101- chem GENERAL CHEMISTRY-1

First Mid Term (15 marks)

Second Mid Term (15 marks)

Lab (30 marks) Mid term (30 marks)

Final (100 marks)

Course# and Name: Chem-101, General chemistry-I

Semester credit hours: 4.0 credit. Second Term 1436-1437

Total Contact Hours: 39 hr. theory (Sun, Tue, Thurs 10-11)

+ 24 hr. lab

101-Chem

Instructor: Dr. Amal AL-Mohaimeed

Office location: Blg. 5, T floor, Room No. 188

Office hours: Sun, Tues, Thurs 9:00-10:00 Email address:

muhemeed@ksu.edu.sa

Total Contact Hours: 14 weeks x 3 hrs Theory

(Sun, Tues, Thurs 10-11)

14x 2 hrs Lab (Mon 10-12)

Mid Term Exam: (First mid-term: Tues, 21/5, 12-1)

(Second mid-term: Tues, 27/6,12-1)

General Chemistry-1

Book: Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Chapter	Subject
1	Chapter 1: The Mole and Stoichiometry (7 hrs)
2	Chapter 2: Properties of Gases (6 hrs)
3	Chapter 3: Energy and Thermodynamics (7 hrs)
4	Chapter 4: Chemical Kinetics (4 hrs)
5	Chapter 5: Properties of Solutions (5 hrs)
6	Chapter 6: Chemical Equilibrium (7 hrs)
7	Chapter 7: Acids and Bases (3 hrs)

Chapter 1 The Mole and Stoichiometry

Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

International System of Units (SI)

- Standard system of units
- Metric

Seven Base Units

Table 2.1	The SI Base Units			
Measurement		Unit	Symbol	
Length		meter	m	
Mass		kilogram	kg	
Time		second	S	
Electric curren	nt	ampere	A	
Temperature		kelvin	K	
Amount of su	bstance	mole	mol	
Luminous int	ensity	candela	cd	

Your Turn!

The SI unit of **length** is the

- A. millimeter
- B. meter
- C. yard
- D. centimeter
- E. foot

Decimal Multipliers

Table 2.4 SI Prefixes—Their meanings and values^a

Prefix	Meaning	Symbol	Prefix Value ^b (numerical)	Prefix Value ^b (power of ten)
exa		Е		10^{18}
peta		P		10^{15}
tera		T		10^{12}
giga	billions of	G	1000000000	10 ⁹
mega	millions of	M	1000000	10 ⁶
kilo	thousands of	k	1000	10^{3}
hecto		h		10^{2}
deka		da		10^{1}
deci	tenths of	d	0.1	10^{-1}
centi	hundredths of	c	0.01	10^{-2}
milli	thousandths of	m	0.001	10^{-3}
micro	millionths of	μ	0.000001	10^{-6}
nano	billionths of	n	0.000000001	10^{-9}
pico	trillionths of	p	0.000000000001	10^{-12}
femto		f		10^{-15}
atto		a		10^{-18}

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Using Decimal Multipliers

- Use prefixes on SI base units when number is too large or too small for convenient usage
- Numerical values of multipliers can be interchanged with prefixes

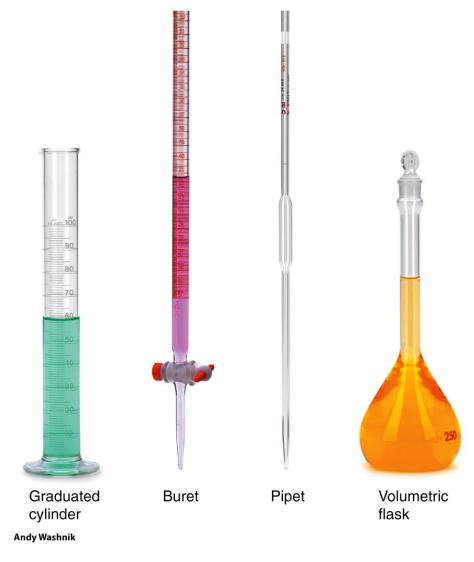
Ex.
$$1 \text{ mL} = 10^{-3} \text{ L}$$

- 1 km = 1000 m
- 1 ng = 10^{-9} g
- $1,130,000,000 \text{ s} = 1.13 \times 10^9 \text{ s} = 1.13 \text{ Gs}$

Laboratory Measurements

Four common

- 1. Distance (*d*)
- 2. Volume
- 3. Mass
- 4. Temperature


Laboratory Measurements

1. Distance (*d*)

- SI Unit is meter (m)
- Meter too large for most laboratory measurements
- Commonly use
 - Centimeter (cm)
 - $-1 \text{ cm} = 10^{-2} \text{ m} = 0.01 \text{ m}$
 - Millimeter (mm)
 - $1 \text{ mm} = 10^{-3} \text{ m} = 0.001 \text{ m}$

2. Volume (V)

- Dimensions of (*dm*)³
- SI unit for Volume = m³
- Most laboratory measurements use V in liters (L)
 - 1 L = 1 dm³ (exactly)
- Chemistry glassware marked in L or mL
 - 1 L = 1000 mL
- What is a mL?
 - $1 \text{ mL} = 1 \text{ cm}^3$

3. Mass

- SI unit is kilogram (kg)
 - Frequently use grams (g) in laboratory as more realistic size
- 1 kg = 1000 g 1 g = 0.1000 kg = $\frac{1}{1000}$ g

Charles D. Winters/Photo Researchers

4. Temperature

A. Celsius scale

- Most common for use in science
- Water freezes at 0 °C
- Water boils at 100 °C
- 100 degree units between melting and boiling points of water

Michael Watson

4. Temperature

B. Kelvin scale

- SI unit of temperature is kelvin (K)
- Water freezes at 273.15 K and boils at 373.15 K
 - 100 degree units between melting and boiling points

Absolute Zero

- Zero point on Kelvin scale
- 0 K= 273.15 °C

Temperature Conversions

Must convert to Kelvin scale

$$T_{\rm K} = (t_{\rm C} + 273.15\,^{\circ}{\rm C})\frac{1\,{\rm K}}{1\,^{\circ}{\rm C}}$$

Ex. What is the Kelvin temperature of a solution at 25 °C?

$$T_{\rm K} = (25 \, {}^{\circ}{\rm C} + 273.15 \, {}^{\circ}{\rm C}) \frac{1 \, {}^{\rm K}}{1 \, {}^{\circ}{\rm C}} = 298 \, {\rm K}$$

Learning Check: T Conversions

Ex. Convert 77 K to the Celsius scale.

$$T_{\rm K} = (t_{\rm C} + 273.15\,^{\circ}{\rm C})\frac{1\,^{\kappa}}{1\,^{\circ}{\rm C}}$$
 $t_{\rm C} = (T_{\rm K} - 273.15{\rm K})\frac{1\,^{\circ}{\rm C}}{1\,^{\kappa}}$

$$t_{\rm C} = (77 \,\rm K - 273.15 K) \frac{1 \,^{\circ} \rm C}{1 \,\rm K} = -196 \,^{\circ} \rm C$$

Table 2.2 Some Non-SI Metric Units Commonly Used in Chemistry

Table 2.2 Some Non-SI Metric Units Commonly Used in Chemistry

Measurement	Name	Symbol	Value in SI Units
Length	angstrom	Å	$1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$
Mass	atomic mass unit	u (amu)	$1 \text{ u} = 1.66054 \times 10^{-27} \text{ kg},$ approximately
	metric ton	t	$1 t = 10^3 kg$
Time	minute	min.	1 min. = 60 s
	hour	h (hr)	1 h = 60 min. = 3600 s
Temperature	degree Celsius	°C	$T_{\rm K} = t_{\rm ^{\circ}C} + 273.15$
Volume	liter	L	$1 L = 1000 cm^3$

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Derived SI Units

 All physical quantities will have units derived from these seven SI base units

Ex. Area

- Derived from SI units based on definition of area
- length × width = area
- meter \times meter = area $m \times m = m^2$
- SI unit for area = square meters = m²

Density

$$density = \frac{mass}{volume}$$

$$d = \frac{m}{V}$$

Units

• g/mL or g/cm³

Learning Check

What is the SI unit for velocity?

Velocity
$$(v) = \frac{\text{distance}}{\text{time}}$$

Velocity units =
$$\frac{\text{meters}}{\text{seconds}} = \frac{\text{m}}{\text{s}}$$

What is the SI unit for volume of a cube?

```
Volume (V) = length \times width \times height V = meter \times meter \times meter V = \mathbf{m}^3
```

More Derived Units

Quantity	Definition	Units
Area	Length × width	m ²
Volume	Length × width × height	m ³
Density	Mass / volume	kg/m³, g/cm³, g/mL
Speed	Distance / time	m s ⁻¹
Acceleration	Change in speed / time	m s ⁻²
Frequency	Event / time	s-1
Force	Mass × acceleration	kg m s ⁻² (newton, N)
Pressure	Force / area	kg m ⁻¹ s ⁻² (pascal, Pa)
Energy	Force × distance	kg m ² s ⁻² (joule, J)

Stoichiometry

Stoichiometric Calculations

Conversions from one set of units to another using Dimensional Analysis

 $m = n \times MM$

 $N = n \times N_A$

m: mass, n: amount (mol), MM: molar mass, N: number of particles, N_A : Avogadro's no

The Mole

Number of atoms in exactly 12 grams of ¹²C atoms

Ex. How many atoms in 1 mole of ¹²C?

Based on experimental evidence

1 mole of ${}^{12}C = 6.022 \times 10^{23}$ atoms = 12.011 g

Avogadro's number = N_A

- 1 mole of $X = 6.022 \times 10^{23}$ units of X
- Number of atoms, molecules or particles in one mole
 - 1 mole $Xe = 6.022 \times 10^{23} Xe$ atoms
 - 1 mole $NO_2 = 6.022 \times 10^{23} NO_2$ molecules

Moles of Compounds

Atoms

- Atomic Mass
 - Mass of atom (from periodic table)
- 1 mole of atoms = gram atomic mass
 = 6.022×10²³ atoms

Molecules

- Molecular Mass
 - Sum of atomic masses of all atoms in compound's formula
- 1 mole of molecule X = gram molecular mass of X= 6.022×10^{23} molecules

Moles of Compounds

Ionic compounds

- Formula Mass
 - Sum of atomic masses of all atoms in ionic compound's formula

1 mole ionic compound X = gram formula mass of $X = 6.022 \times 10^{23}$ formula units

General

Molar mass (MM)

 Mass of 1 mole of substance (element, molecule, or ionic compound) under consideration

1 mol of X = gram molar mass of X= 6.022×10^{23} formula units

SI Unit for Amount = Mole

1 mole of substance X = gram molar mass of X

- 1 mole S = 32.06 g S
- 1 mole $NO_2 = 46.01 \text{ g } NO_2$
- Molar mass is our conversion factor between g & moles

- 1 mole of $X = 6.022 \times 10^{23}$ units of X
- N_A is our conversion factor between moles & molecules
 - 1 mole $H_2O = 6.022 \times 10^{23}$ molecules H_2O
 - 1 mole NaCl = 6.022 × 10²³ formula units NaCl

Learning Check: Using Molar Mass

Ex. How many moles of iron (Fe) are in 15.34 g Fe?

- What do we know?
 - 1 mol Fe = 55.85 g Fe
- What do we want to determine?

 Set up ratio so that what you want is on top & what you start with is on the bottom

$$15.34g \text{Fe} \times \left(\frac{1 \, \text{mol Fe}}{55.85g \text{Fe}}\right) = 0.2747 \, \text{mole Fe}$$

Learning Check: Using Molar Mass

Ex. If we need 0.168 mole $Ca_3(PO_4)_2$ for an experiment, how many grams do we need to weigh out?

Calculate MM of Ca₃(PO₄)₂

$$3 \times \text{mass Ca} = 3 \times 40.08 \text{ g} = 120.24 \text{ g}$$

$$2 \times \text{mass P} = 2 \times 30.97 \text{ g} = 61.94 \text{ g}$$

$$8 \times \text{mass O} = 8 \times 16.00 \text{ g} = 128.00 \text{ g}$$

1 mole
$$Ca_3(PO_4)_2 = 310.18 g Ca_3(PO_4)_2$$

What do we want to determine?

$$0.168 \text{ g Ca}_3(PO_4)_2 = ? \text{ Mol Fe}$$

Start Enc

Learning Check: Using Molar Mass

$$0.160 \, \text{mol Ca}_3(PO_4)_2 \times \left(\frac{310.18g \, \text{Ca}_3(PO_4)_2}{1 \, \text{mol Ca}_3(PO_4)_2} \right)$$

 $= 52.11 g Ca_3(PO_4)_2$

Your Turn!

Ex. How many moles of CO₂ are there in 10.0 g?

- A. 1.00 mol
- B. 0.0227 mol
- C. 4.401 mol
- D. 44.01 mol
- E. 0.227 mol

Molar mass of CO₂

$$1 \times 12.01 g = 12.01 g C$$

$$2 \times 16.00 \text{ g} = 32.00 \text{ g} \text{ O}$$

1 mol
$$CO_2 = 44.01 \text{ g } CO_2$$

$$10.0 \text{ g CO}_2 \left(\frac{1 \text{ mol CO}_2}{44.01 \text{ g CO}_2} \right)$$

 $= 0.227 \text{ mol CO}_{2}$

Your Turn!

Ex. How many grams of platinum (Pt) are in 0.475 mole Pt?

- A. 195 g
- B. 0.0108 g
- C. 0.000513 g
- D. 0.00243 g
- E. 92.7 g

Molar mass of Pt = 195.08 g/mol

$$0.475 \text{ molPt} \times \left(\frac{195.08 \text{ g Pt}}{1 \text{ molPt}}\right)$$

= 92.7 g Pt

Ex. How many silver atoms are in a 85.0 g silver bracelet?

What do we know?

$$107.87 \text{ g Ag} = 1 \text{ mol Ag}$$

- 1 mol Ag = 6.022×10^{23} Ag atoms
- What do we want to determine?

85.0 g silver = ? atoms silver

 $g Ag \longrightarrow mol Ag \longrightarrow atoms Ag$

85.0 g Ag×
$$\left(\frac{1 \text{ mol Ag.}}{107.87 \text{g Ag}}\right) \times \left(\frac{6.022 \times 10^{23} \text{ atoms Ag}}{1 \text{ mol Ag.}}\right)$$

 $= 4.7 \times 10^{23} \text{ Ag atoms}$

Using Avogadro's Number

Ex. What is the mass, in grams, of one molecule of octane, C_8H_{18} ?

Molecules octane \longrightarrow mol octane \longrightarrow g octane

1. Calculate molar mass of octane

Mass C =
$$8 \times 12.01 g = 96.08 g$$

Mass H =
$$18 \times 1.008$$
 g = 18.14 g

1 mol octane = 114.22 g octane

2. Convert 1 molecule of octane to grams

$$\left(\frac{114.22g \text{ octane}}{1 \text{ mol octane}}\right) \times \left(\frac{1 \text{ mol octane}}{6.022 \times 10^{23} \text{ molecules octane}}\right)$$

 $= 1.897 \times 10^{-22}$ g octane

Learning Check: Mole Conversions

Ex. Calculate the number of formula units of Na₂CO₃ in 1.29 moles of Na₂CO₃.

$$1.29 \, \text{mol Na}_2 \text{CO}_3 \left(\frac{6.0223 \times 10^{23} \, \text{formula units Na}_2 \text{CO}_3}{1 \, \text{mol Na}_2 \text{CO}_3} \right)$$

=
$$7.77 \times 10^{23}$$
 particles Na_2CO_3

Ex. How many moles of Na₂CO₃ are there in 1.15 x 10⁵ formula units of Na₂CO₃?

$$1.15\times10^{5} \text{ formula units Na}_{2}\text{CO}_{3} \left(\frac{1 \, \text{mol Na}_{2}\text{CO}_{3}}{6.0223\times10^{23} \text{ formula units Na}_{2}\text{CO}_{3}}\right)$$

$$= 1.91 \times 10^{-19} \text{ mol Na}_2 \text{CO}_3$$

Your Turn!

Ex. How many atoms are in 1.00 x 10^{-9} g of U? Molar mass U = 238.03 g/mole.

- A. 6.02×10^{14} atoms
- B. 4.20 x 10¹¹ atoms
- C. 2.53×10^{12} atoms
- D. 3.95×10^{-31} atoms
- E. 2.54×10^{21} atoms

$$(1.00 \times 10^{-9} \text{ g U}) \left(\frac{1 \text{ mol U}}{238.03 \text{ g U}} \right) \left(\frac{6.022 \times 10^{23} \text{ atoms U}}{1 \text{ mol U}} \right)$$

 $= 2.53 \times 10^{12} \text{ atoms U}$

Your Turn!

Ex. Calculate the mass in grams of FeCl₃ in 1.53 \times 10²³ formula units. (molar mass = 162.204 g/mol)

- A. 162.2 g
- B. 0.254 g
- C. 1.661×10^{-22} g
- D. 41.2 g
- E. 2.37×10^{-22}

$$1.53 \times 10^{23} \text{ units FeCl}_3 \left(\frac{1 \text{ mol FeCl}_3}{6.022 \times 10^{23} \text{ units FeCl}_3} \right) \times \left(\frac{162.2 \text{ g FeCl}_3}{1 \text{ mol FeCl}_3} \right)$$

 $= 41.2 g FeCl_3$

Mole-to-Mole Conversion Factors

In H₂O there are:

- 2 mol H \Leftrightarrow 1 mol H₂O
- 1 mol O \Leftrightarrow 1 mol H₂O
- 2 mol H ⇔ 1 mol O
- on atomic scale
 - 2 atom H ⇔ 1 molecule H₂O
 - 1 atom O ⇔ 1 molecule H₂O
 - 2 atom H ⇔ 1 molecule O

Stoichiometric Equivalencies

```
Ex. N<sub>2</sub>O<sub>5</sub>
```

2 mol N \Leftrightarrow 1 mol N₂O₅

5 mol O \Leftrightarrow 1 mol N₂O₅

2 mol N \Leftrightarrow 5 mol O

Calculating the Amount of a Compound by Analyzing One Element

Ex. sample is found to contain 0.864 moles of phosphorus P. How many moles of $Ca_3(PO_4)_2$ are in that sample?

- What do we want to find?
 - $0.864 \text{ mol P} = ? \text{ mol Ca}_3(PO_4)_2$
- What do we know?
 - 2 mol P \Leftrightarrow 1 mol Ca₃(PO₄)₂
- Solution $0.864 \text{molP} \left(\frac{1 \text{mol Ca}_3(PO_4)_2}{2 \text{molP}} \right)$
 - $= 0.432 \text{ mol } Ca_3(PO_4)_2$

Your Turn!

Ex. Calculate the number of **moles** of calcium in 2.53 moles of $Ca_3(PO_4)_2$

- A. 2.53 mol Ca
- B. 0.432 mol Ca
- C. 3.00 mol Ca
- D. 7.59 mol Ca
- E. 0.843 mol Ca

2.53 moles of $Ca_3(PO_4)_2 = ? mol Ca$

3 mol Ca \Leftrightarrow 1 mol Ca₃(PO₄)₂

2.53 mol Ca₃(PO₄)₂
$$\left(\frac{3 \text{ mol Ca}}{1 \text{ mol Ca}_3(\text{PO}_4)_2}\right)$$

= 7.59 mol Ca

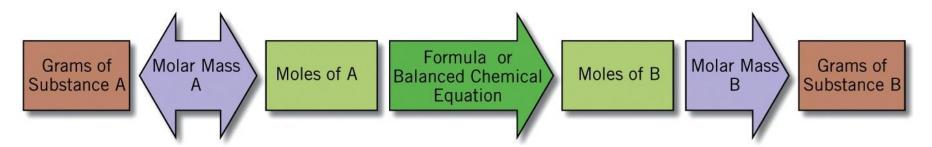
Mass-to-Mass Calculations

Ex. Chlorophyll, the green pigment in leaves, has the formula $C_{55}H_{72}MgN_4O_5$. If 0.0011 g of Mg is available to a plant for chlorophyll synthesis, how many grams of carbon will be required to completely use up the magnesium?

Analysis

```
0.0011 \text{ g Mg} \Leftrightarrow ? \text{ g C}
```

$$0.0011 \text{ g Mg} \rightarrow \text{mol Mg} \rightarrow \text{mol C} \rightarrow \text{g C}$$


-Assembling the tools

```
24.3050 \text{ g Mg} = 1 \text{ mol Mg}
```

1 mol Mg
$$\Leftrightarrow$$
 55 mol C

$$1 \text{ mol } C = 12.011 \text{ g } C$$

Ex. Mass-to-Mass Conversion

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

1 mol Mg
$$\Leftrightarrow$$
 24.3 g Mg 1 mol C \Leftrightarrow 12.0 g C 0.0011 g Mg \longrightarrow mol Mg \longrightarrow mol C \longrightarrow g C 1 mol Mg \Leftrightarrow 55 mol C

$$0.0011g\,\text{Mg}\times\left(\frac{1\,\text{molMg}}{24.3\,\text{g\,Mg}}\right)\times\left(\frac{55\,\text{mol\,C}}{1\,\text{mol\,Mg}}\right)\times\left(\frac{12.0\,\text{g\,C}}{1\,\text{mol\,C}}\right)$$

= 0.030 g C

Your Turn!

Ex. How many g of iron are required to use up all of 25.6 g of oxygen atoms (O) to form Fe_2O_3 ?

- A. 59.6 g mass $O \rightarrow mol O \rightarrow mol Fe \rightarrow mass Fe$
- B. 29.8 g $25.6 \text{ g O} \rightarrow ? \text{ g Fe}$
- C. 89.4 g 3 mol O \Leftrightarrow 2 mol Fe
- D. 134 g
- E. 52.4 g

$$25.6 \text{ g Q} \times \left(\frac{1 \text{ mol Q}}{16.0 \text{ g Q}}\right) \times \left(\frac{2 \text{ mol Fe}}{3 \text{ mol Q}}\right) \times \left(\frac{55.845 \text{ g Fe}}{1 \text{ mol Fe}}\right)$$

= **59.6** g Fe

Percentage Composition

 Percentage composition tells us mass of each element in 100.00 g of substance

Percentage by Mass: %

% by mass of element =
$$\frac{\text{mass of element}}{\text{mass of sample}} \times 100\%$$

Ex. Na₂CO₃ is

- 43.38% Na
- 11.33% C
- 45.29% O
- What is sum of % by mass? 100.00%

Ex. Percent Composition

Ex. A sample of a liquid with a mass of 8.657 g was decomposed into its elements and gave 5.217 g of carbon, 0.9620 g of hydrogen, and 2.478 g of oxygen. What is the percentage composition of this compound?

