{i} \sin \theta_{i}}{g}\right)^{2} \\
& y_{f}=\left(\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g}\right)
\end{aligned}
$$

Since no acceleration in x, it still flies even if $v_{y}=0$

$$
\begin{array}{r}
R=v_{x i}\left(2 t_{A}\right)=2 v_{i} \cos \theta_{i}\left(\frac{v_{i} \sin \theta_{i}}{g}\right) \\
R=\left(\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}\right)
\end{array}
$$

Maximum Range and Height

- What are the conditions that give maximum height and range of a projectile motion?

$\boldsymbol{h}=\left(\frac{\boldsymbol{v}_{\boldsymbol{i}}^{2} \boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{\theta}_{\boldsymbol{i}}}{\mathbf{2} \boldsymbol{g}}\right) \sim$| This formula tells us that |
| :--- |
| the maximum height can |
| be achieved when |
| $\theta_{\mathrm{i}=90^{\circ}!!!}$ |

$$
\boldsymbol{R}=\left(\frac{\boldsymbol{v}_{\boldsymbol{i}}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }} \mathbf{2 \theta _ { \boldsymbol { i } }}}{\boldsymbol{g}}\right) \quad \begin{aligned}
& \text { This formula tells us that } \\
& \text { the maximum range can be } \\
& \text { achieved when } 2 \theta_{\mathrm{i}}=90^{\circ}, \\
& \text { i.e., } \theta_{\mathrm{i}}=45^{\circ}!!!
\end{aligned}
$$

[^0]
Solving Problems Involving Projectile Motion

P Read the problem carefully, and choose the object(s) you are going to analyze.

- Draw a diagram.
- Choose an origin and a coordinate system.
$>$ Decide on the time interval; this is the same in both directions, and includes only the time the object is moving with constant acceleration g.

Examine the x and y motions separately.

List known and unknown quantities. Remember that v_{x} never changes, and that $v_{y}=0$ at the highest point.

Plan how you will proceed. Use the appropriate equations; you may have to combine some of them.

[^0]: L: 1103 Phys LECTURES SLIDES T2Y3839 2 CH4Flash