Ex. % Composition of Compound

For C:
$$\left(\frac{g \text{ C}}{g \text{ total}}\right) \times 100\% = \frac{5.217 \text{ g C}}{8.657 \text{ g}} \times 100\% = 60.26\% \text{ C}$$

For H:
$$\left(\frac{g \text{ H}}{g \text{ total}}\right) \times 100\% = \frac{0.9620 \text{ g H}}{8.657 \text{ g}} \times 100\% = 11.11\% \text{ H}$$

For O:
$$\left(\frac{g \text{ O}}{g \text{ total}}\right) \times 100\% = \frac{2.478 \text{ g O}}{8.657 \text{ g}} \times 100\% = \frac{28.62\% \text{ O}}{8.657 \text{ g}}$$

Sum of percentages: 99.99%

Your Turn!

Ex. A sample was analyzed and found to contain 0.1417 g nitrogen and 0.4045 g oxygen. What is the percentage composition of this compound?

1. Calculate total mass of sample

Total sample mass = 0.1417 g + 0.4045 g = 0.5462 g

2. Calculate % Composition of N

$$\left(\frac{gN}{g \text{ total}}\right) \times 100\% = \left(\frac{0.1417gN}{0.5462g}\right) \times 100\% = 25.94\% N$$

3. Calculate % Composition of O

$$\left(\frac{gO}{g \text{ total}}\right) \times 100\% = \left(\frac{0.4045gO}{0.5462g}\right) \times 100\% = 74.06\% O$$

Ex. Using Percent Composition

Are the mass percentages 30.54% N & 69.46% O consistent with the formula N_2O_4 ?

Procedure:

- 1. Assume 1 mole of compound
- 2. Subscripts tell how many moles of each element are present
 - 2 mol N & 4 mol O
- 3. Use molar masses of elements to determine mass of each element in 1 mole
 - Molar Mass of $N_2O_4 = 92.14 \text{ g } N_2O_4 / 1 \text{ mol}$
- 4. Calculate % by mass of each element

Ex. Using Percent Composition (cont)

$$2 \text{ molN} \times \frac{14.07 \text{ g N}}{1 \text{ molN}} = 28.14 \text{ g N}$$

$$4 \text{ mol O} \times \frac{16.00 \text{ g O}}{1 \text{ mol O}} = 64.00 \text{ g O}$$

$$\%N = \frac{28.14 \text{ g N}}{92.14 \text{ g N}_2 \text{O}_4} \times 100\% = 30.54\% \text{ N in N}_2 \text{O}_4$$

$$\%O = \frac{64.00 \text{ g O}}{92.14 \text{ g N}_2 \text{O}_4} \times 100\% = 69.46\% \text{ N in N}_2 \text{O}_4$$

 The experimental values match the theoretical percentages for the formula N₂O₄.

Your Turn

Ex. If a sample containing only phosphorous & oxygen has percent composition 56.34% P &

43.66% O, is this P_4O_{10} ? 4 mol P \Leftrightarrow 1 mol P_4O_{10}

10 mol O
$$\Leftrightarrow$$
 1 mol P₄O₁₀

4 mol P =
$$4 \times 30.97$$
 g/mol P = 123.9 g P
10 mol O = 10×16.00 g/mol O = 160.0 g O

1 mol
$$P_4O_{10} = 283.9 g P_4O_{10}$$

$$\%P = \frac{123.9g P}{283.9g P_4 O_{10}} \times 100\% = 43.64 \% P$$

$$\%O = \frac{160.0g O}{283.9g P_4 O_{10}} \times 100\% = 56.36 \% O$$

Determining Empirical & Molecular Formulas

 When making or isolating new compounds one must characterize them to determine structure &

Molecular Formula

- Exact composition of one molecule
- Exact whole # ratio of atoms of each element in molecule

Empirical Formula

- Simplest ratio of atoms of each element in compound
- Obtained from experimental analysis of compound glucose Empirical formula CH₂O

Molecular formula

 $C_6H_{12}O_6$

Strategy for Determining Empirical Formulas

- 1. Determine mass in **g** of each element
- 2. Convert mass in g to moles
- 3. Divide all quantities by smallest number of moles to get smallest ratio of moles
- 4. Convert any non-integers into integer numbers.
 - If number ends in decimal equivalent of fraction, multiply all quantities by least common denominator
 - Otherwise, round numbers to nearest integers

1. Empirical Formula from Mass Data

Ex. When a 0.1156 g sample of a compound was analyzed, it was found to contain 0.04470 g of C, 0.01875 g of H, and 0.05215 g of N. Calculate the empirical formula of this compound.

Step 1: Calculate moles of each substance

$$0.04470 \, \text{GC} \times \frac{1 \, \text{mol C}}{12.011 \, \text{gC}} = 3.722 \times 10^{-3} \, \text{mol C}$$
 $0.01875 \, \text{gH} \times \frac{1 \, \text{mol H}}{1.008 \, \text{gH}} = 1.860 \times 10^{-2} \, \text{mol H}$

$$0.052159 \, N \times \frac{1 \, \text{mol N}}{14.00679 \, N} = 3.723 \times 10^{-3} \, \text{mol N}$$

1. Empirical Formula from Mass Data

Step 2: Select the smallest # of moles.

■ Lowest is 3.722 x 10⁻³ mole

$$C = \frac{3.722 \times 10^{-3} \text{ molC}}{3.722 \times 10^{-3} \text{ molC}} = 1.000 = 1$$

$$H = \frac{1.860 \times 10^{-2} \text{ molH}}{3.722 \times 10^{-3} \text{ molC}} = 4.997 = 5$$

■ N =
$$\frac{3.723 \times 10^{-3} \text{ molN}}{3.722 \times 10^{-3} \text{ molC}} = 1.000$$
 = 1

Step 3: Divide all # of moles by the smallest one

Empirical formula = CH₅N

Empirical Formula from Mass Composition

Ex. One of the compounds of iron Fe and oxygen O, When a 2.448 g sample was analyzed it was found to have 1.771 g of Fe and 0.677 g of O. Calculate the empirical formula of this compound.

Assembling the tools:

1 mol Fe =
$$55.845$$
 g Fe 1 mol O = 16.00 g O

1. Calculate moles of each substance

$$1.771$$
gFe × $\frac{1 \text{ mol Fe}}{55.485$ gFe = 0.03171 mol Fe

$$0.677 \, \text{gQ} \times \frac{1 \, \text{mol O}}{16.00 \, \text{gQ}} = 0.0423 \, \text{mol O}$$

1. Empirical Formula from Mass Data

2. Divide both by smallest #mol to get smallest whole # ratio.

$$\frac{0.03171 \text{mol Fe}}{0.03171 \text{mol Fe}} = 1.000 \text{ Fe} \times 3 = 3.000 \text{ Fe}$$
 $\frac{0.0423 \text{mol O}}{0.03171 \text{mol Fe}} = 1.33 \text{ O} \times 3 = 3.99 \text{ O}$

or
$$Fe_{0.03171}O_{0.0423} = Fe_{1.00}O_{1.33}$$

 $Fe_{(1.00\times3)}O_{(1.33\times3)} = Fe_3O_{3.99}$

Empirical Formula = Fe_3O_4

2. Empirical Formula from % Composition

Ex. Calculate the empirical formula of a compound whose % composition data is 43.64 % P and 56.36 % O. If the molar mass is determined to be 283.9 g/mol, what is the molecular formula?

Step 1: Assume 100 g of compound.

$$43.64$$
 gP $\times \frac{1 \text{ mol P}}{30.97$ gP $= 1.409$ mol P

$$56.36 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 3.523 \text{ mol P}$$

2. Empirical Formula from % Composition

Step 2: Divide by smallest number of moles

$$\frac{1.409 \,\text{mol P}}{1.409 \,\text{mol P}} = 1.000 \times 2 = 2$$

$$\frac{3.523 \,\text{mol O}}{1.409 \,\text{mol P}} = 2.500 \, \times 2 = 5$$

Step 3: Multiple by n to get smallest integer ratio

Here n = 2

Empirical formula = P_2O_5

Determining Molecular Formula

- Need molecular mass & empirical formula
- Calculate ratio of molecular mass to mass predicted by empirical formula & round to nearest integer

$$n = \frac{\text{molecular mass}}{\text{empirical formula mass}}$$

Ex. Glucose

Molecular mass is 180.16 g/mol

Empirical formula = CH_2O

Empirical formula mass = 30.03 g/mol

$$n = \frac{180.16 \, g}{30.03 \, g} = 6$$

Molecular formula = $C_6H_{12}O_6$

Learning Check

The empirical formula of a compound is P_2O_5 . If the molar mass is determined to be 283.9 g/mol, what is the molecular formula?

Step 1: Calculate empirical mass

empirical mass
$$P_2O_5 = (2 \times mass P) + (5 \times mass O)$$

= $(2 \times 30.97 \text{ g/mol}) + (5 \times 16.00 \text{ g/mol})$
= $(61.94 + 80.00) \text{ g/mol}$
= $141.94 \text{ g/mol}P_2O_5$

Step 2: Calculate ratio of molecular to empirical mass

$$n = \frac{283.9 \text{ g/mol}}{141.94 \text{ g/mol}} = 2$$
 Molecular formula = P_4O_{10}

Your Turn!

Ex.The empirical formula of hydrazine is NH₂, and its molecular mass is 32.0. What is its molecular formula?

B.
$$N_2H_4$$

C.
$$N_3H_6$$

D.
$$N_4H_8$$

Molar mass of
$$NH_2 = (1 \times 14.01)g + (2 \times 1.008)g = 16.017g$$

$$n = (32.0/16.02) = 2$$

Atomic Mass: N:14.007; H:1.008; O:15.999

Learning Check: Balancing Equations

unbalanced

$$AgNO_3(aq) + Na_3PO_4(aq) \rightarrow Ag_3PO_4(s) + NaNO_3(aq)$$

balanced

$$3AgNO_3(aq) + Na_3PO_4(aq) \rightarrow Ag_3PO_4(s) + 3NaNO_3(aq)$$

unbalanced

$$Zn(s) + HCI(aq) \rightarrow ZnCI_2(aq) + H_2(g)$$

Balanced

$$Zn(s) + 2HCI(aq) \longrightarrow ZnCI_2(aq) + H_2(g)$$

Balance by Inspection

$$_C_3H_8(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(\ell)$$

Assume 1 in front of C_3H_8
 $3C$ $1C \times 3$
 $8H$ $2H \times 4$
 $1C_3H_8(g) + _O_2(g) \rightarrow 3CO_2(g) + 4H_2O(\ell)$
 $2O \times 5 = 10$ $O = (3 \times 2) + 4 = 10$
 $8H$ $H = 2 \times 4 = 8$
 $1C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(\ell)$

Your Turn!

Ex. Balance each of the following equations. What are the coefficients in front of each compound?

$$\underline{\mathbf{1}}$$
 Ba(OH)₂(aq) + $\underline{\mathbf{1}}$ Na₂SO₄(aq) \rightarrow $\underline{\mathbf{1}}$ BaSO₄(s) + $\underline{\mathbf{2}}$ NaOH(aq)

$$\underline{2}$$
 KClO₃(s) \rightarrow $\underline{2}$ KCl(s) + $\underline{3}$ O₂(g)

$$2H_3PO_4(aq) + 3Ba(OH)_2(aq) \rightarrow 1Ba_3(PO_4)_2(s) + 6H_2O(l)$$

Stoichiometric Ratios

Consider the reaction

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Could be read as:

"When 1 **molecule** of nitrogen reacts with 3 **molecules** of hydrogen, 2 **molecules** of ammonia are formed."

Molecular relationships

- ■1 molecule $N_2 \Leftrightarrow 2$ molecule NH_3
- ■3 molecule $H_2 \Leftrightarrow 2$ molecule NH_3
- ■1 molecule $N_2 \Leftrightarrow 3$ molecule H_2

Stoichiometric Ratios

Consider the reaction

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Could also be read as:

"When 1 **mole** of nitrogen reacts with 3 **moles** of hydrogen, 2 **moles** of ammonia are formed."

Molar relationships

- ■1 mole $N_2 \Leftrightarrow 2$ mole NH_3
- ■3 mole $H_2 \Leftrightarrow 2$ mole NH_3
- ■1 mole $N_2 \Leftrightarrow 3$ mole H_2

Using Stoichiometric Ratios

Ex. For the reaction $N_2 + 3 H_2 \rightarrow 2NH_3$, how many moles of N_2 are used when 2.3 moles of NH_3 are produced?

- Assembling the tools
 - 2 moles $NH_3 = 1$ mole N_2
 - 2.3 mole $NH_3 = ?$ moles N_2

$$2.3 \text{ moINH}_3 \left(\frac{1 \text{ moIN}_2}{2 \text{ moINH}_3} \right) = 1.2 \text{ moIN}_2$$

Your Turn!

Ex. If 0.575 mole of CO_2 is produced by the combustion of propane, C_3H_8 , how many moles of oxygen are consumed?

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

- A. 0.575 mole
- B. 2.88 mole
- C. 0.192 mole
- D. 0.958 mole
- E. 0.345 mole

Assembling the tools

- 0.575 mole $CO_2 = ?$ moles O_2
- 3 moles $CO_2 = 5$ mole O_2

$$0.575 \,\text{mol}\,\text{CO}_2 \left(\frac{5 \,\text{mol}\,\text{O}_2}{3 \,\text{mol}\,\text{CO}_2} \right) = 0.958 \,\text{mol}\,\text{O}_2$$

Using Balanced Equation to Determine Stoichiometry

Ex. What mass of O_2 will react with 96.1 g of propane (C_3H_8) gas, to form gaseous carbon dioxide & water?

Strategy

1. Write the balanced equation

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

2. Assemble the tools

96.1 g
$$C_3H_8 \rightarrow \text{moles } C_3H_8 \rightarrow \text{moles } O_2 \rightarrow \text{g } O_2$$

1 mol
$$C_3H_8 = 44.1 \text{ g } C_3H_8$$

1 mol
$$O_2 = 32.00 \text{ g } O_2$$

1 mol
$$C_3H_8 = 5$$
 mol O_2

Using Balanced Equation to Determine Stoichiometry

Ex. What mass of O_2 will react with 96.1 g of propane in a complete combustion?

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

3. Assemble conversions so units cancel correctly

$$96.1 \text{ g C}_3\text{H}_8 \times \frac{1 \text{ mol C}_3\text{H}_8}{44.1 \text{ g C}_3\text{H}_8} \times \frac{5 \text{ mol O}_2}{1 \text{ mol C}_3\text{H}_8} \times \frac{32.0 \text{ g O}_2}{1 \text{ mol O}_2}$$

= 349 g of O_2 are needed

Your Turn!

Ex. How many grams of Al₂O₃ are produced when 41.5 g Al react?

$$2AI(s) + Fe_2O_3(s) \longrightarrow AI_2O_3(s) + 2Fe(\ell)$$

- A. 78.4 g
- B. 157 g
- C. 314 g
- D. 22.0 g
- E. 11.0 g

41.5 g Al
$$\left(\frac{1 \text{ mol Al}}{26.98 \text{ g Al}}\right) \left(\frac{1 \text{ mol Al}_2 O_3}{2 \text{ mol Al}}\right) \left(\frac{101.96 \text{ g Al}_2 O_3}{1 \text{ mol Al}_2 O_3}\right)$$

 $= 78.4 \text{ g Al}_2\text{O}_3$

Limiting Reactant

- Reactant that is completely used up in the reaction
- Present in lower # of moles
- It determines the amount of product produced
- For this reaction = ethylene

Excess reactant

- Reactant that has some amount left over at end
- Present in higher # of moles
- For this reaction = water

Ex. Limiting Reactant Calculation

How many grams of NO can form when 30.0 g NH_3 and 40.0 g O_2 react according to:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

Solution: Step 1

mass $NH_3 \rightarrow mole NH_3 \rightarrow mole O_2 \rightarrow mass O_2$

Assembling the tools

- 1 mol $NH_3 = 17.03 g$
- 1 mol $O_2 = 32.00 g$
- 4 mol NH₃ \Leftrightarrow 5 mol O₂

$$30.0 \, \text{gNH}_3 \times \frac{1 \, \text{molNH}_3}{17.03 \, \text{gNH}_3} \times \frac{5 \, \text{molO}_2}{4 \, \text{molNH}_3} \times \frac{32.00 \, \text{gO}_2}{1 \, \text{molO}_2}$$

= 70.5 g O_2 needed

Only have $40.0 \text{ g } O_2$,

O₂ limiting reactant

Ex. Limiting Reactant Calculation

How many grams of NO can form when 30.0 g NH_3 and 40.0 g O_2 react according to:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

Solution: Step 2

mass
$$O_2 \rightarrow \text{mole } O_2 \rightarrow \text{mole NO} \rightarrow \text{mass NO}$$

Assembling the tools

Can only form 30.0 g NO.

- 1 mol $O_2 = 32.00 g$
- 1 mol NO = 30.01 g
- 5 mol $O_2 \Leftrightarrow 4$ mol NO

$$40.0 \text{ g } Q_2 \times \frac{1 \text{ mol } Q_2}{32.00 \text{ g } Q_2} \times \frac{4 \text{ mol NO}}{5 \text{ mol } Q_2} \times \frac{30.01 \text{ g NO}}{1 \text{ mol NO}}$$

= 30.0 g NO formed

Your Turn!

Ex. If 18.1 g NH₃ is reacted with 90.4 g CuO, what is the maximum amount of Cu metal that can be formed?

$$2NH_{3}(g) + 3CuO(s) \rightarrow N_{2}(g) + 3Cu(s) + 3H_{2}O(g)$$
 (MM) (17.03) (79.55) (28.01) (64.55) (18.02) (g/mol)
$$18.1gNH_{3} \times \frac{1 mol \, NH_{3}}{17.03 \, gNH_{3}} \times \frac{3 \, mol \, CuO}{2 \, mol \, NH_{3}} \times \frac{79.55 \, g \, CuO}{1 \, mol \, CuO}$$

A. 127 g

B. 103 g

C. 72.2 g

D. 108 g

E. 56.5 g

127 g CuO needed.

Only have 90.4g so CuO limiting

$$90.4\,\mathrm{g\,CuO} \times \frac{1\,\mathrm{mol\,CuO}}{79.55\,\mathrm{g\,CuO}} \times \frac{3\,\mathrm{mol\,Cu}}{3\,\mathrm{mol\,CuO}} \times \frac{63.546\,\mathrm{g\,Cu}}{1\,\mathrm{mol\,Cu}}$$

72.2 g Cu can be formed

Theoretical vs. Actual Yield

Theoretical Yield

- Maximum amount of product that must be obtained if no losses occur.
- Amount of product formed if all of limiting reagent is consumed.

Actual Yield

- Amount of product that is actually isolated at end of reaction.
- Amount obtained experimentally
- How much is obtained in mass units or in moles.

Percentage Yield

Useful to calculate % yield.

Percent yield

- Relates the actual yield to the theoretical yield
- It is calculated as:

$$percentage yield = \left(\frac{actual\ yield}{theoretic \ add \ yield}\right) \times 100$$

Ex. If a cookie recipe predicts a yield of 36 cookies and yet only 24 are obtained, what is the % yield?

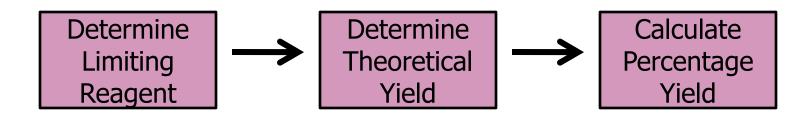
percentageyield =
$$\left(\frac{24}{36}\right) \times 100 = 67\%$$

Ex. Percentage Yield Calculation

When 18.1 g NH_3 and 90.4 g CuO are reacted, the theoretical yield is 72.2 g Cu. The actual yield is 58.3 g Cu. What is the percent yield?

$$2NH3(g) + 3CuO(s) \rightarrow N2(g) + 3Cu(s) + 3H2O(g)$$

% yield =
$$\frac{58.3 \text{ g Cu}}{72.2 \text{ g Cu}} \times 100\% = 80.7\%$$


Learning Check: Percentage Yield

Ex. A chemist set up a synthesis of solid phosphorus trichloride PCl₃ by mixing 12.0 g of solid phosphorus with 35.0 g chlorine gas and obtained 42.4 g of solid phosphorus trichloride. Calculate the percentage yield of this compound.

Analysis:

Write balanced equation

$$P(s) + Cl_2(g) \longrightarrow PCl_3(s)$$

Learning Check: Percentage Yield

Assembling the Tools:

- 1 mol P = 30.97 g P
- 1 mol $Cl_2 = 70.90 \text{ g } Cl_2$
- 3 mol Cl₂ ⇔ 2 mol P

Solution

1. Determine Limiting Reactant

$$12.0 \text{ gR} \times \frac{1 \text{ molP}}{30.97 \text{ gP}} \times \frac{3 \text{ molCl}_2}{2 \text{ molP}} \times \frac{70.90 \text{ g Cl}_2}{1 \text{ molCl}_2} = 41.2 \text{ g Cl}_2$$

 But you only have 35.0 g Cl₂, so Cl₂ is limiting reactant

Learning Check: Percentage Yield

Solution

2. Determine Theoretical Yield

$$35.0 \text{ g Cl}_2 \times \frac{1 \text{ mol Cl}_2}{70.90 \text{ g Cl}_2} \times \frac{2 \text{ mol PCl}_3}{3 \text{ mol Cl}_2} \times \frac{137.32 \text{ g PCl}_3}{1 \text{ mol PCl}_3}$$

$$= 45.2 \text{ g PCl}_3$$

3. Determine Percentage Yield

Actual yield = 42.4 g

percentageyield =
$$\left(\frac{42.2 \text{ g PCl}_3}{45.2 \text{ g PCl}_3}\right) \times 100 = 93.8 \%$$

Your Turn!

Ex. When 6.40 g of CH_3OH was mixed with 10.2 g of O_2 and ignited, 6.12 g of CO_2 was obtained. What was the percentage yield of CO_2 ?

Molarity Concentration

- Number of moles of solute per liter of solution.
- Allows us to express relationship between moles of solute and volume of solution
- Hence, 0.100 M solution of NaCl contains 0.100 mole NaCl in 1.00 liter of solution
- Same concentration results if you dissolve 0.0100 mol of NaCl in 0.100 liter of solution

Molarity (M) =
$$\frac{\text{moles of solute}}{\text{liters of solution}} = \frac{\text{mole}}{\text{Volume}}$$

$$\frac{0.100 \, \text{mol NaCl}}{1.00 \, \text{L NaCl soln}} = \frac{0.0100 \, \text{mol NaCl}}{0.100 \, \text{L NaCl soln}} = 0.100 \, \text{M NaCl}$$

Learning Check: Calculating Molarity (from grams and volume)

Ex. Calculate the molarity (*M*) of a solution prepared by dissolving 11.5 g NaOH (40.00 g/mol) solid in enough water to make 1.50 L of solution.

g NaOH
$$\longrightarrow$$
 mol NaOH \longrightarrow M NaOH

$$11.5 \text{ g NaOH} \times \frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}} = 0.288 \text{ mol NaOH}$$

$$M = \frac{\text{moles NaOH}}{\text{L so ln}} = \frac{0.288 \, \text{mol NaOH}}{1.50 \, \text{L soln}}$$

= **0.192***M* NaOH

Learning Check: Calculating Volume (from Molarity and moles)

Ex. How many mL of 0.250 *M* NaCl solution are needed to obtain 0.100 mol of NaCl?

Use M definition

$$0.250 \, M \, \text{NaCl} = \frac{0.250 \, \text{mol NaCl}}{1.00 \, \text{L NaCl soln}}$$

Given molarity and moles, need volume

$$0.100\, \text{mol\,NaCl} \times \, \frac{1.00\, \text{L NaCl soln}}{0.250\, \text{mol\,NaCl}} \times \frac{1000\, \text{mL NaCl soln}}{1\, \text{L NaCl soln}}$$

= 400 mL of 0.250 M NaCl solution

Temperature Insensitive Concentration

1. Percent Concentrations

Also called percent by mass or percent by weight

percent by mass =
$$\frac{\text{mass of solute}}{\text{mass of solution}} \times 100\%$$

- This is sometimes indicated %(w/w) where "w" stands for weight
- The "(w/w)" is often omitted

Ex. Percent by Mass

What is the percent by mass of NaCl in a solution consisting of 12.5 g of NaCl and 75.0 g water?

percentby mass
$$=\frac{\text{mass of solute}}{\text{mass of solution}} \times 100\%$$

$$wt\%_{NaCl} = \frac{12.5g}{(12.5 + 75.0)g} \times 100$$

$$wt\%_{NaC/} = 14.3\% \text{ NaCl}$$

Learning Check

Ex. How many grams of sea salt would be needed to prepare 62.5 L of 3.5% w/w solution with density of 1.03 g/mL. ?

- •What do we need to find?
 - 62.5 L ⇔ ? g sea salt
- •What do we know?
 - 3.5 g sea salt ⇔ 100 g solution
 - 1.03 g soln ⇔ 1.00 mL solution
 - 1000 mL ⇔ 1.00 L

$$62.51 \times \frac{1000 \text{ mL}}{11} \times \frac{1.03 \text{ g seln.}}{1.00 \text{ mL soln.}} \times \frac{3.5 \text{ g sea salt.}}{100 \text{ g soln.}}$$

More Temperature Insensitive Concentration Units Molality (m)

Number of moles of solute per kilogram solvent

molality =
$$m = \frac{mol \text{ of solute}}{kg \text{ of solvent}}$$

- Also Molal concentration
- Independent of temperature

Ex. Concentration Calculation

A. If you prepare a solution by dissolving 25.38 g of I_2 in 500.0 g of water, what is the molality (m) of the solution?

- What do we need to find?
 - 25.38 g ⇔ ? *m*
- •What do we know?
 - 253.8 g $I_2 \Leftrightarrow 1 \text{ mol } I_2$
 - m = mol solute/kg solvent
- $\begin{array}{ll} \bullet & 500.0 \text{ g} \Leftrightarrow 0.5000 \text{ kg} \\ \bullet & \text{Solve it} \end{array} \begin{array}{ll} 25.38 \text{ g I}_2 \times \frac{1 \, \text{mol I}_2}{253.8 \text{ g I}_2} \times \frac{1}{0.5000 \text{ kg water}} \end{array}$
 - = 0.2000 mol I_2/kg water = **0.2000** m

Ex. Calculating M from m (cont.)

- B. What is the molarity (*M*) of this solution? The density of this solution is 1.59 g/mL.
- •What do we need to find?
 - 25.38 g ⇔ ? *M*
- •What do we know?
 - 253.8 g $I_2 \Leftrightarrow 1 \text{ mol } I_2$
 - M = mol solute/L soln
 - 1.59 g soln ⇔ 1 mL soln
 - g of soln = g I_2 + g H_2O = 500.0 g + 25.38 g
- $\begin{array}{l} \blacksquare \text{Solve it} \\ 25.38 \ \text{g} \ I_2 \times \frac{1 \, \text{mol} \ I_2}{253.8 \ \text{g} \ I_2} \times \frac{1}{525.38 \, \text{g} \ \text{soln}} \times \frac{1.59 \, \text{g}}{1.00 \, \text{mL}} \times \frac{1000 \, \text{mL}}{1 \, \text{L}} \end{array}$
 - $= 0.3030 \text{ mol } I_2/L \text{ soln} = 0.3030 M$

Converting between Concentrations

Ex. Calculate the molarity and the molality of a 40.0% HBr solution. The density of this solution is 1.38 g/mL.

40.0% HBr =
$$wt\% = \frac{40.0g \text{ HBr}}{100 g \text{ solution}} *100$$

If we assume 100.0 g of solution, then 40.0 g of HBr.

$$m = \frac{mol \text{ HBr}}{kg \text{ of H}_2O}$$
 $mol \text{ HBr} = \frac{40.0g \text{ HBr}}{80.91g \text{ HBr}/mol} = 0.494mol \text{ HBr}$

If 100 g solution, then

mass
$$H_2O = 100.0 g soln - 40.0 g HBr = 60.0 g H_2O$$

$$m = \frac{mol \text{ HBr}}{kg \text{ H}_2\text{O}} = \frac{0.494 \text{ mol HBr}}{0.0600 \text{ kg H}_2\text{O}} = 8.24 \text{m}$$

Converting between Concentrations (cont.)

Now Calculate Molarity of 40% HBr

$$M = \frac{mol \text{ HBr}}{L \text{ solution}}$$

Vol Soln =
$$\frac{\text{mass}}{\text{density}} = \frac{100g}{1.38g / mL} = 72.46 \text{ mL}$$

$$M = \frac{0.494 mol \text{ HBr}}{72.46 mL \text{ solution}} \times \frac{1000 mL}{1L} = 6.82 M$$

Your Turn!

Ex. What is the molality of 50.0% (w/w) NaOH solution?

- A. 0.500 *m*
- B. 1.25 *m*
- C. 0.025 *m*
- D. 25 m
- E. 50 m

100.0 g soln = 50.0 g NaOH + 50.0 g water

$$50.0 \,\mathrm{g\,NaOH} \times \frac{1\,\mathrm{mol\,NaOH}}{40.00 \,\mathrm{g\,NaOH}} \times \frac{1\,m}{\mathrm{mol/kg}} \times \frac{1000 \,\mathrm{g}}{1\,\mathrm{kg}} \times \frac{1}{50.0 \,\mathrm{g\,water}}$$

= 25 m

MM(g/mol) H₂O: 18.02; NaOH: 40.00

Your Turn!

Ex. What is the molarity of the 50%(w/w) solution if its density is 1.529 g/mL?

- A. 19 M
- B. 1.25 M
- C. 1.9 M
- D. 0.76 M

50 g NaOH x
$$\frac{1 \text{ mol NaOH}}{40.0 \text{ g}}$$
 x $1.529 \frac{\text{g soln}}{\text{mL}}$

$$x \frac{1}{100 \text{ g soln}} x \frac{1000 \text{ mL}}{L} = 19M$$

or

25
$$\frac{\text{mmol}}{\text{g soln}} \times \frac{50 \text{ g H}_2\text{O}}{100 \text{ g soln}} \times \frac{1.529 \text{ g}}{\text{mL}} = 19M$$

Other Temperature Insensitive Concentration Units

Mole Fraction

$$\chi_{A} = \frac{\text{# mol A}}{\text{Totalmoles of all components}}$$

Chapter 2 Properties of Gases

Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Properties of Common Gases

 Despite wide differences in chemical properties,
 ALL gases more or less obey the same set of physical properties.

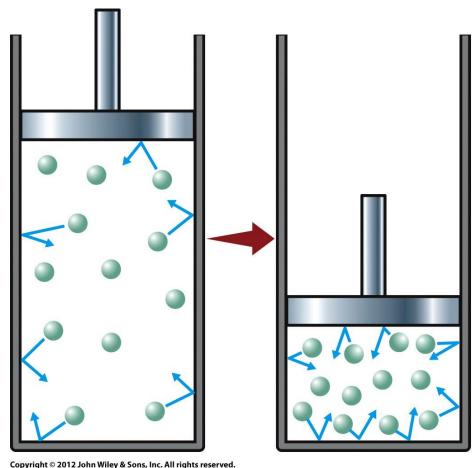
Four Physical Properties of Gases

- 1. Pressure (**P**)
- 2. Volume (**V**)
- 3. Temperature (**T**)
- 4. Amount = moles (n)

Units of Pressure

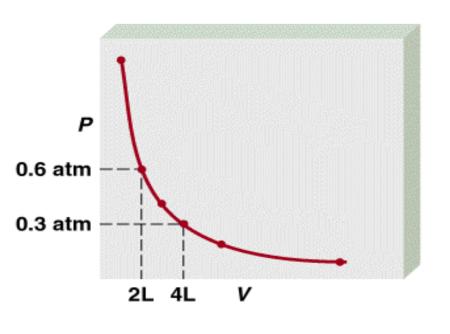
Pascal = Pa

- SI unit for Pressure
- Very small
- 1atm = 101,325 Pa = 101 kPa

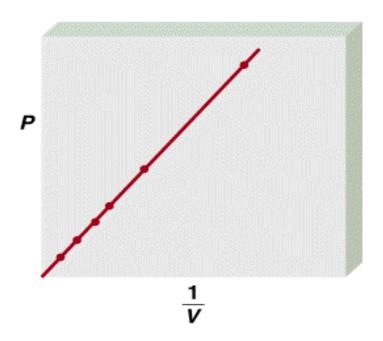

1 atm too big for most lab work

$$1torr = \frac{1}{760} atm \qquad 1 atm \equiv 760 mm Hg$$

At sea level 1 torr = 1 mm Hg


Boyle's Law

- Studied relationship between P and V
- Work done at constant *T* as well as constant number of moles (*n*)
- $T_1 = T_2$
- As V↓, P↑


The volume of a fixed quantity of gas at constant temperature is **inversely proportional** to the pressure.

A plot of V versus 1/P will be a straight line

 $P\alpha 1/V$

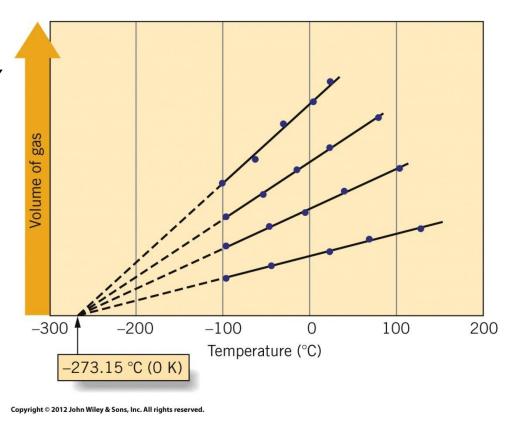
$$P \times V = \text{constant}$$

 $P_1 \times V_1 = P_2 \times V_2$

$$P = k(1/V)$$

This means a plot of *P* versus 1/*V* will be a straight line.

Ex: A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL?


$$P_1 \times V_1 = P_2 \times V_2$$

 $P_1 = 726 \text{ mmHg}$ $P_2 = ?$
 $V_1 = 946 \text{ mL}$ $V_2 = 154 \text{ mL}$

$$P_2 = \frac{P_1 \times V_1}{V_2} = \frac{726 \text{ mmHg x } 946 \text{ mL}}{154 \text{ mL}} = 4460 \text{ mmHg}$$

Charles's Law

- Charles worked on relationship of how V changes with T
- Kept P and n constant
- Showed V↑ as T↑

• i.e.,
$$\frac{V}{T} = k$$

■ The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature. $V_1/T_1 = V_2/T_2$

Ex. Anesthetic gas is normally given to a patient when the room temperature is 20.0 °C and the patient's body temperature is 37.0°C. What would this temperature change do to 1.60 L of gas if the pressure and mass stay the same?

$$\frac{\boldsymbol{V}_1}{\boldsymbol{T}_1} = \frac{\boldsymbol{V}_2}{\boldsymbol{T}_2}$$

$$V_2 = \frac{V_1 T_2}{T_1} = \frac{1.60 L \times 310.15 K}{293.15 K}$$

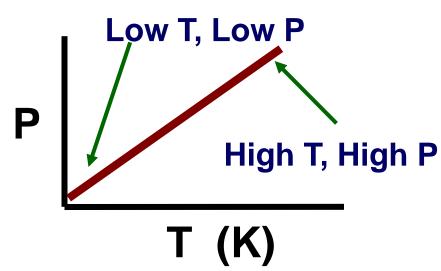
$$V_2 = 1.69 L$$

Ex: A sample of carbon monoxide gas occupies 3.20 L at 125 °C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$V_1/T_1 = V_2/T_2$$
 $V_1 = 3.20 L$
 $V_2 = 1.54 L$
 $T_1 = 398.15 K$
 $T_2 = ?$

$$T_2 = \frac{V_2 \times T_1}{V_1} = \frac{1.54 \times 398.15 \text{ K}}{3.20 \times 3.20 \times$$

Gay-Lussac's Law


- Volume (**V**) and number of moles (**n**) are constant
- P↑ as T↑

V= constant, n= Constant

The pressure of a fixed amount of gas at constant volume is directly proportional to its absolute temperature.

$$P \propto T$$

$$P_1 T_2 = P_2 T_1$$

Combined Gas Law

Ratio
 T

Constant for fixed amount of gas (n)

$$\frac{PV}{T} = C$$
 for fixed amount (moles)

$$\frac{\boldsymbol{P}_{1}\boldsymbol{V}_{1}}{\boldsymbol{T}_{1}} = \frac{\boldsymbol{P}_{2}\boldsymbol{V}_{2}}{\boldsymbol{T}_{2}}$$

How Other Laws Fit into Combined Gas Law

$$\frac{\boldsymbol{P}_{1}\boldsymbol{V}_{1}}{\boldsymbol{T}_{1}} = \frac{\boldsymbol{P}_{2}\boldsymbol{V}_{2}}{\boldsymbol{T}_{2}}$$

Boyle's Law	$T_1 = T_2$	$P_1V_1 = P_2V_2$
Charles' Law	$P_1 = P_2$	$\frac{\boldsymbol{V}_1}{\boldsymbol{T}_1} = \frac{\boldsymbol{V}_2}{\boldsymbol{T}_2}$
Gay-Lussac's Law	$V_1 = V_2$	$\frac{\boldsymbol{P}_1}{\boldsymbol{T}_1} = \frac{\boldsymbol{P}_2}{\boldsymbol{T}_2}$

Combined Gas Law

Ex. If a sample of air occupies 500. mL at STP*, what is the volume at 85 °C and 560 torr?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{760 \, torr \times 500.mL}{273.15 \, K} = \frac{560 \, torr \times V_2}{358.15 \, K}$$

 $= 890 \, mL$

*Standard Temperature (273.15K)
Standard Pressure (1 atm)

Ex. Using Combined Gas Law

■ What will be the final pressure of a sample of nitrogen gas with a volume of 950 m³ at 745 torr and 25.0 °C if it is heated to 60.0 °C and given a final volume of 1150 m³?

$$P_1 = 745 \text{ torr}$$
 $P_2 = ?$
 $V_1 = 950 \text{ m}^3$ $V_2 = 1150 \text{ m}^3$
 $T_1 = 25.0 \text{ °C} + 273.15$ $T_2 = 60.0 \text{ °C} + 273.15$ $= 298.15 \text{ K}$ $= 333.15 \text{ K}$
 $P_2 = \frac{P_1 V_1 T_2}{T_1 V_2} = \frac{745 torr \times 950 m^3 \times 333.15 K}{298.15 K \times 1150 m^3}$

 $P_2 = 688 \text{ torr}$

Your Turn!

- **Ex.** Which units must be used in all gas law calculations?
- A. K
- B. atm
- C. L
- D. no specific units as long as they cancel

Relationships between Gas Volumes

- In reactions in which products and reactants are gases:
 - If T and P are constant
 - Simple relationship among volumes
- hydrogen + chlorine → hydrogen chloride
 - 1 vol 2 vol
- hydrogen + oxygen → water (gas)
 - 2 vol 2 vol 2 vol
- ratios of simple, whole numbers

Avogadro's Principle

- When measured at same T and P, equal Vs of gas contain equal number of moles
- Volume of a gas is directly proportional to its number of moles, n
- $\mathbf{V} \propto \mathbf{n}$ (at constant P and T)

	$H_2(g)$	+ Cl ₂ ($g) \longrightarrow 2 HCl (g)$
Coefficients	1	1	2
Volumes	1	1	2
Molecules	1	1	2 (Avogadro's Principle)
Moles	1	1	2

Ex. Calculate the volume of ammonia formed by the reaction of 25L of hydrogen with excess nitrogen.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\frac{25 L H_2}{1} \times \frac{2 L N H_3}{3 L H_2} = 17 L N H_3$$

If 125 L H₂ react with 50L N₂, what volume of NH₃ can be expected?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\frac{125\,L\,H_2}{1} \times \frac{2\,L\,NH_3}{3\,L\,H_2} = 83.3\,L\,NH_3$$

$$\frac{50\,L\,N_2}{1} \times \frac{2\,L\,NH_3}{1\,L\,N_2} = 100\,L\,NH_3$$

H₂ is limiting reagent 83.3 L

Ex. How many liters of N_2 (g) at 1.00 atm and 25.0 °C are produced by the decomposition of 150. g of NaN_3 ? $2NaN_3$ (s) \rightarrow 2Na (s) + $3N_2$ (g)

$$\frac{150.g \ NaN_3}{1} \times \frac{1 \ mol \ NaN_3}{65.0099 \ g} \times \frac{3 \ mol \ N_2}{2 \ mol \ NaN_3} = 3.461 \ mol \ N_2$$

$$\frac{3.461 \,\text{mol N}_2}{1} \times \frac{22.4 \,\text{L}}{1 \,\text{mol at STP}} = 77.53 \,\text{L}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
; $V_2 = \frac{V_1 T_2}{T_1}$

$$V_2 = \frac{177.53 L \times 298.15 K}{273.15 K} = 84.62 L$$

Your Turn!

Ex. How many liters of SO₃ will be produced when 25 L of sulfur dioxide reacts with 75 L of oxygen? All gases are at STP.

$$25 L SO_2 \times \frac{2 L SO_3}{2 L SO_2} = 25 L SO_3$$

$$75 L O_2 \times \frac{2 L SO_3}{1 L O_2} = 150 L SO_3$$

Ideal Gas Law

With Combined Gas Law we saw that

$$rac{m{PV}}{m{T}}=m{C}$$

 With Avogadro's results we see that this is modified to

$$\frac{PV}{T} = n \times R$$

Where R = a new constant = Universal Gas constant

Standard Molar Volume

- Volume of 1 mole gas must be identical for all gases under same P and T
- Standard Conditions of Temperature and Pressure — STP
 - STP = 1 atm and 273.15 K $(0.0^{\circ}C)$
 - Under these conditions
 - 1 mole gas occupies V = 22.4 L
 - 22.4 L = standard molar volume

What is the value of R?

Plug in values of T, V, n and P for 1 mole of gas at STP (1 atm and 0.0°C)

■ T = 0.0°C = 273.15 K	Units	Numerical Value	
	L-atm/mol-K	0.08206	
P = 1 atm	J/mol-K*	8.314	
	cal/mol-K	1.987	
■ V = 22.4 L	m ^{3′} -Pa/mol-K*	8.314	
1 mal	L-torr/mol-K	62.36	
■ <i>n</i> = 1 mol	*SI unit		

$$R = \frac{PV}{nT} = \frac{1atm \times 22.4L}{1mol \times 273.15K}$$

 $R = 0.082057 \ L'atm'mol^{-1}'K^{-1}$

Ex. How many liters of $N_2(g)$ at 1.00 atm and 25.0 °C are produced by the decomposition of 150. g of NaN_3 ? $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$

$$V = ?$$
 $V = nRT/P$

P = 1 atm

$$T = 25C + 273.15 = 298.15 K$$

$$n = mol\,N_2 = \frac{150.g\,Na\,N_3}{1} \times \frac{1\,mol\,Na\,N_3}{65.0099\,g} \times \frac{3\,mol\,N_2}{2\,mol\,Na\,N_3}$$

$n = 3.461 \text{ mol } N_2$

$$V = \frac{(3.461 \text{mol N}_2)(0.082057 \frac{\text{L} \cdot \text{atm}}{\text{mol K}})(298.15 \text{K})}{1 \text{atm}}$$

V = 84.62L

Your Turn!

Ex. Solid CaCO₂ decomposes to solid CaO and CO₂ when heated. What is the pressure, in atm, of CO₂ in a 50.0 L container at 35 °C when 75.0 g of calcium carbonate decomposes?

- A. 0.043 atm
- B. 0.010 atm
- C. 0.38 atm
- D. 0.08 atm
- E. 38 atm

75.0 g CaO₂ x
$$\frac{1 \text{ mol CaCO}_3}{100.1 \text{ g}}$$
 x $\frac{1 \text{ mol CO}_2}{1 \text{ mol CaCO}_3}$ x 0.0821 $\frac{\text{L atm}}{\text{K mol}}$ x 308 K

50.0 L

 $P = m \times R \times T / MM \times V$

PV = nRT

■ Ex. A gas allowed to flow into a 300 mL gas bulb until the pressure was 685 torr. The sample now weighed 1.45 g; its temperature was 27.0°C. What is the molecular mass of this gas? T = 27.0°C + 273.15 K = 300.2 K

$$V = 300 mL \times \frac{1L}{1000 mL} = 0.300 L$$

$$P = 685torr \times \frac{1atm}{760torr} = 0.901atm$$

$$n = \frac{PV}{RT} = \frac{0.901atm \times 0.300L}{0.082057(atm \cdot L / mol \cdot K) \cdot 300.2K} =$$

$$MM = \frac{mass}{n} = \frac{1.45g}{0.01098mol} = 132 \frac{g/mol}{0.01098mol}$$

Chemistry: The Molecular Nature of Matter, 6E Gas =

Ex. A gaseous compound with an empirical formula of PF₂ was found to have a density of 5.60 g/L at 23.0 °C and 750 torr. Calculate its molecular mass and its molecular formula.

$$T = 23.0 \, \text{°C} + 273.15 \, \text{K} = 296.2 \, \text{K}$$

$$P = 750 torr \times \frac{1atm}{760 torr} = 0.9868 atm$$

$$n = \frac{PV}{RT} = \frac{0.9868 atm \times 1.000 L}{0.082057 (atm \cdot L / mol \cdot K) \cdot 296.2 K} = 0.04058 \, \text{mole}$$

$$MM = \frac{mass}{n} = \frac{5.60g}{0.04058mol} = 138 g/mol$$

Ex. Solution (cont)

- Now to find molecular formula given empirical formula and MM
- First find mass of empirical formula unit

•
$$1 P = 1 \times 31 g/mol = 31 g/mol$$

• 2
$$\mathbf{F} = 2 \times 19 \ g/mol = 38 \ g/mol$$

• Mass of
$$PF_2 = 69 \text{ g/mol}$$

$$MM = \frac{molecular\ mass}{empirical\ mass} = \frac{138g\ /\ mol}{69g\ /\ mol} = 2$$

∴ the correct molecular formula is P₂F₄

Your Turn!

Ex. 7.52 g of a gas with an empirical formula of NO₂ occupies 2.0 L at a pressure of 1.0 atm and 25 °C. Determine the molar mass and molecular formula of the compound.

- A. 45.0 g/mol, NO₂
- B. 90.0 g/mol, N₂O₄
- C. 7.72 g/mol, NO
- D. $0.0109 \text{ g/mol}, N_2O$
- E. Not enough data to determine molar mass

Your Turn! - Solution

$$MW = \frac{7.52 \text{ g x } 0.0821}{K \text{ mol}} \frac{\text{L atm}}{\text{K mol}} \times 298 \text{ K}$$

$$1.0 \text{ atm x } 2.0 \text{ L}$$
90.0 g/mol

$$90 \frac{g}{\text{mol}} \times \frac{1 \text{ mol } NO_2}{45.0 \text{ g}} = \frac{2 \text{ mol } NO_2}{\text{mol}}$$

Molecular formula is N₂O₄

Stoichiometry of Reactions Between Gases

- Can use stoichiometric coefficients in equations to relate volumes of gases
 - Provided T and P are constant
 - Volume ∞ moles

V ∞ n

Ex. Methane burns according to the following equation.

$$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g)$$

1 vol 2 vol 2 vol

Ex.

 The combustion of 4.50 L of CH₄ consumes how many liters of O₂? (Both volumes measured at STP.)

 P and T are all constant so just look at ratio of stoichiometric coefficients

Volume of
$$O_2 = 4.50 L * \frac{2L O_2}{1L CH_4}$$

 $= 9.00 L O_2$

Ex. Gas bulb with a volume of 250 mL. How many grams of Na_2CO_3 (s) would be needed to prepare enough CO_2 (g) to fill this bulb when the pressure is at 738 torr and the temperature is 23 °C? The equation is:

$$Na_{2}CO_{3}(s) + 2 HCI(aq) \rightarrow 2 NaCI(aq) + CO_{2}(g) + H_{2}O(t)$$

$$V = 250mL \times \frac{1L}{1000mL} = 0.250L$$

$$P = 738torr \times \frac{1atm}{760torr} = 0.971atm$$

$$T = 23.0 \,^{\circ}C + 273.15 \, K = 296.2 \, K$$

$$n = \frac{PV}{RT} = \frac{0.971atm \times 0.250L}{0.082057(atm \cdot L / mol \cdot K) \cdot 296.2K}$$

Ex. Solution (cont)

 $= 9.989 \times 10^{-3} \text{ mole CO}_2$

$$9.989 \times 10^{-3} \, mol \, CO_2 \times \frac{1 \, mol \, Na_2 CO_3}{1 \, mol \, CO_2}$$

 $= 9.989 \times 10^{-3} \text{ mol Na}_2\text{CO}_3$

$$9.989 \times 10^{-3} \, mol \, Na_2 CO_3 \times \frac{106g \, Na_2 CO_3}{1 \, mol \, Na_2 CO_3}$$

 $= 1.06 g Na_2CO_3$

Your Turn!

Ex. How many grams of sodium are required to produce 20.0 L of hydrogen gas at 25.0 C, and 750 torr?

$$2Na(s) + 2H2O(/) \rightarrow 2NaOH(aq) + H2(g)$$

- A. 18.6 g
- B. 57.0 g
- C. 61.3 g
- D. 9.62 g
- E. 37.1 g

Your Turn! - Solution

• Moles of H₂ produced:

$$n = \frac{750 \text{ torr x } \frac{1 \text{ atm}}{760 \text{ torr}} \times 20.0 \text{ L}}{0.0821 \frac{\text{L atm}}{\text{K mol}} \times 298 \text{ K}} = 0.807 \text{ mol H}_2$$

Grams of sodium required:

g Na = 0.807 mol H₂ x
$$\frac{2 \text{ mol Na}}{\text{mol H}_2}$$
 x $\frac{23.0 \text{ g}}{\text{mol Na}}$ = 37.1 g

Dalton's Law of Partial Pressure

- For mixture of non-reacting gases in container
- Total pressure exerted is sum of the individual partial pressures that each gas would exert alone
- $P_{total} = P_a + P_b + P_c + \cdots$
- Where $P_{a'}$ $P_{b'}$ and P_c = partial pressures
- Partial pressure
 - Pressure that particular gas would exert if it were alone in container

Dalton's Law of Partial Pressures

- Assuming each gas behaves ideally
- Partial pressure of each gas can be calculated from Ideal Gas Law

$$P_a = \frac{n_a RT}{V}$$
 $P_b = \frac{n_b RT}{V}$ $P_c = \frac{n_c RT}{V}$

So Total Pressure is

$$P_{total} = P_a + P_b + P_c + \cdots$$

$$= \frac{n_a RT}{V} + \frac{n_b RT}{V} + \frac{n_c RT}{V} + \cdots$$

Dalton's Law of Partial Pressures

Rearranging

$$P_{total} = (n_a + n_b + n_c + \cdots) \left(\frac{RT}{V}\right)$$

Or

$$P_{total} = n_{total} \left(\frac{RT}{V} \right)$$

• Where $n_{total} = n_a + n_b + n_c + \cdots$

n_{total} = sum of # moles of various gases in mixture

■ Ex. Mixtures of 46 L He at 25 °C and 1.0 atm and 12 L O₂ at 25 °C and 1.0 atm were pumped into a tank with a volume of 5.0 L. Calculate the partial pressure of each gas and the total pressure in the tank at 25 °C.

Не		O ₂	
$P_i = 1.0 \text{ atm}$	$P_f = P_{He}$	$P_i = 1.0 \text{ atm}$	$P_f = P_{O2}$
$V_i = 46 L$	$V_f = 5.0 L$	$V_i = 12 L$	$V_f = 5.0 L$

Ex. Solution (cont)

First calculate pressure of each gas in 5 L tank
 (P_f) using combined gas law

$$P_{He} = \frac{P_{i}V_{i}}{V_{f}} = \frac{1atm \times 46L}{5L} = 9.2atm$$

$$P_{O_2} = \frac{P_i V_i}{V_f} = \frac{1atm \times 12L}{5L} = 2.4atm$$

 Then use these partial pressures to calculate total pressure

$$P_{total} = P_{He} + P_{O_2} = 9.2atm + 2.4atm = 11.6atm$$

Your Turn!

- **Ex.** 250 mL of methane, CH₄, at 35 °C and 0.55 atm and 750 mL of propane, C₃H₈, at 35 °C and 1.5 atm, were introduced into a 10.0 L container. What is the final pressure, in torr, of the mixture?
- A. 95.6 torr
- B. $6.20 \times 10^4 \text{ torr}$
- C. $3.4 \times 10^3 \text{ torr}$
- D. 760 torr
- E. 59.8 torr

Your Turn! - Solution

$$P(CH_4) = \frac{0.55 \text{ atm x } 0.250 \text{ L}}{10.0 \text{ L}} = 0.0138 \text{ atm}$$

$$P(C_3H_8) = \frac{1.5 \text{ atm x } 0.750 \text{ L}}{10.0 \text{ L}} = 0.112 \text{ atm}$$

$$P_7 = (0.0138 + 0.112) \text{ atm x } \frac{760 \text{ torr}}{\text{atm}} = 95.6 \text{ torr}$$

Mole Fractions and Mole Percents

Mole Fraction

 Ratio of number moles of given component in mixture to total number moles in mixture

$$X_A = \frac{n_A}{n_A + n_B + n_C + \dots + n_Z} = \frac{n_A}{n_{total}}$$

$$n_A = P_A \left(\frac{V}{RT} \right)$$

$$X_A = \frac{P_A}{P_{total}} = \frac{n_A}{n_{total}}$$

$$P_A = X_A \times P_{tota/}$$

Ex. The partial pressure of oxygen was observed to be 156 torr in air with a total atmospheric pressure of 743 torr. Calculate the mole fraction of O₂ present

$$X_A = \frac{P_A}{P_{total}}$$

$$X_{O2} = \frac{156torr}{743torr} = 0.210$$

 Ex. The mole fraction of nitrogen in the air is 0.7808. Calculate the partial pressure of N₂ in air when the atmospheric pressure is 760. *torr*.

$$P_{N_2} = X_{N_2} \times P_{total}$$

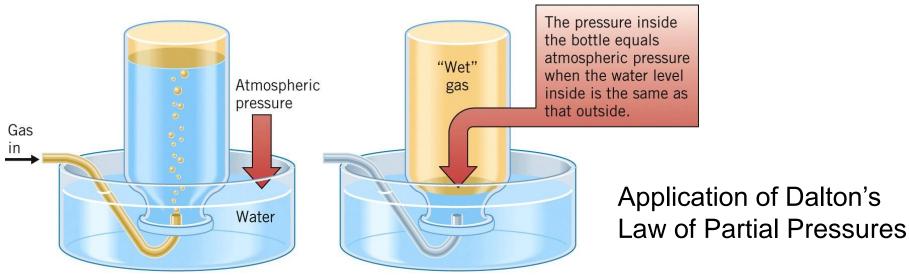
$$P_{N_2} = 0.7808 \times 760 torr = 593 torr$$

Your Turn!

Ex. 250 mL of methane, CH₄, at 35 °C and 0.55 atm and 750 mL of propane, C₃H₈, at 35 °C and 1.5 atm were introduced into a 10.0 L container. What is the mole fraction of methane in the mixture?

- A. 0.50
- B. 0.11
- C.0.89
- D. 0.25
- E. 0.33

Your Turn! - Solution


$$P(CH_4) = \frac{0.55 \text{ atm x } 0.250 \text{ L}}{10.0 \text{ L}} = 0.0138 \text{ atm}$$

$$P(C_3H_8) = \frac{1.5 \text{ atm x } 0.750 \text{ L}}{10.0 \text{ L}} = 0.112 \text{ atm}$$

$$X_{CH_4} = \frac{0.0138 \text{ atm}}{(0.0138 + 0.112) \text{ atm}} = 0.110$$

Collecting Gases over Water

- Water vapor is present because molecules of water escape from surface of liquid and collect in space above liquid
- Molecules of water return to liquid
- rate of escape = rate of return
 - Number of water molecules in vapor state remains constant
- Gas saturated with water vapor = "Wet" gas

Vapor Pressure

- Pressure exerted by vapor present in space above any liquid
 - Constant at constant T
- When wet gas collected over water, we usually want to know how much "dry" gas this corresponds to
- $P_{total} = P_{gas} + P_{water}$
- Rearranging
- $P_{gas} = P_{total} P_{water}$

- Ex. A sample of oxygen is collected over water at 20.0 °C and a pressure of 738 torr. Its volume is 310 *mL*. The vapor pressure of water at 20°C is 17.54 torr.
 - a. What is the partial pressure of O_2 ?
 - b. What would the volume be when dry at STP?

a.
$$P_{O_2} = P_{total} - P_{water}$$

= 738 torr - 17.5 torr = **720 torr**

Ex. Solution

b. calculate P_{02} at STP

$$P_1 = 720 \text{ torr}$$
 $P_2 = 760 \text{ torr}$ $V_1 = 310 \text{ mL } V_2 = ?$ $T_1 = 20.0 + 273.12 = 293 \text{ K}$ $T_2 = 0.0 + 273 \text{ K} = 273 \text{ K}$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \qquad V_2 = \frac{P_1V_1T_2}{T_1P_2}$$

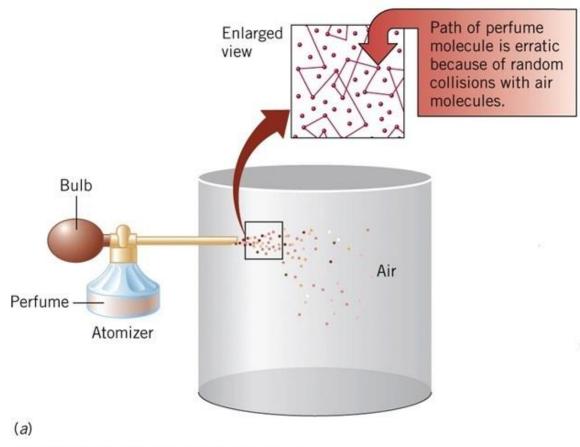
$$V_2 = \frac{720torr \times 310mL \times 273K}{293K \times 760torr}$$
 $V_2 = 274 mL$

Your Turn!

Ex. An unknown gas was collected by water displacement. The following data was recorded: T = 27.0 °C; P = 750 torr; V = 37.5 mL; Gas

mass = 0.0873 g; $P^{\text{vap}}(H_2O) = 26.98$ torr

Determine the molecular weight of the gas.

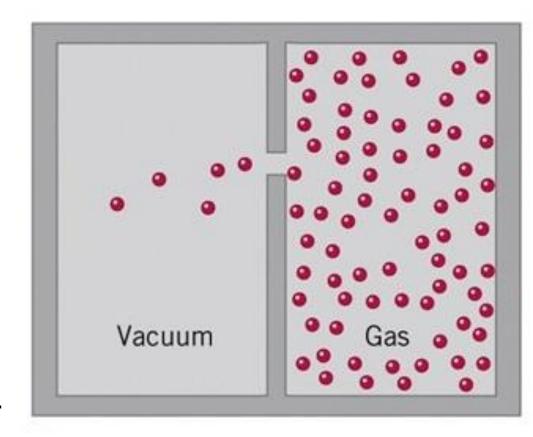

- A. 5.42 g/mol
- B. 30.2 g/mol
- C. 60.3 g/mol
- D. 58.1 g/mol
- E. 5.81 g/mol

Your Turn! - Solution

$$MW = \frac{gRT}{PV} = \frac{0.0873 \text{ g x } 0.0821 \frac{L \text{ atm}}{K \text{ mol}} \text{ x } 300 \text{ K}}{(750 - 26.98) \text{torr x } 0.0375 \text{ L}}$$
 $MW = 60.3 \text{ g/mol}$

Diffusion

- Complete spreading out and intermingling of molecules of one gas into and among those of another gas
 - Ex. Perfume in room


Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Effusion

- Movement of gas molecules
- Through extremely small opening into vacuum

Vacuum

No other gases present in other half

Graham's Law of Effusion

 Rates of effusion of gases are inversely proportional to square roots of their densities,
 d, when compared at identical pressures and temperatures

Effusion Rate
$$\propto \frac{1}{\sqrt{d}}$$
 (constant *P* and *T*)

Effusion Rate (A) =
$$\frac{\sqrt{d_B}}{\sqrt{d_A}} = \sqrt{\frac{d_B}{d_A}}$$

Effusion Rate (A) =
$$\sqrt{\frac{d_B}{d_A}} = \sqrt{\frac{M_B}{M_A}}$$

Graham's Law of Effusion

- **Ex.** Calculate the ratio of the effusion rates of hydrogen gas (H₂) and uranium hexafluoride (UF₆)
 - a gas used in the enrichment process to produce fuel for nuclear reactors.
- First must compute MM's
 - MM $(H_2) = 2.016 \text{ g/mol}$
 - MM (UF₆) = 352.02 g/mol

Effusion Rate (H₂) =
$$\sqrt{\frac{M_{UF_6}}{M_{H_2}}}$$
 = $\sqrt{\frac{352.02}{2.016}}$ = 13.2

■ Thus the very light H_2 molecules effuse ~13 times as fast as the massive UF₆ molecules.

Ex. For the series of gases He, Ne, Ar, H₂, and O₂ what is the order of increasing rate of effusion?

substance	He	Ne	Ar	H ₂	O ₂
MM	4	20	40	2	32

- Lightest are fastest
- So $H_2 > He > Ne > O_2 > Ar$

Heavier gases effuse more slowly Lighter gases effuse more rapidly

Postulates of Kinetic Theory of Gases

- 1. Particles are so small compared with distances between them, so volume of individual particles can be assumed to be negligible.
 - $V_{gas} \sim 0$

- 2. Particles are in constant motion
 - Collisions of particles with walls of container are cause of pressure exerted by gas
 - number collisions ∞ P_{gas}

Postulates of Kinetic Theory of Gases

- 3. Particles are assumed to exert no force on each other
 - Assumed neither to attract nor to repel each other
- 4. Average kinetic energy of collection of gas particles is assumed to be directly proportional to Kelvin Temperature
 - $KE_{avg} \propto T_K$

Root-mean-square speed

$$v_{\rm rms} = \sqrt{\frac{3RT}{M_m}}$$

Ex: What are the rms speeds of helium atoms, and nitrogen, hydrogen, and oxygen molecules at 25 °C?

$$T = 25 \, ^{\circ}C + 273 = 298 \, \text{K}.$$
 $R = 8.314 \, \text{J/mol K}$

$$v_{\rm rms} = \sqrt{\frac{3RT}{M_m}}$$

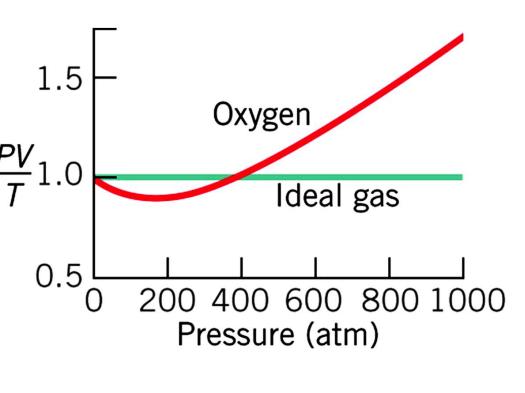
Element	Mass (kg)	rms speed (m/s)
He	6.64×10 ⁻²⁷	1360
H ₂	3.32×10 ⁻²⁷	1930
N ₂	4.64×10 ⁻²⁶	515
O ₂	5.32×10 ⁻²⁶	482

Kinetic Theory of Gases

- Specifically
- As increase T, ↑ KE_{ave},
 - number collisions with walls, thereby increasing P
 - Kinetic energy For 1 mole of gas is:

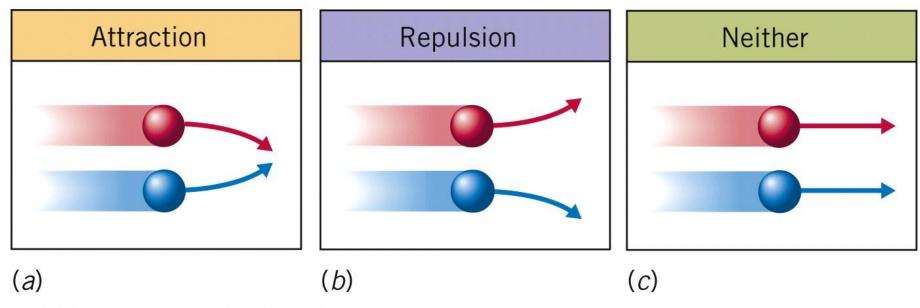
$$KE_{ave} = \frac{3}{2}RT$$

Real Gases


- Have *finite* volumes
- Do exert forces on each other
 - Real Gases deviate Why?

$$\frac{PV}{T} = constant$$

$$\frac{PV}{nT} = R$$


Real Gases Deviate from Ideal Gas Law

- Gas molecules have finite V's
 - ∴ Take up space
 - Less space of kinetic motions
 - V_{motions} < V_{container}
 - : particles hit walls of container more often
 - ↑ P over ideal

Real Gases

- 2. Particles DO attract each other
 - Even weak attractions means they hit walls of container less often
 - ∴ ↓ P over ideal gas

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

van der Waal's equation for Real Gases

$$\left(P + \frac{n^2 a}{V^2}\right) * (V - nb) = nRT$$
corrected P corrected V

- a and b are van der Waal's constants
- Obtained by measuring P, V, and T for real gases over wide range of conditions

van der Waal's equation for Real Gases

$$\left(P + \frac{n^2a}{V^2}\right) * \left(V - nb\right) = nRT$$

corrected P

- a Pressure correction
 - Indicates some attractions between molecules
 - Large a
 - Means strong attractive forces between molecules
 - Small a
 - Means weak attractive forces between molecules

van der Waal's equation for Real Gases

$$\left(P + \frac{n^2a}{V^2}\right) * \left(V - nb\right) = nRT$$
corrected V

- **b** Volume correction
 - Deals with *sizes* of molecules
 - Large b
 - Means large molecules
 - Small **b**
 - Means small molecules
 - Gases that are most easily liquefied have largest van der Waal's constants

- Ex: When will a real gas behave most like an ideal gas?
 - A) at high temperatures and high pressures
 - B) at low temperatures and high pressures
 - C) at low temperatures and low pressures
 - D) at high temperatures and low pressures

TABLE 10.3 ■ van der Waals Constants for Gas Molecules				
Substance	$a (L^2-atm/mol^2)$	b (L/mol)		
Не	0.0341	0.02370		
Ne	0.211	0.0171		
Ar	1.34	0.0322		
Kr	2.32	0.0398		
Xe	4.19	0.0510		
H_2	0.244	0.0266		
N_2	1.39	0.0391		
O_2	1.36	0.0318		
Cl_2	6.49	0.0562		
H_2O	5.46	0.0305		
CH_4	2.25	0.0428		
CO_2	3.59	0.0427		
CCl_4	20.4	0.1383		
	Copyright © 2009 Pearson Prentice Hall,	Inc.		

Jespersen/Brady/Hyslop

Chemistry: The Molecular Nature of Matter, 6E

Ex: If 1.000 mol of an ideal gas were confined to 22.41 L at 0.0 °C, it would exert a pressure of 1.000 atm. Use the van der Waals equation and the constants in Table 10.3 to estimate the pressure exerted by 1.000 mol of $Cl_2(g)$ in 22.41 L at 0.0 °C.

$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$$

Solve: Substituting n = 1.000 mol, R = 0.08206 L-atm/mol-K, T = 273.2 K, V = 22.41 L, $a = 6.49 \text{ L}^2\text{-atm/mol}^2$, and b = 0.0562 L/mol:

$$P = \frac{(1.000 \text{ mol})(0.08206 \text{ L-atm/mol-K})(273.2 \text{ K})}{22.41 \text{ L} - (1.000 \text{ mol})(0.0562 \text{ L/mol})} - \frac{(1.000 \text{ mol})^2(6.49 \text{ L}^2\text{-atm/mol}^2)}{(22.14 \text{ L})^2}$$
$$= 1.003 \text{ atm} - 0.013 \text{ atm} = 0.990 \text{ atm}$$

Ex.2. Use Van de Waal's equation to calculate the pressure exerted by 1.00 molCl₂ confined to a volume of 2.00 L at 273K. The value of a=6.49L² atm/mol² and b=0.0562 L/mol

Chapter 3 Energy and Chemical Change Thermodynamics

Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Thermochemistry

 Study of energies given off by or absorbed by reactions.

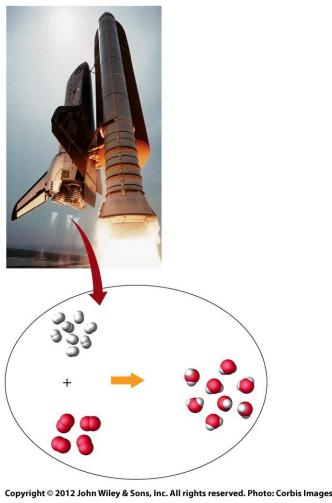
Thermodynamics

Study of energy transfer (flow)

Energy (E)

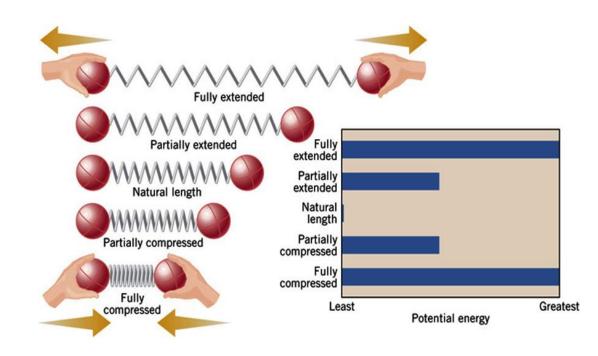
Ability to do work or to transfer heat.

Kinetic Energy (KE)


- Energy of motion
- $KE = \frac{1}{2}mv^2$

Potential Energy (PE)

- Stored energy
- Exists in natural attractions and repulsions
 - Gravity
 - Positive and negative charges
 - Springs


Chemical Energy

- PE possessed by chemicals
- Stored in chemical bonds
- Breaking bonds requires energy
- Forming bonds releases energy

Law of Conservation of Energy

- Energy can neither be created nor destroyed
- Can only be converted from one form to another
- Total Energy of universe is constant

Total **Energy**

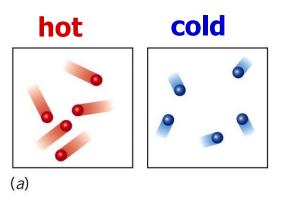
PotentialEnergy

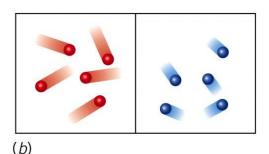
+

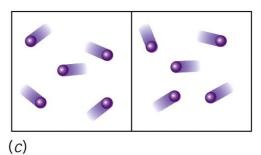
Kinetic Energy

Temperature vs. Heat

Temperature


- Proportional to average kinetic energy of object's particles
- Higher average kinetic energy means
 - Higher temperature
 - Faster moving molecules


Heat


- Energy transferred between objects
- Caused by temperature difference
- Always passes spontaneously from warmer objects to colder objects
- Transfers until both are the same temperature

Heat Transfer

- Hot and cold objects placed in contact
 - Molecules in hot object moving faster
- KE transfers from hotter to colder object
 - ↓ average KE of hotter object
 - ↑ average KE of colder object
- Over time
 - Average KEs of both objects becomes Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.
 - Temperature of both becomes the same

Units of Energy

Joule (J)

$$1J = \frac{1 \, kg \cdot m^2}{s^2}$$

value is greater than 1000 J, use kJ

■ 1 kJ = 1000 J

calorie (cal)

Energy needed to raise T of 1 g H₂O by 1 °C

1 cal = 4.184 J (exactly)

Internal Energy (*E*)

Sum of energies of all particles in system

E = Total energy of system

E = Potential + Kinetic = **PE** + **KE**

Change in Internal Energy

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

- lacktriangle Δ means change
- final initial
- What we can actually measure
- Want to know change in *E* associated with given process

△*E*, Change in Internal Energy

- For reaction: reactants ---> products
- $\Delta E = E_{\text{products}} E_{\text{reactants}}$
 - Can use to do something useful
 - Work
 - Heat
- If system absorbs energy during reaction
 - Energy coming into system is positive (+)
 - Final energy > initial energy
 - **Ex.** Photosynthesis *or* charging battery
 - As system absorbs energy
 - Increase potential energy
 - Available for later use

ΔE_r , Change in Internal Energy

- - Energy change can appear entirely as heat
 - Can measure heat
 - Can't measure **E**_{product} or **E**_{reactant}
 - Fortunately, we are more interested in ΔE
 - Energy of system depends only on its current condition
 - DOES NOT depend on:
 - How system got it
 - What E for system might be sometime in future

State Functions

- Any property that only depends on object's current state or condition
- Independence from method, path or mechanism by which change occurs is important feature of all state functions
- Some State functions:
 - Internal energy $\Delta E = E_f E_i$
 - Pressure $\Delta P = P_f P_i$
 - Temperature $\Delta t = t_f t_i$
 - Volume $\Delta V = V_f V_i$

Defining the System

System

- What we are interested in studying
 - Reaction in beaker

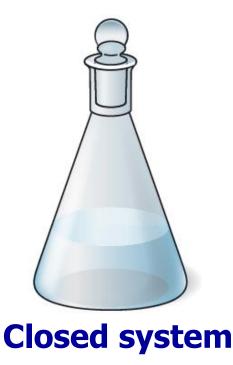
Surroundings

- Everything else
 - Room in which reaction is run

Boundary

- Separation between system and surroundings
 - Visible
 Ex. Walls of beaker
 - Invisible Ex. Line separating warm and cold fronts

Three Types of Systems


Open System

- Open to atmosphere
- Gain or lose mass and energy across boundary
- Most reactions done in open systems

Closed System

- Not open to atmosphere
- Energy can cross boundary, but mass cannot

Three Types of Systems

Isolated System

- No energy or matter can cross boundary
- Energy and mass are constant
 Ex. Thermos bottle

Isolated system

Your Turn!

Ex. A closed system can _____

- A.include the surroundings.
- B.absorb energy and mass.
- C.not change its temperature.
- D.not absorb or lose energy and mass.
- E.absorb or lose energy, but not mass.

Heat (q)

- Can't measure heat directly
- Heat (q) gained or lost by an object
 - Directly proportional to temperature change (Δt) it undergoes. $\Delta t = t_f t_i$
 - Adding heat, increases temperature $\Delta t > 0$, q > 0
 - Removing heat, decreases temperature $\Delta t < 0$, q < 0
- Measure changes in temperature to quantify amount of heat transferred

$$q = C \times \Delta t$$

• **C** = heat capacity

Heat Capacity (C)

 Amount of heat (q) required to raise temperature of object by 1 °C

Heat Exchanged = Heat Capacity $\times \Delta t$

$$q = C \times \Delta t$$

• Units = $J/^{\circ}C$ or $J.^{\circ}C^{-1}$

Depends on two factors

- 1. Sample size or amount (mass)
 - Doubling amount doubles heat capacity
- 2. Identity of substance
 - Water vs. iron

Learning Check: Heat Capacity

Ex. A cup of water is used in an experiment. Its heat capacity is known to be 720 J/ °C. How much heat will it absorb if the experimental temperature changed from 19.2 °C to 23.5 °C?

$$q = C \times \Delta t$$

$$q = 720 \frac{J}{\text{°C}} \times (23.5 - 19.2 \text{°C})$$

$$q = 720 \frac{J}{\text{°C}} \times (4.3 \text{°C})$$

$$q = 3.1 \times 10^3 \text{ J}$$

Learning Check: Heat Capacity

Ex. If it requires 4.184 J to raise the temperature of 1.00 g of water by 1.00 °C, calculate the heat capacity of 1.00 g of water.

$$C = \frac{q}{\Delta t}$$

$$C_{1.00 \text{ g}} = \frac{4.184 \text{ J}}{1.00 \text{ °C}} = 4.18 \text{ J/°C}$$

Your Turn!

Ex. What is the heat capacity of 300 g of water if it requires 2510 J to raise the temperature of the water by 2.00 °C?

$$D.1.26 \times 10^3 \text{ J/°C}$$

$$E.2.51 \times 10^3 \text{ J/°C}$$

$$C_{300 g} = \frac{2510 J}{2.00 \, ^{\circ}C} =$$

Specific Heat (s)

 Amount of Heat Energy needed to raise T of 1 g substance by 1 °C

$$C = s \times m$$
 or $S = \frac{C}{m}$

- Units
 - $J/(g^{-\circ}C)$ or $Jg^{-1\circ}C^{-1}$
- Unique to each substance
- Large specific heat means substance releases large amount of heat as it cools

Learning Check

Ex. Calculate the specific heat of water if it the heat capacity of 100 g of water is 418 J/°C.

$$s = \frac{C}{m}$$
 $s = \frac{418 \text{ J/°C}}{100. \text{ g}} = \frac{4.18 \text{ J/(g.°C)}}{100. \text{ g}}$

• What is the specific heat of water if heat capacity of 1.00 g of water is 4.18 J/°C?

$$s = \frac{4.18 \text{ J/°C}}{1.00 \text{ g}} = \frac{4.18 \text{ J/(g.°C)}}{1.00 \text{ g}}$$

Thus, heat capacity is independent of amount

Your Turn!

Ex. The specific heat of silver 0.235 J g⁻¹ $^{\circ}$ C⁻¹. What is the heat capacity of a 100. g sample of silver? $C = s \times m$

$$E.2.35 \times 10^3 \text{ J/°C}$$

$$C = 0.235 \frac{J}{g \cdot C} \times 100.g$$

Table 7.1 Specific Heats

Substance	Specific Heat, J $\mathrm{g}^{-1}~^{\circ}\mathrm{C}^{-1}$ (25 $^{\circ}\mathrm{C}$)
Carbon (graphite)	0.711
Copper	0.387
Ethyl alcohol	2.45
Gold	0.129
Granite	0.803
Iron	0.4498
Lead	0.128
Olive oil	2.0
Silver	0.235
Water (liquid)	4.184

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Using Specific Heat

Heat Exchanged = (Specific Heat \times mass) $\times \Delta t$

$$q = s \times m \times \Delta t$$

Units =
$$J/(g \times {}^{\circ}C) \times g \times {}^{\circ}C = \mathbf{J}$$

- Substances with high specific heats resist ∆T changes
- Makes it difficult to change temperature widely
- Water has unusually high specific heat

Learning Check: Specific Heat

Ex. Calculate the specific heat of a metal if it takes 235 J to raise the temperature of a 32.91 g sample by 2.53°C.

$$q = m \times s \times \Delta t$$

$$S = \frac{q}{m \times \Delta t} = \frac{235J}{32.91g \times 2.53^{\circ}C}$$

$$s = 2.82 \frac{J}{g^{\circ}C}$$

Ex. 1 Using Specific Heat

Ex. If a 38.6 g of gold absorbs 297 J of heat, what will the final temperature if the initial temperature is 24.5 °C? The specific heat of gold is $0.129 \text{ J g}^{-1} \text{ °C}^{-1}$.

Need to find t_{final} $\Delta t = t_f - t_i$

$$\Delta t = t_{\rm f} - t_{\rm f}$$

First use $\mathbf{q} = \mathbf{s} \times \mathbf{m} \times \Delta \mathbf{t}$ to calculate $\Delta \mathbf{t}$

$$\Delta t = \frac{q}{s \cdot m} = \frac{297 \,\text{J}}{0.129 \,\text{J} \cdot \text{g}^{-1} \cdot ^{\circ} \text{C}^{-1} \times 38.6 \,\text{g}} = 59.6 \, ^{\circ}\text{C}$$

$$59.6 \, ^{\circ}\text{C} = t_{\text{f}} - 24.5 \, ^{\circ}\text{C}$$

$$t_{\rm f} = 59.6 \, {\rm ^{\circ}C} + 24.5 \, {\rm ^{\circ}C}$$

= 84.1 °C

Exothermic Reaction

- Reaction where products have less chemical energy than reactants
 - Some chemical energy converted to kinetic energy
 - Reaction releases heat to surroundings
 - Heat leaves the system; q negative ()
 - Reaction gets warmer ([↑]T)

Ex.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) + heat$$

Endothermic Reaction

- Reaction where products have more chemical energy than reactants
 - Some kinetic energy converted to chemical energy
 - Reaction absorbs heat from surroundings
 - Heat added to system; q positive (+)
 - Reaction becomes colder (T ↓)

Ex. Photosynthesis

$$6CO_2(g) + 6H_2O(g) + solar energy \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$$

Work Convention

Work = $-P \times \Delta V$

- P = opposing pressure against which piston pushes
- ΔV = change in volume of gas during expansion
- \bullet $\Delta V = V_{\text{final}} V_{\text{initial}}$
- For Expansion
 - Since V_{final} > V_{initial}
 - ΔV must be positive
 - So expansion work is negative ∆V >0
 - Work done by system on surrounding, W<0

Your Turn!

Ex. Calculate the work associated with the expansion of a gas from 152.0 L to 189.0 L at a constant pressure of 17.0 atm.

A.629 L atm

Work = $-P \times \Delta V$

$$\Delta V = 189.0 L - 152.0 L$$

$$w = -17.0 \text{ atm} \times 37.0 \text{ L}$$

First Law of Thermodynamics

- "Energy of system may be transferred as heat or work, but not lost or gained."
- If we monitor heat transfers (q) of all materials involved and all work processes, can predict that their sum will be zero
 - Some materials gain (have +) energy
 - Others lose (have –) energy
- By monitoring surroundings, we can predict what is happening to system

Two Methods of *Energy* Exchange Between System and Surroundings

Heat *q* Work *w*

$$\Delta E = q + w$$

Conventions of heat and work

q	+	Heat absorbed by system	E _{system} ↑
q	_	Heat released by system	$m{E}_{system}\downarrow$
W	+	Work done on system	E _{system} ↑
W	_	Work done by system	E _{system} ↓

Heat and Work

Two ways system can exchange internal energy with surroundings

1. Heat

- Heat absorbed, System's q ↑
- Heat lost, System's q ↓

2. Work

- Is exchanged when pushing force moves something through distance
- **Ex.** Compression of system's gas W>0 expansion of system's gas W<0

Your Turn!

Ex. A gas releases 3.0 J of heat and then performs 12.2 J of work. What is the change in internal energy of the gas?

$$\Delta E = q + w$$

$$\Delta E = -3.0 \text{ J} + (-12.2 \text{ J})$$

Heat at Constant Pressure (q_p)

- Chemists usually do NOT run reactions at constant
- Usually do reactions in open containers
 - Open to atmosphere; constant P
 - Heat of reaction at constant Pressure (q_p)
- $q_P = \Delta E + P \Delta V$ H = state function
- At constant Pressure: $\Delta H = q_P$

$$\Delta H = \Delta E + P \Delta V$$

Enthalpy Change (ΔH)

$$\Delta H$$
 = state function

- $\Delta H = H_{\text{final}} H_{\text{initial}}$
- $\Delta H = H_{\text{products}} H_{\text{reactants}}$
- Significance of sign of **\(\Delta H \)**

Endothermic reaction

- System absorbs energy from surroundings
- △*H* > 0 positive

Exothermic reaction

- System loses energy to surroundings
- ΔH<0 negative
 </p>

Enthalpy vs. Internal Energy

• $\Delta H = \Delta E + P \Delta V$

Rearranging gives

- $\triangle H \triangle E = P \triangle V$
- Difference between ΔH and ΔE is $P\Delta V$
- Reactions where form or consume gases
 - P∆ V can be large
- Reactions involving only liquids and solids
 - △ V negligible △ V ≈ 0
 - So $\Delta H \approx \Delta E$

Enthalpy Changes in Chemical Reactions

Focus on systems

- Endothermic
 - Reactants + heat ---> products

- Exothermic
 - Reactants ——— products + heat

△*H* in Chemical Reactions

Standard Conditions for ΔH°

25 °C and 1 atm

Standard Heat of Reaction (ΔH°)

Enthalpy change for reaction at 1 atm and 25 °C

Ex.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

- 1.000 mol 3.000 mol 2.000 mol
- When N₂ and H₂ react to form NH₃ at 25 °C and 1 atm
- 92.38 kJ released
- Λ H° = -92.38 kJ

Thermochemical Equation

■ Write △H^o immediately after equation

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 $\Delta H^{\circ} = -92.38 \text{ kJ}$

- Must give physical states of products and reactants
 - ΔH_{rxn} different for different states

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell) \Delta H = -890.5 \text{ kJ}$$

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) \Delta H = -802.3 \text{ kJ}$

- Difference - energy to venerize water

Difference = energy to vaporize water

Thermochemical Equation

■ Write △HP immediately after equation

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 $\Delta H^2 = -92.38 \text{ kJ}$

- coefficients = # moles
 - 92.38 kJ released ⇔ 2 moles of NH₃ formed
 - If 10 mole of NH₃ formed

$$5N_2(g) + 15H_2(g) \rightarrow 10NH_3(g)$$
 $\Delta H^2 = -461.9 \text{ kJ}$

- $\Delta H^{\circ}_{rxn} = (5 \times -92.38 \text{ kJ}) = -461.9 \text{ kJ}$
- Can have fractional coefficients

$$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightarrow NH_3(g) \quad \Delta H^0 = -46.19 \text{ kJ}$$

State Matters!

$$C_3H_8(g) + 5O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

$$\Delta H = -2043 \text{ kJ}$$

$$C_3H_8(g) + 5O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(\ell)$$

$$\Delta H = -2219 \text{ kJ}$$

Note: there is difference in energy because states do not match

If
$$H_2O(\ell) \rightarrow H_2O(g)$$
 $\Delta H = 44 \text{ kJ/mol}$
 $4H_2O(\ell) \rightarrow 4H_2O(g)$ $\Delta H = 176 \text{ kJ/mol}$

$$4H_2O(\ell) \rightarrow 4 H_2O(\ell)$$
 $\Delta H = -2219 \text{ kJ} + 176 \text{ kJ} = -2043 \text{ kJ}$

Learning Check:

Ex. Consider the following reaction:

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$

 $\Delta H = -2511 \text{ kJ}$

How many kJ are released for 1 mol C₂H₂?

2 mol
$$C_2H_2 \rightarrow -2511 \text{ kJ}$$

1 mol
$$C_2H_2 \rightarrow ? kJ$$

$$\frac{-2511 \text{kJ}}{2 \text{mol C}_2 \text{H}_2} \times 1 \text{mol C}_2 \text{H}_2 = -1,256 \text{ kJ}$$

Learning Check:

EX. Consider the reaction

$$6CO_2(g) + 6H_2O \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$$
 $\Delta H = 2816 \text{ kJ}$

A) how many kJ are required for 44 g CO_2 (MM = 44.01 g/mol)?

$$44 \text{ g CO}_2 \times \frac{1 \text{ mol CO}_2}{44.01 \text{ g CO}_2} \times \frac{2816 \text{ kJ}}{6 \text{ mol CO}_2} = \text{ 470 kJ}$$

B) If 100. kJ are provided, what mass of CO₂ can be converted to glucose?

$$100kJ \times \frac{6mol CO_2}{2816kJ} \times \frac{44.0gCO_2}{1mol CO_2} = 9.38 g$$

Your Turn!

Ex. Based on the reaction

$$CH_4(g) + 4CI_2(g) \rightarrow CCI_4(g) + 4HCI(g)$$

$$\Delta H = -434 \text{ kJ/mol } CH_4$$

What energy change occurs when 1.2 moles of methane reacts?

$$A.-3.6 \times 10^{2} \text{ kJ}$$

$$\Delta H = -434 \text{ kJ/mol} \times 1.2 \text{ mol}$$

$$B.+5.2 \times 10^2 \text{ kJ}$$

$$\Delta H = -520.8 \text{ kJ}$$

$$C.-4.3 \times 10^2 \text{ kJ}$$

$$D.+3.6 \times 10^2 \text{ kJ}$$

$$E.-5.2 \times 10^{2} \text{ kJ}$$

Running Thermochemical Equations in Reverse

Consider the reaction

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$\Delta H^{\circ} = -802.3 \text{ kJ}$$

- Reverse thermochemical equation
- Must change sign of ∆H

$$CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$$

 $APP = + 802.3 \text{ kJ}$

Hess's Law Multiple Paths; Same △H°

Path a: Single step

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^2 = -393.5 \text{ kJ}$

Path b: Two step

Step 1:
$$C(s) + \frac{1}{2}O_2(g) \to CO(g)$$
 $\Delta H^2 = -110.5 \text{ kJ}$

Step 2:
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \Delta H^2 = -283.0 \text{ kJ}$$

Net Rxn:
$$C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H^0 = -393.5 \text{ kJ}$$

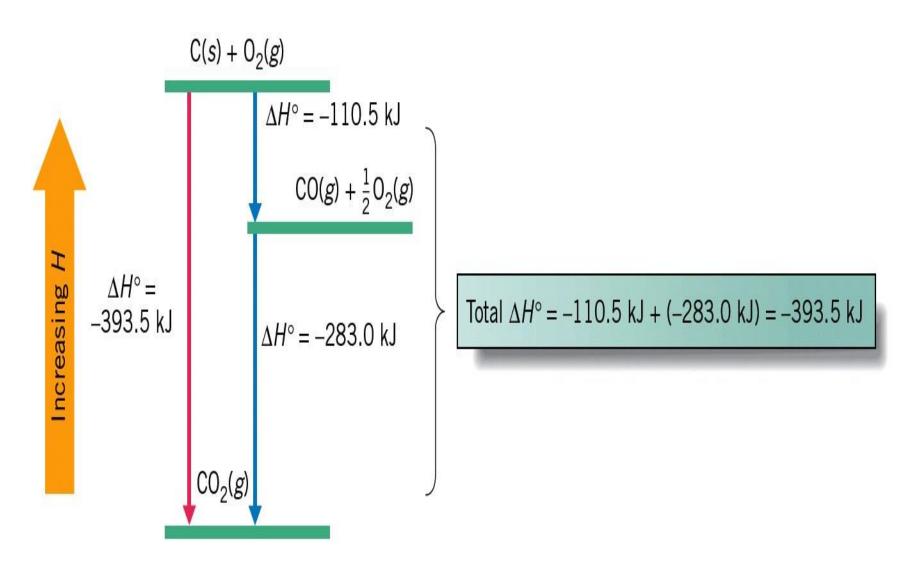
Chemically and thermochemically, identical results

Ex. Multiple Paths; Same ∆H°

Path a: $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^o = 68 \text{ kJ}$

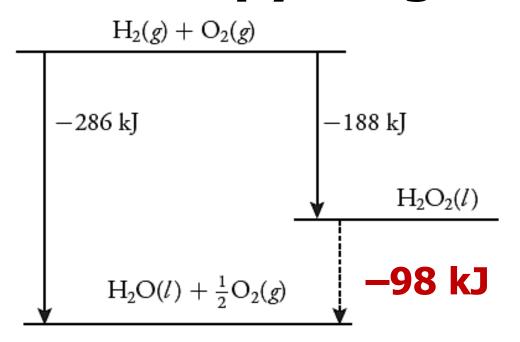
Path b:

Step 1: $N_2(g) + O_2(g) \to 2NO(g)$ $\Delta H^{\circ} = 180. \text{ kJ}$


Step 2: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^{\circ} = -112 \text{ kJ}$

Net rxn: $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) \quad \Delta H^\circ = 68 \text{ kJ}$

Hess's Law of Heat Summation


For any reaction that can be written into steps, value of ΔH^o for reactions = sum of ΔH^o values of each individual step

Enthalpy Diagrams

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Enthalpy Diagrams

Ex.
$$H_2O_2(\ell) \rightarrow H_2O(\ell) + \frac{1}{2}O_2(g)$$

 $-286kJ = -188kJ + \Delta H_{rxn}$
 $\Delta H_{rxn} = -286 \text{ kJ} - (-188 \text{ kJ})$
 $\Delta H_{rxn} = -98 \text{ kJ}$

Rules for Manipulating Thermochemical Equations

- 1. When equation is reversed, sign of ΔH° must also be reversed (- ΔH°).
- 2. If all coefficients of equation are multiplied or divided by same factor, value of ΔH^0 must likewise be multiplied or divided by that factor
- 3. Formulas canceled from both sides of equation must be for substance in *same* physical states

Ex. Calculate ΔH° for

 $C_{graphite}(s) \longrightarrow C_{diamond}(s)$

Given
$$C_{qr}(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^0 = -394 \text{ kJ}$

-1×[
$$C_{dia}(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^0 = -396 \text{ kJ}$]

 To get desired equation, must reverse 2nd equation and add resulting equations

$$C_{gr}(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^2 = -394 \text{ kJ}$
 $CO_2(g) \rightarrow C_{dia}(s) + O_2(g)$ $\Delta H^2 = -(-396 \text{ kJ})$

$$C_{gr}(s) + \Omega_2(g) + C\Omega_2(g) \rightarrow C_{dia}(s) + \Omega_2(g) + C\Omega_2(g)$$

$$\Delta H^{\circ} = -394 \text{ kJ} + 396 \text{ kJ} = +2 \text{ kJ}$$

Learning Check

Ex. Calculate ΔH° for

$$2 C_{gr}(s) + H_2(g) \longrightarrow C_2H_2(g)$$

Given the following:

a.
$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(\ell)$$

 $\Delta H^2 = -1299.6 \text{ kJ}$

b.
$$C_{gr}(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^0 = -393.5 \text{ kJ}$

c.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$$
 $\Delta H^2 = -285.8 \text{ kJ}$

Ex. Calculate for $2C_{gr}(s) + H_2(g) \longrightarrow C_2H_2(g)$

-a
$$2CO_2(g) + H_2O(\ell) \rightarrow C_2H_2(g) + \frac{5}{2}O_2(g)$$

 $\Delta H^0 = -(-1299.6 \text{ kJ}) = +1299.6 \text{ kJ}$
+2b $2C_{gr}(s) + 2O_2(g) \rightarrow 2CO_2(g)$
 $\Delta H^0 = (2 \times -393.5 \text{ kJ}) = -787.0 \text{ kJ}$

+c
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$$
 $\Delta H^2 = -285.8 \text{ kJ}$

$$2CO_{2}(g) + H_{2}O(\ell) + 2C_{gr}(s) + 2O_{2}(g) + H_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$\rightarrow C_{2}H_{2}(g) + \frac{5}{2}O_{2}(g) + 2CO_{2}(g) + H_{2}O(\ell)$$

$$2C_{qr}(s) + H_2(g) \rightarrow C_2H_2(g)$$
 $\Delta H^2 = +226.8 \text{ kJ}$

Your Turn!

Ex. Given the following data:

$$C_2H_2(g) + O_2(g) \rightarrow 2CO_2(g) + H_2O(\ell)$$
 $\Delta H = -1300. \text{ kJ}$
 $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -394 \text{ kJ}$
 $H_2(g) + O_2(g) \rightarrow H_2O(\ell)$ $\Delta H = -286 \text{ kJ}$

Calculate for the reaction

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

A.226 kJ

E.620 kJ

 $\Delta H = +1300$. kJ + 2(-394 kJ) + (-286 kJ)

Tabulating ΔH° values

Standard Enthalpy of Formation, ΔH_f°

- Amount of heat absorbed or evolved when one mole of substance is formed
- at 1 atm and 25 °C (298 K) from elements in their standard states
- Standard Heat of Formation ΔH_f°

Standard State

 Most stable form and physical state of element at 1 atm and 25 °C (298 K)

element	Standard		
	state		
0	$O_2(g)$		
С	$C_{gr}(s)$		
Н	$H_2(g)$		
Al	Al(<i>s</i>)		
Ne	Ne(<i>g</i>)		

Note: All ΔH_f° of elements in their standard states = 0

Forming element from itself.

Uses of Standard Enthalpy (Heat) of Formation, ΔH_f°

1. From definition of ΔH_f° , can write balanced equations directly

$$\Delta H_f^{\circ}\{C_2H_5OH(\ell)\}$$

$$2C(s, gr) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(\ell)$$

 $\Delta H_f^o = -277.03 \text{ kJ/mol}$

$\Delta H_f^{\circ}\{\operatorname{Fe_2O_3}(s)\}$

$$2\text{Fe}(s) + \frac{3}{2}O_2(g) \rightarrow \text{Fe}_2O_3(s) \quad \Delta H_f^o = -822.2 \text{ kJ/mol}$$

Your Turn!

Ex. What is the reaction that corresponds to the standard enthalpy of formation of NaHCO₃(s), ΔH_f^o = -947.7 kJ/mol?

a.Na(s) +
$$\frac{1}{2}$$
H₂(g) + $\frac{3}{2}$ O₂(g) + C(s, gr) \rightarrow NaHCO₃(s)
b.Na⁺(g) + H⁺(g) + 3O²⁻(g) + C⁴⁺(g) \rightarrow NaHCO₃(s)
c.Na⁺(aq) + H⁺(aq) + 3O²⁻(aq) + C⁴⁺(aq) \rightarrow NaHCO₃(s)
d.NaHCO₃(s) \rightarrow Na(s) + $\frac{1}{2}$ H₂(g) + $\frac{3}{2}$ O₂(g) + C(s, gr)
e.Na⁺(aq) + HCO₃⁻(aq) \rightarrow NaHCO₃(s)

Using ΔH_f°

2. Way to apply Hess's Law without needing to manipulate thermochemical equations

$$\Delta H_{\text{reaction}}^{\circ} = \begin{cases} \text{Sum of all} \\ \Delta H_{\text{f}}^{\circ} \text{ of all of the products} \end{cases} - \begin{cases} \text{Sum of all} \\ \Delta H_{\text{f}}^{\circ} \text{ of all of the reactants} \end{cases}$$

Consider the reaction:

$$aA + bB \rightarrow cC + dD$$

$$\Delta H_{\text{reaction}}^{o} = c \times \Delta H_{\text{f}}^{o}(C) + d \times \Delta H_{\text{f}}^{o}(D) - \{a \times \Delta H_{\text{f}}^{o}(A) + b \times \Delta H_{\text{f}}^{o}(B)\}$$

Ex. Calculate ΔH°_{rxn} Using ΔH°_{f}

Ex. Calculate ΔH°_{rxn} using ΔH°_{f} data for the reaction

$$SO_3(g) \longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$

- 1.Add ΔH_f° for each product times its coefficient
- 2. Subtract ΔH_f° for each reactant times its coefficient.

$$\Delta H_{\mathsf{rxn}}^{\circ} = \Delta H_{\mathsf{f}}^{\circ} (\mathsf{SO}_{2}(g)) + \frac{1}{2} \Delta H_{\mathsf{f}}^{\circ} (\mathsf{O}_{2}(g)) - \Delta H_{\mathsf{f}}^{\circ} (\mathsf{SO}_{3}(g))$$

$$\Delta H_{\rm rxn}^{\circ} = -297 \,\text{kJ/mol} + \frac{1}{2} (0 \,\text{kJ/mol}) - (-396 \,\text{kJ/mol})$$

$$\Delta H^{\circ}_{rxn} = 99 \ kJ/mol$$

Learning Check

Ex. Calculate ΔH_{rxn}^{o} using ΔH_{f}^{o} for the reaction $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(\ell)$ $\Delta H_{\text{ryn}}^{\circ} = 4\Delta H_f^{\circ}(\text{NO}_2(g)) + 6\Delta H_f^{\circ}(\text{H}_2\text{O}(\ell))$ $-4\Delta H_{\rm f}^{\circ}(NH_{3}(g)) - 7\Delta H_{\rm f}^{\circ}(O_{2}(g))$ $\Delta H_{\rm rxn}^{\circ} = 4 \, \text{mol}(34 \, \text{kJ/mol}) + 6 \, \text{mol}(-285.9 \, \text{kJ/mol})$ -4 mol(-46.0 kJ/mol) - 7 mol(0 kJ/mol) $\Delta H_{rxn} = [136 - 1715.4 + 184] \text{ kJ}$ $\Delta H^{\circ}_{rxn} = -1395 \text{ kJ}$

Check Using Hess's Law

$$4*[NH_{3}(g) \rightarrow \frac{1}{2} N_{2}(g) + \frac{3}{2} H_{2}(g)] - 4*\Delta H_{f}^{\bullet}(NH_{3}, g)$$

$$7*[O_{2}(g) \rightarrow O_{2}(g)] - 7*\Delta H_{f}^{\bullet}(O_{2}, g)$$

$$4*[O_{2}(g) + \frac{1}{2} N_{2}(g) \rightarrow NO_{2}(g)] + 4*\Delta H_{f}^{\bullet}(NO_{2}, g)$$

$$6*[H_{2}(g) + \frac{1}{2} O_{2}(g) \rightarrow H_{2}O(\ell)] + 6*\Delta H_{f}^{\bullet}(H_{2}O, \ell)$$

$$4NH_3(g) + 7O_2(g) \longrightarrow 4NO_2(g) + 6H_2O(\ell)$$

$$\Delta H_{\text{rxn}}^{\circ} = 4\Delta H_{\text{f}}^{\circ} (\text{NO}_{2}(g)) + 6\Delta H_{\text{f}}^{\circ} (\text{H}_{2}\text{O}(\ell))$$
$$-4\Delta H_{\text{f}}^{\circ} (\text{NH}_{3}(g)) - 7\Delta H_{\text{f}}^{\circ} (\text{O}_{2}(g))$$

Same as before

Other Calculations

Ex. Given the following data, what is the value of $\Delta H_f^{\circ}(C_2H_3O_2^-, aq)$?

Na⁺(
$$aq$$
) + C₂H₃O₂⁻(aq) + 3H₂O(ℓ) \rightarrow NaC₂H₃O₂·3H₂O(s)
 $\Delta H^{\rho}_{rxn} = -19.7 \text{ kJ/mol}$

$$\Delta H_f^{\circ}$$
 (Na⁺, aq) $-239.7 \ kJ/mol$
 ΔH_f° (NaC₂H₃O₂·3H₂O, s) $-710.4 \ kJ/mol$
 ΔH_f° (H₂O, ℓ) $-285.9 \ kJ/mol$

Ex. cont.

$$\Delta H_{f}^{o}(NaC_{2}H_{3}O_{2}^{-}3H_{2}O, s) - \Delta H_{f}^{o}(Na^{+}, aq) - \Delta H_{f}^{o}(C_{2}H_{3}O_{2}^{-}, aq) - 3\Delta H_{f}^{o}(H_{2}O, \ell)$$

Rearranging

$$\Delta H_f^{\prime}(C_2H_3O_2^-, aq) = \Delta H_f^{\prime}(NaC_2H_3O_2^+3H_2O_1, s) - \Delta H_f^{\prime}(Na^+, aq) - \Delta H_f^{\prime}(Na^+, aq) - \Delta H_f^{\prime}(H_2O_1, l)$$

$$\Delta H_f$$
 (C₂H₃O₂-, aq) = -710.4kJ/mol - (-239.7kJ/mol) - (-19.7kJ/mol) - 3(-285.9kJ/mol)

$= +406.7 \, kJ/mol$

Learning Check

Ex. Calculate ΔH for this reaction using ΔH_f° data.

$$2\text{Fe}(s) + 6\text{H}_2\text{O}(l) \rightarrow 2\text{Fe}(\text{OH})_3(s) + 3\text{H}_2(g)$$

 $\Delta H_f^{\circ} 0 -285.8 -696.5 0$

$$\Delta H_{\text{rxn}}^{\circ} = 2*\Delta H_{f}^{\circ}(\text{Fe}(\text{OH})_{3}, s) + 3*\Delta H_{f}^{\circ}(\text{H}_{2}, g)$$

$$- 2*\Delta H_{f}^{\circ}(\text{Fe}, s) - 6*\Delta H_{f}^{\circ}(\text{H}_{2}\text{O}, \ell)$$

$$\Delta H_{\text{rxn}}^{\circ} = 2 \text{ mol}*(-696.5 \text{ kJ/mol}) + 3*0 - 2*0$$

$$- 6 \text{ mol}*(-285.8 \text{ kJ/mol})$$

$$\Delta H_{\text{rxn}}^{\circ} = -1393 \text{ kJ} + 1714.8 \text{ kJ}$$

$$\Delta H_{\text{rxn}}^{\circ} = 321.8 \text{ kJ}$$

Learning Check

Ex. Calculate ΔH for this reaction using ΔH_f^o data.

$$CO_2(g) + 2H_2O(\ell) \rightarrow 2O_2(g) + CH_4(g)$$

 $\Delta H_f^{\circ} -393.5 -285.8 0 -74.8$

$$\Delta H_{\text{rxn}}^{o} = 2*\Delta H_{f}^{o}(O_{2}, g) + \Delta H_{f}^{o}(CH_{4}, g)$$

$$-\Delta H_{f}^{o}(CO_{2}, g) - 2*\Delta H_{f}^{o}(H_{2}O, \ell)$$

$$\Delta H_{\text{rxn}}^{o} = 2*0 + 1 \text{ mol} \times (-74.8 \text{ kJ/mol}) - 1 \text{ mol}$$

 $\times (-393.5 \text{ kJ/mol}) - 2 \text{ mol} \times (-285.8 \text{ kJ/mol})$

$$\Delta H_{\rm rxn}^o = -74.8 \text{ kJ} + 393.5 \text{ kJ} + 571.6 \text{ kJ}$$

$$\Delta H^o_{\rm ryn} = 890.3 \text{ kJ}$$

Converting Between ΔE and ΔH For Chemical Reactions

- When reaction occurs
 - Δ \mathbf{V} caused by $\Delta \mathbf{n}$ of gas
- Not all reactants and products are gases
 - So redefine as Δn_{gas}

Where
$$\Delta n_{gas} = (n_{gas})_{products} - (n_{gas})_{reactants}$$

Substituting into

$$\Delta H = \Delta E + P \Delta V$$

or

$$\Delta H = \Delta E + \Delta n_{gas} RT$$

Ex. Find $\Delta \boldsymbol{E}$ for the following reaction at 25 °C using data in Table 7.2?

$$2 N_2 O_5(g) \longrightarrow 4 NO_2(g) + O_2(g)$$

Step 1: Calculate ΔH using ΔH_f° data (Table 7.2) Recall

$$\Delta H^{\circ} = (\Delta H_f^{\circ})_{products} - (\Delta H_f^{\circ})_{reactants}$$

$$\Delta H^{\circ} = 4\Delta H_f^{\circ}(NO_2) + \Delta H_f^{\circ}(O_2) - 2\Delta H_f^{\circ}(N_2O_5)$$

$$\Delta H^{\circ} = (4 \text{ mol})(33.8 \text{ kJ/mol}) + (1 \text{ mol})(0.0 \text{ kJ/mol})$$

$$- (2 \text{ mol})(11 \text{ kJ/mol})$$

 $AH^{o} = 113 \text{ kJ}$

Ex. (cont.)

Step 2: Calculate

$$\Delta n_{gas} = (n_{gas})_{products} - (n_{gas})_{reactants}$$

 $\Delta n_{gas} = (4 + 1 - 2) \ mol = 3 \ mol$

Step 3: Calculate ΔE using

$$R = 8.31451 \text{ J/K'mol}$$
 $T = 298 \text{ K}$
 $\Delta E = \Delta H - \Delta n_{gas}RT$

$$\Delta \mathbf{E} = 113 \ kJ - (3 \ mol)(8.31451 \ J/K'mol)(298 \ K)(1 \ kJ/1000 \ J)$$

$$\Delta E = 113 \ kJ - 7.43 \ kJ = 106 \ kJ$$

Learning Check

Ex. Consider the following reaction for picric acid:

$$8O_2(g) + 2C_6H_2(NO_2)_3OH(\ell) \rightarrow 3 N_2(g) + 12CO_2(g) + 6H_2O(\ell)$$

- What type of reaction is it?
- Calculate ΔH°, ΔE°

$$8O_2(g) + 2C_6H_2(NO_2)_3OH(\ell) \rightarrow 3N_2(g) + 12CO_2(g) + 6H_2O(\ell)$$

ΔH° _f (kJ/mol)	0.00	3862.94	0.00	-393.5	-241.83
------------------------------	------	---------	------	--------	---------

$$\Delta H^0 = 12 \text{mol}(-393.5 \text{ kJ/mol}) + 6 \text{mol}(-241.83 \text{kJ/mol}) + 6 \text{mol}(0.00 \text{kJ/mol}) - 8 \text{mol}(0.00 \text{kJ/mol}) - 2 \text{mol}(3862.94 \text{kJ/mol})$$

 $\Delta H^0 = -13,898.9$ kJ (Exothermic reaction)

$$\Delta E^{\circ} = \Delta H^{\circ} - \Delta n_{gas}RT = \Delta H^{\circ} - (15 - 8)mol*298* 8.314×10-3 $\Delta E^{\circ} = -13,898.9 \text{ kJ} - 29.0 \text{ kJ} = -13,927.9 \text{ kJ}$$$

Chapter 4Chemical Kinetics

Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Speeds at Which Reactions Occur

Kinetics:

- Study of factors that govern
 - How rapidly reactions occur and
 - How reactants *change* into products

Rate of Reaction:

- Speed with which reaction occurs
- How quickly reactants disappear and products form

1. Chemical nature of reactants

What elements, compounds, salts are involved?

What bonds must be formed, broken?

What are fundamental differences in chemical reactivity?

2. Ability of reactants to come in contact

- If two or more reactants **must meet** in order to react
- Gas or solution phase facilitates this
 - **Reactants** mix and collide with each other easily
 - Homogeneous reaction
 - All reactants in *same* phase
 - Occurs rapidly
 - Heterogeneous reaction
 - Reactants in **different** phases
 - Reactants meet only at *interface* between phases
 - Surface area determines reaction rate
 - ↑ area, ↑ rate

3. Concentrations of reactants

- Rates of both homogeneous and heterogeneous reactions affected by [X]
- Collision rate between A and B ↑ if we ↑ [A] or ↑
 [B].
 - ∴ Often (but not always)
 - Reaction rate ↑ as [X]↑

4. Temperature

- Rates are often very sensitive to T
 - Cooking sugar
- Raising T usually makes reaction faster for two reasons:
 - Faster molecules collide more often and collisions have more Energy
 - **b.** Most reactions, even exothermic reactions, require **Energy** to get going

5. Presence of Catalysts

Catalysts

- Substances that ↑ rates of chemical and biochemical reactions without being used up
- Rate-accelerating agents
- Speed up rate dramatically

Measuring Rate of Reaction

Rate of Chemical Reaction

• \downarrow in [X] of particular species per unit time.

reaction rate =
$$\frac{\Delta[reactant]}{\Delta time}$$

- Always with respect to (WRT) given reactant or product
- [reactants] ↓ w/ time
- [products] ↑ w/ time

Rate of Reaction with Respect to Given Species X

Rate WRT
$$X = \frac{[X]_{t_2} - [X]_{t_1}}{t_2 - t_1} = \frac{\Delta[X]}{\Delta t}$$

Concentration in *M*

WRT: with respect to

- Time in s
- Units on rate:

$$\frac{\text{mol/L}}{\text{s}} = \frac{\text{mol}}{\text{L} \cdot \text{s}} = \frac{\text{M}}{\text{s}}$$

- Ex.
 - [product] \uparrow by 0.50 *mol/L* per **second** \Rightarrow rate = 0.50 *M/s*
 - [reactant] \downarrow by 0.20 *mol/L* per *second* \Rightarrow

rate =
$$0.20 M/s$$

Rate of Reaction

- Always +
 - Whether something is \uparrow or \downarrow in [X].

Reactants

- Need sign to make rate +
- Reactant consumed
- So ∆[X] = -

Rate =
$$-\frac{\Delta[reactant]}{\Delta t}$$

Products

- Produced as reaction goes along
- So ∆[X] = +
- Thus Rate = +

$$Rate = \frac{\Delta[product]}{\Delta t}$$

Rates and Coefficients

- Relative rates at which reactants are consumed and products are formed
 - Related by coefficients in balanced chemical equation.
 - Know rate with respect to one product or reactant
 - Can use equation to determine rates WRT all other products and reactants.

Ex.
$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

Rate of Reaction

$$= -\frac{\Delta[C_3H_8]}{\Delta t} = -\frac{1}{5}\frac{\Delta[O_2]}{\Delta t} = \frac{1}{3}\frac{\Delta[CO_2]}{\Delta t} = \frac{1}{4}\frac{\Delta[H_2O]}{\Delta t}$$

Rates and Coefficients

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

O₂ reacts 5 times as fast as C₃H₈

Rate =
$$-\frac{\Delta[O_2]}{\Delta t}$$
 = $-5\frac{\Delta[C_3H_8]}{\Delta t}$

■ CO₂ *forms* **3** times faster than C₃H₈ *consumed*

Rate =
$$\frac{\Delta[CO_2]}{\Delta t}$$
 = $-3\frac{\Delta[C_3H_8]}{\Delta t}$

H₂O forms 4/5 as fast as O₂ consumed

$$\frac{\Delta[\mathsf{H}_2\mathsf{O}]}{\Delta t} = -\frac{4}{5} \frac{\Delta[\mathsf{O}_2]}{\Delta t}$$

Rates and Coefficients

In general

$$\alpha A + \beta B \longrightarrow \gamma C + \delta D$$

$$\text{Rate} = -\frac{1}{\alpha}\frac{\Delta \textbf{A}}{\Delta \textbf{t}} = -\frac{1}{\beta}\frac{\Delta \textbf{B}}{\Delta \textbf{t}} = \frac{1}{\gamma}\frac{\Delta \textbf{C}}{\Delta \textbf{t}} = \frac{1}{\delta}\frac{\Delta \textbf{D}}{\Delta \textbf{t}}$$

Your Turn!

Ex. In the reaction $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$, the rate of the reaction of CO is measured to be 2.0 M/s. What would be the rate of the reaction of O_2 ?

- A. the same = 2.0 M/s
- B. twice as great = 4.0 M/s
- C. half as large = 1.0 M/s
- D. you cannot tell from the given information

Change of Reaction Rate with Time

- Generally reaction rate changes during reaction
 - i.e. Not constant
- Often initially fast when lots of reactant present
- Slower at end when reactant used up

Why?

- Rate depends on [reactants]
- Reactants being used up, so [reactant] is ↓
- [A] vs. time is curve
- **A** is reactant ::[A] is ↓ w/ time

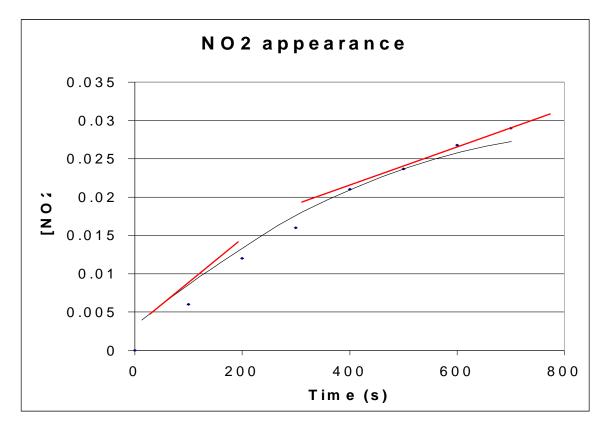
Measuring Rates

Measured in three ways:

Instantaneous rate

Average rate

Initial rate


Instantaneous Reaction Rates

Instantaneous rate

Slope of tangent to curve at any specific time

Initial rate


Determined at initial time

Average Rate of Reaction

 Slope of line connecting starting and ending coordinates for specified time frame

$$\frac{\Delta[Product]}{\Delta time} = rate$$

Table 14.1 Data at 508 °C

Ex. 2
$$HI(g) \rightarrow H_2(g) + I_2(g)$$

[HI] (mol/L)	Time (s)	•
0.100	0	•
0.0716	50	
0.0558	100	r
0.0457	150	
0.0387	200	
0.0336	250	
0.0296	300	
0.0265	350	

Initial rate

rate between first two data points

rate =
$$-\frac{(0.0716 - 0.100)M}{(50 - 0)s}$$

= $\frac{-(-0.0284M)}{50s}$
= $5.68 \times 10^{-4} M/s$

Rate at 300 *s*

[HI] (mol/L)	Time (s)	$2 \operatorname{HI}(g) \to \operatorname{H}_{2}(g) + \operatorname{I}_{2}(g)$
0.100	0	Rate = tangent of curve
0.0716	50	at 300 s
0.0558	100	Rate = $-\frac{(0.0265 - 0.0296)M}{(0.566 - 0.0296)M}$
0.0457	150	Rate = $-\frac{(0.0265 - 0.0296)M}{(350 - 300)s}$
0.0387	200	0.0031M
0.0336	250	=
0.0296	300	$= 6.20 \times 10^{-5} \text{M/s}$
0.0265	350	_

Your Turn!

Ex. The concentration of NO₂ was found to be 0.0258*M* at 5 minutes and at 10 minutes the concentration was 0.0097*M*. What is the average rate of the reaction between 5 min and 10 min?

- A. 310 M/min
- B. 3.2 x 10⁻³ *M*/min
- C. $2.7 \times 10^{-3} M/min$
- D. $7.1 \times 10^{-3} \text{ M/min}$

$$\frac{(0.0258M - 0.0097M)}{10 \,\text{min} - 5 \,\text{min}} = 3.2 \, \times \, 10^{-3} M \, / \, \text{min}$$

Concentration and Rate

Rate Laws

$$\alpha A + \beta B \longrightarrow \gamma C + \delta D$$

- Homogeneous reaction
- Rate = $k[A]^m[B]^n$
 - Rate Law or Rate expression
 - m and n = exponents found experimentally
 - No necessary connection between stoichiometric coefficients (α, β) and rate exponents (m, n)
 - Usually small integers 1, 2
 - Sometimes simple fractions (½, ¾) or zero

Rate Laws

Rate = $k[A]^m[B]^n$

- Exponents tell Order of Reaction with respect to (WRT) each reactant
- Order of Reaction

```
• m = 1 [A]<sup>1</sup> 1st order
```

- m = 2 [A]² 2nd order
- m = 3 [A]³ 3rd order
- m = 0 [A]⁰ 0th order
 - $[A]^0 = 1 \Rightarrow$ means A doesn't affect rate
- Overall order of reaction
- sum of orders (m and n) of each reactant in rate law

Learning Check

Ex. The rate law for the reaction $2A + B \rightarrow 3C$ is rate= k[A][B]

If the concentration of A is 0.2M and that of B is 0.3M, and rate constant is 0.045 M⁻¹s⁻¹ what will be the reaction rate?

rate=0.045 M⁻¹ s⁻¹ [0.2][0.3]

rate=0.0027 M/s \Rightarrow 0.003 M/s

Ex.

$$5 Br^{-} + BrO_{3}^{-} + 6H^{+} \longrightarrow 3Br_{2} + 3H_{2}O$$

$$-\frac{\Delta[BrO_{3}^{-}]}{\Delta t} = k[BrO_{3}^{-}]^{x}[Br^{-}]^{y}[H^{+}]^{z}$$

•
$$x = 1$$
 $y = 1$ $z = 2$

- 1st order WRT BrO₃⁻
- 1st order WRT Br
- 2nd order WRT H+
- Overall order = 1 + 1 + 2 = 4

rate =
$$k[BrO_3^-]^1[Br^-]^1[H^+]^2$$

Ex.

 Sometimes *n* and *m* are coincidentally the same as stoichiometric coefficients

2 HI (g)
$$\longrightarrow$$
 H₂ (g) + I₂ (g)
rate = $-\frac{\Delta[HI]}{\Delta t}$ = k[HI]²

- 2nd order WRT HI
- 2nd order overall

Your Turn!

Ex. The following rate law has been observed: Rate = $k[H_2SeO][I^-]^3[H^+]^2$. The rate with respect to I^- and the overall reaction rate is:

- A. 6, 2
- B. 2, 3
- C. 1, 6
- D. 3, 6

Calculating k from Rate Law

 If we know rate and concentrations, can use rate law to calculate k

Ex. at 508 °C

- Rate= 2.5 x 10⁻⁴ *M/s*
- [HI] = 0.0558 M

$$rate = -\frac{\Delta[HI]}{\Delta t} = k[HI]^2$$

$$k = \frac{\text{rate}}{[\text{HI}]^2} = \frac{2.5 \times 10^{-4} \text{M/s}}{(0.0558 \text{M})^2} = 0.08029 \text{M}^{-1} \text{s}^{-1}$$

How To Determine Exponents in Rate Law

Experiments

- Method of Initial Rates
- If reaction is sufficiently slow
 - or have very fast technique
- Can measure [A] vs. time at very beginning of reaction
 - before it curves up very much, then

initial rate =
$$-\left(\frac{[A]_1 - [A]_0}{t_1 - t_0}\right)$$

Set up series of experiments, where initial concentrations vary

Ex. Method of Initial Rates

3A + 2B
$$\longrightarrow$$
 products
Rate = $k[A]^m[B]^n$

Expt. #	[A] ₀ , M	[B] ₀ , M	Initial Rate, M/s
1	0.10	0.10	1.2×10^{-4}
2	0.20	0.10	4.8×10^{-4}
3	0.20	0.20	4.8×10^{-4}

- Convenient to set up experiments so
 - [X] of one species is doubled or tripled
 - while [X] of all other species are held constant
- Tells us effect of [varied species] on initial rate

Reaction Order and Rate

- If reaction is 1st order WRT given species X,
 - Doubling $[X]^1 \rightarrow 2^1$
 - Rate doubles
- If reaction is 2nd order WRT X,
 - Doubling $[X]^2 \rightarrow 2^2$
 - Rate quadruples
- If reaction is Oth order WRT X,
 - Doubling $[X]^0 \rightarrow 2^0$
 - Rate doesn't change
- If reaction is nth order WRT X
 - Doubling $[X]^n \rightarrow 2^n$

Back to our Example

Expt. #	[A] ₀ , M	[B] ₀ , M	Initial Rate, M/s
1	0.10	0.10	1.2×10^{-4}
2	0.20	0.10	4.8 × 10 ⁻⁴
3	0.20	0.20	4.8×10^{-4}

- Doubling [A]
- Quadruples rate
- Reaction 2nd order in A
- [A]²

Rate 2 Rate 1 =
$$\frac{4.8 \times 10^{-4}}{1.2 \times 10^{-4}} = 4$$

$$4 = \frac{\text{Rate 2}}{\text{Rate 1}} = \frac{k[A_2]^m[B_2]^n}{k[A_1]^m[B_1]^n} = \frac{k[0.20]^m[0.10]^n}{k[0.10]^m[0.10]^n} = \frac{[0.20]^m}{[0.10]^m} = 2^m$$

 $2^m = 4$ or m = 2

Back to our Example

Expt. #	[A] ₀ , M	[B] ₀ , M	Initial Rate, M/s
1	0.10	0.10	1.2×10^{-4}
2	0.20	0.10	4.8×10^{-4}
3	0.20	0.20	4.8×10^{-4}

Comparing 2 and 3

- Doubling [B]
- Rate does not change
- Reaction 0th order in B
- [B]⁰

Rate 3 Rate 2 =
$$\frac{4.8 \times 10^{-4}}{4.8 \times 10^{-4}} = 1$$

$$1 = \frac{\text{Rate 3}}{\text{Rate 2}} = \frac{k[A_3]^m[B_3]^n}{k[A_2]^m[B_2]^n} = \frac{k[0.20]^m[0.20]^n}{k[0.20]^m[0.10]^n} = \frac{[0.20]^n}{[0.10]^n} = 2^n$$

$$2^n = 1$$
 or $n = 0$

Ex. Method of Initial Rates

Expt. #	[A] ₀ , M	[B] ₀ , M	Initial Rate, M/s
1	0.10	0.10	1.2×10^{-4}
2	0.20	0.10	4.8×10^{-4}
3	0.20	0.20	4.8 × 10 ⁻⁴

- Conclusion: rate = k[A]²
- Can use data from any experiment to determine k
- Let's choose experiment 1

$$k = \frac{\text{rate}}{[A]^2} = \frac{1.2 \times 10^{-4} \, \text{M/s}}{(0.10 \, \text{M})^2} = 1.2 \times 10^{-2} \, \text{M}^{-1} \text{s}^{-1}$$

Ex. Method of Initial Rates

2 SO₂ + O₂
$$\longrightarrow$$
 2 SO₃
Rate = $K[SO_2]^m[O_2]^n$

Expt #	[SO ₂],	[O ₂],	Initial Rate of SO ₃ formation, M's ⁻¹
1	0.25	0.30	2.5×10^{-3}
2	0.50	0.30	1.0×10^{-2}
3	0.75	0.60	4.5×10^{-2}
4	0.50	0.90	3.0×10^{-2}

Ex. Compare 1 and 2

- [SO₂] doubles, [O₂] constant,
- Rate quadruples, 2²

Rate 2 Rate 1 =
$$\frac{1.0 \times 10^{-2}}{2.5 \times 10^{-3}} = 4$$

$$4 = \frac{\text{Rate 2}}{\text{Rate 1}} = \frac{k[SO_2]_2^m[O_2]_2^n}{k[SO_2]_1^m[O_2]_1^n} = \frac{k[0.50]^m[0.30]^n}{k[0.25]^m[0.30]^n}$$

$$=\frac{[0.50]^m}{[0.25]^m}=2^m$$

$$2^m = 4$$
 or $m = 2$

$$m = 2$$

Ex. Compare 2 and 4

- [O₂] triples, [SO₂] constant
- Rate triples, 3¹

Rate 4 Rate 2 =
$$\frac{3.0 \times 10^{-2}}{1.0 \times 10^{-2}} = 3$$

$$3 = \frac{\text{Rate 4}}{\text{Rate 2}} = \frac{k[SO_2]_4^m[O_2]_4^n}{k[SO_2]_2^m[O_2]_2^n} = \frac{k[0.50]^m[0.90]^n}{k[0.50]^m[0.30]^n}$$

$$=\frac{[0.90]^n}{[0.30]^n}=3^n$$

$$3^n = 3$$
 or $n = 1$

$$n = 1$$

Ex.

Rate = $k[SO_2]^2[O_2]^1$

- 1st order WRT O₂
- 2nd order WRT SO₂
- 3rd order overall
- Can use any experiment to find k

$$k = \frac{rate}{[SO_2]^2[O_2]^1} = \frac{3.0 \times 10^{-2} \,\text{M/s}}{(0.50M)^2(0.90M)} = 0.13M^{-2} \,\text{s}^{-1}$$

Ex. Method of Initial Rates

$$BrO_3^- + 5 Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O$$

Rate =
$$-\frac{\Delta[BrO_3^-]}{\Delta t} = k[BrO_3^-]^m[Br^-]^n[H^+]^p$$

Expt #	[BrO ₃ ⁻], mol/L	[Br-], mol/L	[H ⁺], mol/L	Initial Rate, mol/(L's)
1	0.10	0.10	0.10	8.0×10^{-4}
2	0.20	0.10	0.10	1.6×10^{-3}
3	0.20	0.20	0.10	3.2×10^{-3}
4	0.10	0.10	0.20	3.2×10^{-3}

Ex. Compare 1 and 2

$$\frac{\text{Rate 2}}{\text{Rate 1}} = \frac{1.6 \times 10^{-3} \, \text{M/s}}{8.0 \times 10^{-4} \, \text{M/s}} = \frac{k(0.20 M)^m (0.10 M)^n (0.10 M)^n}{k(0.10 M)^m (0.10 M)^n (0.10 M)^n}$$

$$2.0 = \left(\frac{0.20M}{0.10M}\right)^{m} = (2.0)^{m} : m = 1$$

Compare 2 and 3

Rate 3 =
$$\frac{3.2 \times 10^{-3} \, \text{M/s}}{1.6 \times 10^{-3} \, \text{M/s}} = \frac{k(0.20 M)^m (0.20 M)^n (0.10 M)^p}{k(0.20 M)^m (0.10 M)^n (0.10 M)^p}$$

$$2.0 = \left(\frac{0.20M}{0.10M}\right)^n = (2.0)^n \quad \therefore n = 1$$

Ex. Compare 1 and 4

$$\frac{\text{Rate 4}}{\text{Rate 1}} = \frac{3.2 \times 10^{-3} \, \text{M/s}}{8.0 \times 10^{-4} \, \text{M/s}} = \frac{\text{k}(0.10 \, \text{M})^m (0.10 \, \text{M})^n (0.20 \, \text{M})^p}{\text{k}(0.10 \, \text{M})^m (0.10 \, \text{M})^n (0.10 \, \text{M})^p}$$

$$4.0 = \left(\frac{0.20M}{0.10M}\right)^p = (2.0)^p \quad \therefore p = 2$$

- First order in [BrO₃-] and [Br-]
- Second order in [H+]
- Overall order = m + n + p = 1 + 1 + 2 = 4
- Rate Law is: Rate = $k[BrO_3^-][Br^-][H^+]^2$

Your Turn!

Ex. Using the following experimental data, determine the order with respect to NO and O₂.

Exp t #	[NO] , <i>M</i>	[O ₂]	Initial Rate of NO ₂ formation, M's ⁻¹
1	0.12	0.25	1.5×10^{-3}
2	0.24	0.25	6.0×10^{-3}
3	0.50	0.50	5.2×10^{-2}

A. 2, 0

B. 3,1

C. 2, 1

D. 1, 1

Your Turn! - Solution

$$\frac{R_2}{R_1} = \frac{6.0 \times 10^{-3} M \ s^{-1}}{1.5 \times 10^{-3} M \ s^{-1}} = \frac{\left[0.24M\right]^x}{\left[0.12M\right]^x} \frac{\left[0.25M\right]^y}{\left[0.25M\right]^y}$$

$$x = 2$$

$$\frac{R_3}{R_1} = \frac{5.2 \times 10^{-2} M \ s^{-1}}{1.5 \times 10^{-3} M \ s^{-1}} = \frac{\left[0.50M\right]^2}{\left[0.12M\right]^2} \frac{\left[0.50M\right]^y}{\left[0.25M\right]^y}$$

$$y = 1$$

Concentration and Time

- Rate law tells us how speed of reaction varies with [X]'s.
- Sometimes want to know
 - [reactants] and [products] at given time during reaction
 - How long for [reactants] to drop below some minimum optimal value
- Need dependence of Rate on Time

Concentration vs. Time for 1st Order Reactions

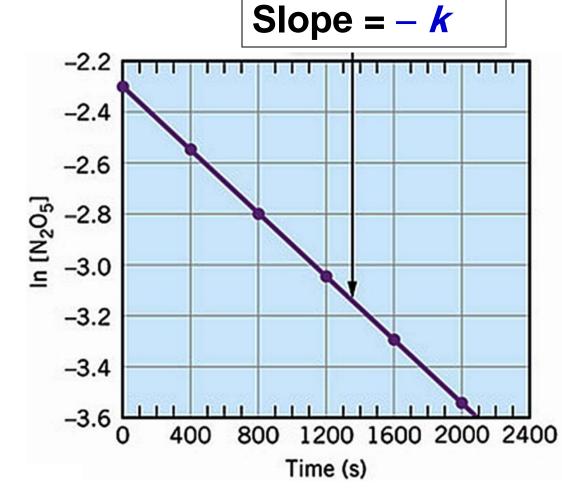
Rate =
$$\frac{-\Delta[A]}{\Delta t} = k[A]$$

- Corresponding to reactions
 - A → products
- Integrating we get

$$\ln \frac{[A]_0}{[A]_t} = kt$$

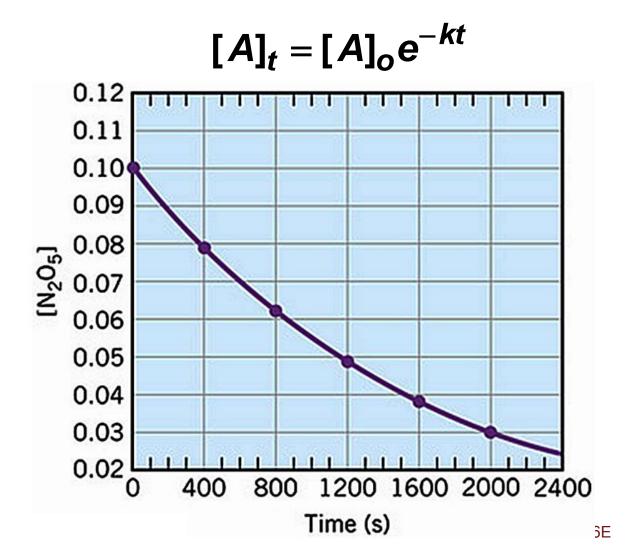
Rearranging gives

$$\ln[A]_t = -kt + \ln[A]_0$$


Equation of line

$$y = mx + b$$

Plot $ln[A]_t$ (y axis) vs. t (x axis)


 $\ln[A]_t = -kt + \ln[A]_0$

- Yields straight line
 - Indicative of 1st order kinetics
 - slope = *k*
 - intercept = In[A]₀
 - If we don't know already

First Order Kinetics Graph

Plot of [A] vs. time gives an exponential decay

287

Half-lives for 1st Order Reactions

- Half-life = t_{1/2}
- First Order Reactions

• Set
$$[A]_t = \frac{1}{2}[A]_0$$

• Substituting into $\ln \frac{[A]_0}{[A]_t} = kt$

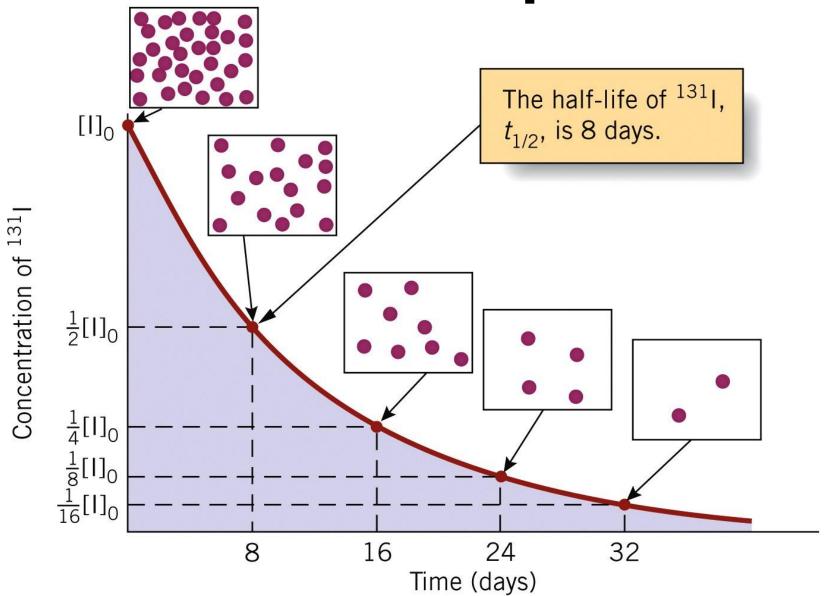
• Gives
$$\ln \frac{[A]_0}{\frac{1}{2}[A]_0} = kt_{\frac{1}{2}}$$

• Canceling gives In 2 = $kt_{\frac{1}{2}}$ • Rearranging gives $t_{\frac{1}{2}} = \frac{\ln 2}{k_1} = \frac{0.693}{k_1}$

Half-life for 1st Order Reactions

Observe:

- 1. t_{1/2} is independent of [A]_o
 - For given reaction (and **T**)
 - Takes same time for concentration to fall from
 - 2 M to 1 M as from
 - $5.0 \times 10^{-3} M \text{ to } 2.5 \times 10^{-3} M$
- **2.** \mathbf{k}_1 has units (time)⁻¹, so $\mathbf{t}_{1/2}$ has units (time)
 - t_{1/2} called *half-life*
 - Time for ½ of sample to decay


Half-life for 1st Order Reactions

Does this mean that all of sample is gone in two half-lives (2 x $t_{1/2}$)?

No!

- In $\mathbf{1}^{st}$ $t_{1/2}$, it goes to $1/2[A]_0$
- In $2^{nd} t_{1/2}$, it goes to $1/2(1/2[A]_0) = 1/4[A]_0$
- In 3rd $t_{1/2}$, it goes to $1/2(1/4[A]_0) = 1/8[A]_0$
- In n^{th} $t_{1/2}$, it goes to $[A]_0/2^n$
- Existence of [X] independent *half-life* is property of exponential function
 - Property of 1st order kinetics

Half-Life Graph

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Ex. Using Half-Life

■ 131 I is used as a metabolic tracer in hospitals. It has a half-life, $t_{\frac{1}{2}} = 8.07$ days. How long before the activity falls to 1% of the initial value?

$$N = N_{o}e^{-\kappa t}$$

$$\ln \frac{N}{N_{o}} = -kt = \frac{-t \ln 2}{\tau_{\frac{1}{2}}}$$

$$t = -\frac{\tau_{\frac{1}{2}} \ln \frac{N}{N_{o}}}{\ln 2} = -\frac{(8.07 \text{ days}) \ln \left(\frac{1}{100}\right)}{\ln 2} = 53.6 \text{ days}$$

Learning Check

Ex. The radioactive decay of a new atom occurs so that after 21 days, the original amount is reduced to 33%. What is the rate constant for the reaction in s⁻¹?

$$\ln\left(\frac{A_0}{A}\right) = kt$$

$$\ln(\frac{100}{33}) = k(21da)$$

$$k = 0.0528 \text{ da}^{-1}$$

$$k = 6.11 \times 10^{-7} \text{ s}^{-1}$$

Learning Check

Ex. The half-life of I-132 is 2.295h. What percentage remains after 24 hours?

$$\frac{\ln(2)}{k} = t_{1/2} \quad k = \frac{\ln 2}{2.295h} \quad 0.302 \text{ h}^{-1} = k$$

$$\ln\left(\frac{A_o}{A}\right) = kt$$

$$\ln\left(\frac{A_o}{A}\right) = 0.302h^{-1} \times 24h = 7.248$$

$$A/A_0 = .0711 \%$$

Your Turn!

Ex. Which order has a half-life that is independent of the original amount?

- A. Zero
- B. First
- C. Second
- D. None depend on the original quantity

Theories about Reaction Rates

Reaction rate depends on [reactants] and T

- Collision Theory
 - Based on Kinetic Molecular Theory
 - Accounts for both effects on molecular level
 - Central Idea
 - Molecules must collide to react
 - Greater number of collision/sec = greater reaction rate

Theories about Reaction Rates

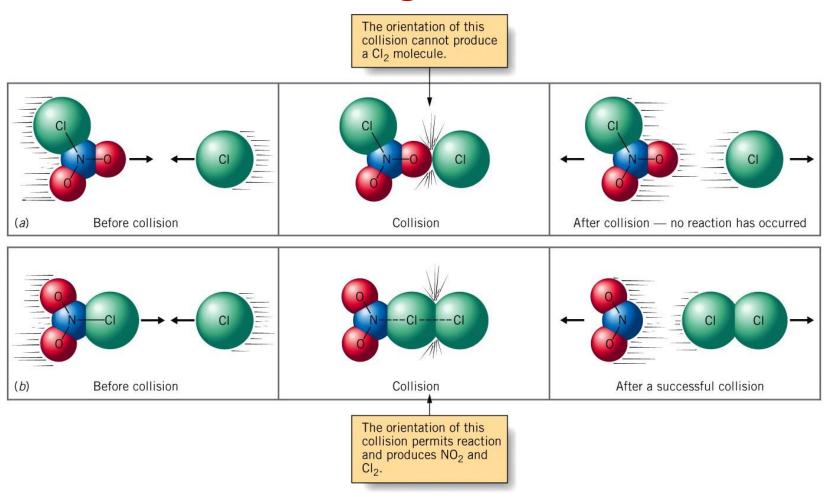
Collision Theory

- As [reactants] [↑]
 - number of Collisions ↑
 - Reaction rate ↑
- As T ↑
 - Molecular speed ↑
 - Molecules collide with more force (energy)
 - Reaction rate ↑

Collision Theory

- Rate of reaction proportional to number of effective collisions/sec among reactant molecules
- Effective collision
 - that gives rise to product

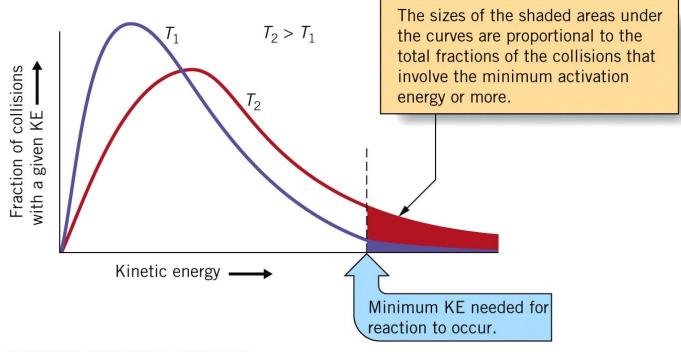
1. Molecular Orientation


 Molecules must be oriented in a certain way during collisions for reaction to occur

Ex.
$$NO_2CI + CI \longrightarrow NO_2 + CI_2$$

 Cl must come in pointing directly at another Cl atom for Cl₂ to form

Molecular Orientation


Wrong Orientation

Copyright ${\tt @}$ 2012 John Wiley & Sons, Inc. All rights reserved.

Correct Orientation

2. Temperature

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

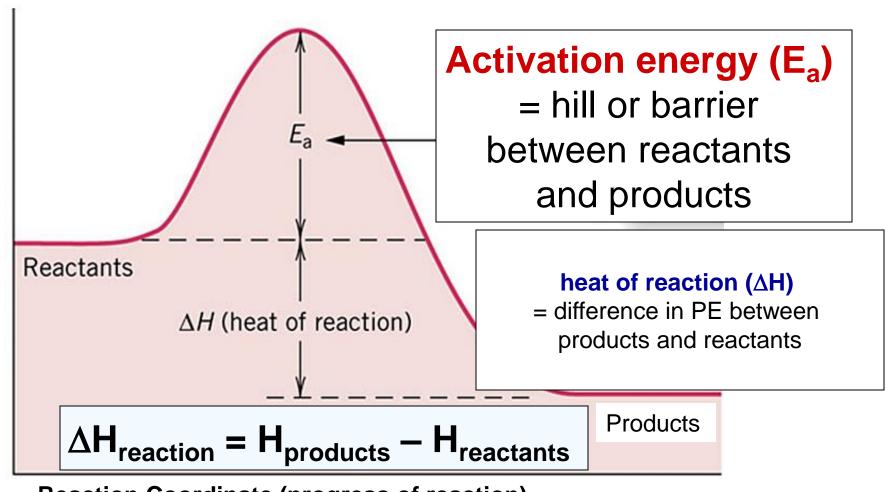
- Over moderate T range, E_a unchanged
- As ↑ T,
 - More molecules have E_a
 - So more molecules undergo reaction
- Reaction rate ↑ as T↑

3. Activation Energy, E_a

 Molecules must possess certain amount of kinetic energy (KE) in order to react

Activation Energy, E_a

Minimum KE needed for reaction to occur

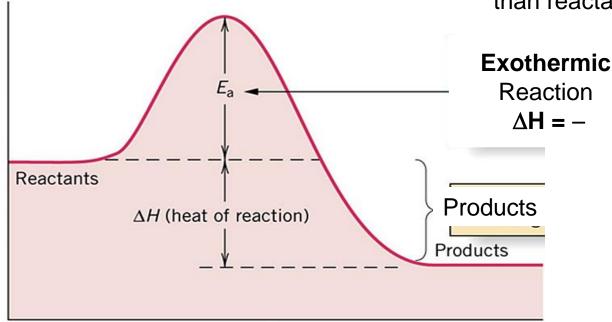

Transition State Theory

- Used to explain details of reactions
- What happens when reactant molecules collide

Potential Energy Diagram

- To visualize what actually happens during successful collision
- Relationship between E_a and developing Total PE

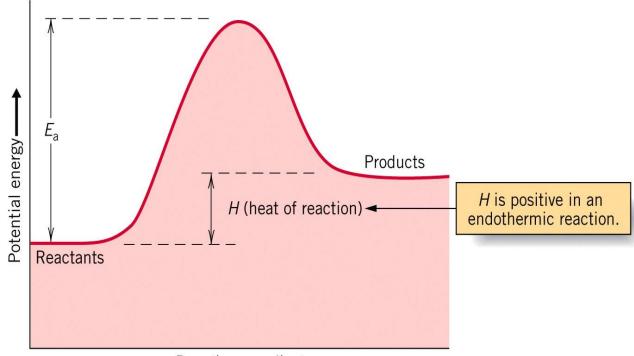
Potential Energy Diagram


Reaction Coordinate (progress of reaction)

Exothermic Reaction

• $\Delta H_{\text{reaction}} < 0$ (-)

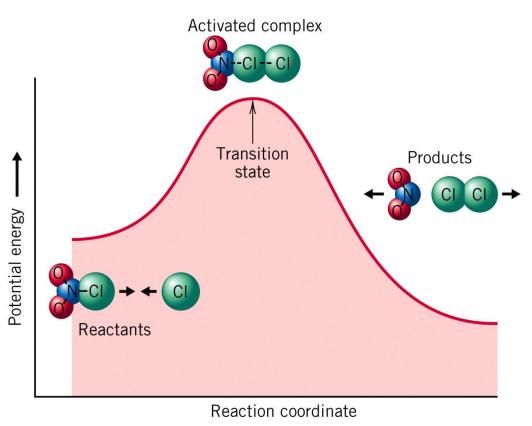
Exothermic reaction


 Products *lower* PE than reactants

- E_a could be high and reaction slow even if ∆H_{rxn} large and negative
- E_a could be low and reaction rapid

Endothermic Reaction

$$\Delta H_{\text{reaction}} > 0$$
 (+)

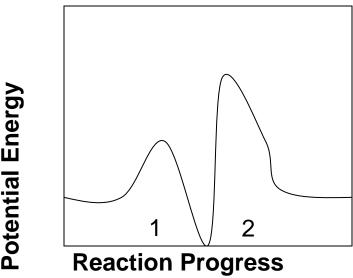

Reaction coordinate

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

$$\Delta H_{reaction} = H_{products} - H_{reactants}$$

Endothermic Reaction $\Delta H = +$

Ex. $NO_2CI + CI \longrightarrow NO_2 + CI_2$



Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

- As NO₂Cl and Cl come together
 - Start to form Cl····Cl bond
 - Start to break N····Cl bond
- Requires **E**, as must
 bring 2 things together
- In TS
 - N····Cl bond ½ broken
 - Cl····Cl bond ½ formed
- After TS
 - Cl—Cl bond forms
 - N····Cl breaks
- Releases E as products more stable

Your Turn!

- **Ex.** Examine the potential energy diagram. Which is the Slowest (Rate Determining) Step?
 - A. Step 1
 - B. Step 2 Has greatest E_a
 - C. Can't tell from the given information

Measuring Activation Energy

Arrhenius Equation

Equation expressing T dependence of k

$$k = Ae^{-E_a/RT}$$

- A = Frequency factor—has same units as k
- R = gas constant in energy units

$$= 8.314 \ J \cdot mol^{-1} \cdot K^{-1}$$

- E_a = Activation Energy—has units of *J/mol*
- *T* = Temperature in *K*

How To Calculate Activation Energy

- Method 1. Graphically
- Take natural logarithm of both sides
- Rearranging

$$\ln k = \ln A - \left(\frac{E_a}{R}\right) * \left(\frac{1}{T}\right)$$

Equation for a line

$$y = b + m x$$

Arrhenius Plot

Plot In k(y axis) vs. 1/T(x axis)

Method 2. van't Hoff Equation

- van't Hoff Eq
- uation

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Using van't Hoff Equation

Ex.
$$CH_4 + 2S_2 \longrightarrow CS_2 + 2H_2S$$

k(L/mol·s)	T (°C)	T (K)
$1.1 = \mathbf{\textit{k}_{1}}$	550	823 = T ₁
$6.4 = k_2$	625	898 = T ₂

$$\ln\left(\frac{6.4}{1.1}\right) = \frac{-E_a}{8.3145J/K \cdot mol} \left(\frac{1}{898K} - \frac{1}{823K}\right)$$

$$E_a = \frac{-(8.314J/K \cdot mol) \ln\left(\frac{6.4}{1.1}\right)}{\left(\frac{1}{898K} - \frac{1}{823}\right)} = 1.4 \times 10^5 J/mol$$

Learning Check

Ex. Given that k at 25°C is 4.61×10^{-1} M/s and that at 50°C it is 4.64×10^{-1} M/s, what is the activation energy for the reaction?

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-\operatorname{Ea}}{\operatorname{R}}\left(\frac{1}{\operatorname{T}_2} - \frac{1}{\operatorname{T}_1}\right)$$

$$ln(\frac{4.64 \times 10^{-1} \text{M/s}}{4.61 \times 10^{-1} \text{M/s}}) = \frac{-\text{Ea}}{8.314 \text{J/(mol · K)}} \left(\frac{1}{323 \text{K}} - \frac{1}{298 \text{K}}\right)$$

$$E_a = 208 \text{ J/mol}$$

Your Turn!

Ex. A reaction has an activation energy of 40 kJ/mol. What happens to the rate if you increase the temperature from 70 °C to 80 °C?

- A. Rate increases approximately 1.5 times
- B. Rate increases approximately 5000 times
- C. Rate does not increase
- D. Rate increases approximately 3 times

Your Turn! - Solution

Rate is proportional to the rate constant

$$\frac{k_2}{k_1} = \frac{e^{-\frac{40000 \text{ J}}{8.314 \frac{\text{J}}{\text{mol K}} \text{x}(80+273)\text{K}}}}}{e^{-\frac{40000 \text{ J}}{8.314 \frac{\text{J}}{\text{mol K}} \text{x}(70+273)\text{K}}}} = 1.49$$

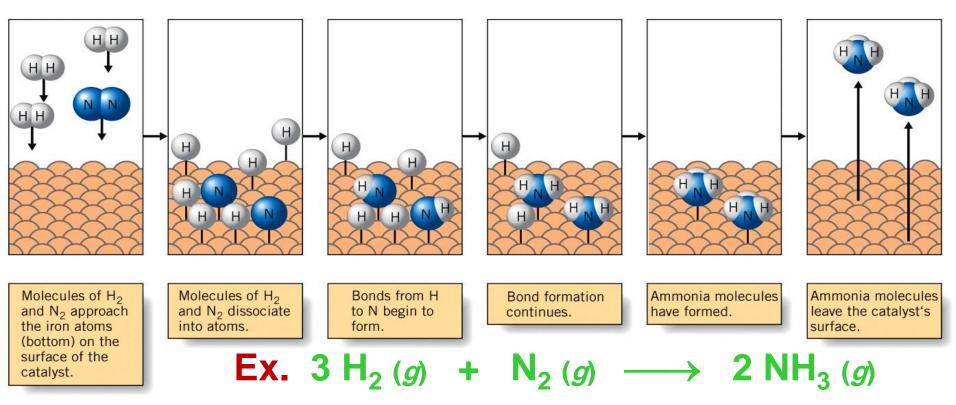
Homogeneous Catalyst

Same phase as reactants

Consider:
$$S(g) + O_2(g) + H_2O(g) \longrightarrow H_2SO_4(g)$$

 $S(g) + O_2(g) \longrightarrow SO_2(g)$
 $NO_2(g) + SO_2(g) \longrightarrow NO(g) + SO_3(g)$ Catalytic pathway

$$SO_3(g) + H_2O(g) \longrightarrow H_2SO_4(g)$$


$$NO(g) + \frac{1}{2}O_2(g) \longrightarrow NO_2(g)$$
 Regeneration of catalyst

Net:
$$S(g) + O_2(g) + H_2O(g) \longrightarrow H_2SO_4(g)$$

- What is Catalyst? NO_{2 (g)}
 - Reactant (used up) in early step
 - Product (regenerated) in later step
- Which are Intermediates? NO and SO₂

Heterogeneous Catalyst

Exists in separate phase from reactants

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

approach Fe catalyst

H₂ & N₂ bind to Fe & bonds break

N—H bonds forming

N—H bonds forming

NH₃ formation complete

NH₃ dissociates

Chapter 5Properties of Solutions

Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Solutions

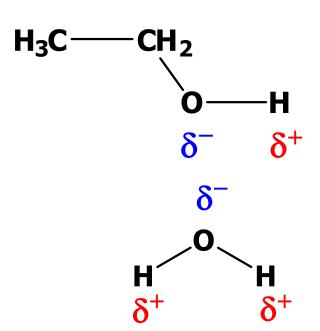
Solution

- Homogeneous mixture
- Composed of solvent and solute(s)

Solvent

More abundant component of mixture

Solute(s)


- Less abundant or other component(s) of mixture
- **Ex.** Lactated Ringer's solution
 - NaCl, KCl, CaCl₂, NaC₃H₅O₃ in water

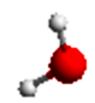
Rule of Thumb

- "Like dissolves Like"
 - Use polar solvent for polar solute
 - Use Nonpolar solvent for nonpolar solute
 - Polar solutes interact with and dissolve in polar solvents

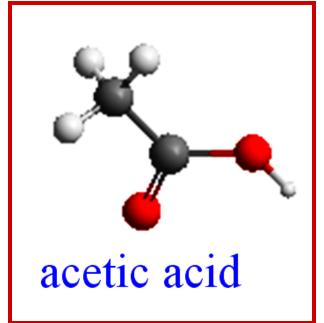
Ex. Ethanol in water

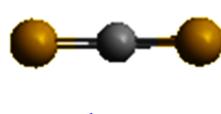
- Both are polar molecules
- Both form hydrogen bonds

miscible Solution Benzene in CCI₄

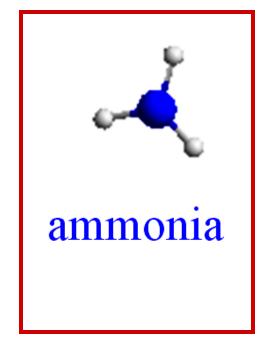

- CCl₄
 - Nonpolar
- Benzene, C₆H₆
 - Nonpolar
 - Similar in strength to CCl₄
- Does dissolve, solution forms

Immiscible Solution Benzene in water


- Solvent and solute are very "different"
- No solution forms
 - 2 layers, Don't Mix


Learning Check

Ex. Which of the following are miscible in water?



water

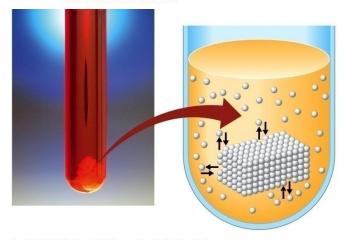
carbon disulfide

Jespersen/Brady/Hyslop

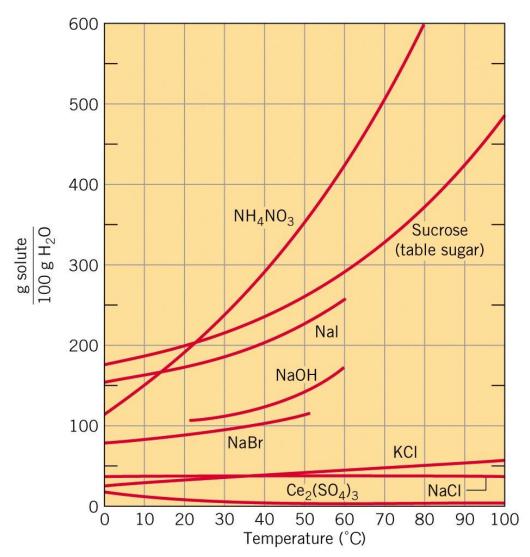
Chemistry: The Molecular Nature of Matter, 6E

Your Turn!

Ex. Which of the following molecules is soluble in C_6H_6 ?


- A. NH₃
- B. CH₃NH₂
- C. CH₃OH
- D. CH₃CH₃
- E. CH₃Cl

Solubility


 Mass of solute that forms saturated solution with given mass of solvent at specified temperature

solubility =
$$\frac{g}{100g}$$
 solvent

- If extra solute added to saturated solution, extra solute will remain as separate phase
- solute_{undissolved} = solute_{dissolved}

Effect of T on solid Solubility in Liquids

- Most substances become more soluble as T ↑
- Amount solubility ↑
 - Varies considerably
 - Depends on substance

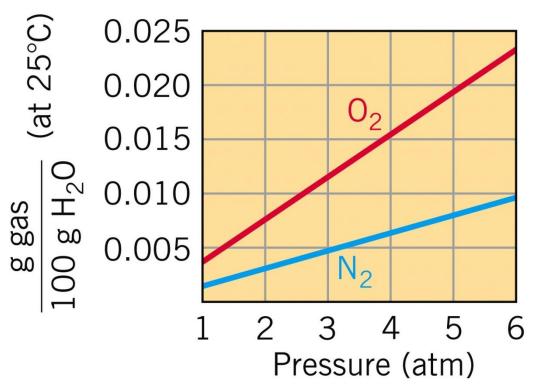
Effect of T on Gas Solubility in Liquids

Solubility of gases usually ↓ as T ↑

Table 13.2 Solubilities of Common Gases in Water

Table 13.2 Solubilities of Common Gases in Water^a

	Temperature				
Gas	0 °C	20 °C	50 °C	100 °C	
Nitrogen, N ₂	0.0029	0.0019	0.0012	0	
Oxygen, O ₂	0.0069	0.0043	0.0027	0	
Carbon dioxide, CO ₂	0.335	0.169	0.076	0	
Sulfur dioxide, SO ₂	22.8	10.6	4.3	1.8 ^b	
Ammonia, NH ₃	89.9	51.8	28.4	7.4°	


^aSolubilities are in grams of solute per 100 g of water when the gaseous space over the liquid is saturated with the gas and the total pressure is 1 atm.

^bSolubility at 90 °C.

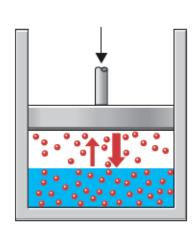
[°]Solubility at 96 °C.

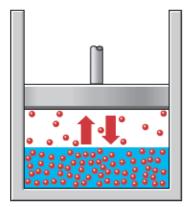
Effect of Pressure on Gas Solubility

- Solubility ↑ as P ↑Why?
- ↑ P means ↓ V above solution for gas
- Gas goes into solution
 - Relieves stress on system

opyright © 2012 John Wiley & Sons, Inc. All rights reserved

- Conversely, solubility
 - \downarrow as P \downarrow
 - Soda in can


Gases are more soluble at low temperature and high pressure.


Effect of Pressure on Gas Solubility

- A. At some P, equilibrium exists between vapor phase and solution
 - rate_{in} = rate_{out}
- **B.** ↑ in P puts stress on equilibrium
 - ↑ frequency of collisions so rate_{in} > rate_{out}
 - More gas molecules dissolve than are leaving solution
- C. More gas dissolved

■ Rate_{out} will ↑ until Rate_{out} = Rate_{in} and equilibrium

restored

Henry's Law

- Pressure-Solubility Law
- "Concentration of gas in liquid at any given temperature is directly proportional to partial pressure of gas over solution"

$$C_{gas} = k_H P_{gas}$$
 (T is constant)

 C_{gas} = concentration of gas

 P_{gas} = partial pressure of gas

 k_H = Henry's Law constant

- Unique to each gas
- Tabulated

Henry's Law

- True only at low concentrations and pressures where gases do NOT react with solvent
- Alternate form

$$\frac{\boldsymbol{C}_1}{\boldsymbol{P}_1} = \frac{\boldsymbol{C}_2}{\boldsymbol{P}_2}$$

- C_1 and P_1 refer to an initial set of conditions
- C₂ and P₂ refer to a final set of conditions

Ex. Using Henry's Law

Calculate the concentration of CO_2 in a soft drink that is bottled with a partial pressure of CO_2 of 5 atm over the liquid at 25 °C. The Henry's Law constant for CO_2 in water at this temperature is 3.12×10^{-2} mol/L atm.

$$C_{CO_2} = k_H(CO_2)P_{CO_2}$$

= 3.12 × 10⁻² mol/L atm * 5.0 atm
= 0.156 mol/L \Rightarrow **0.16 mol/L**

When under 5.0 atm pressure

Ex. Using Henry's Law

Calculate the concentration of CO_2 in a soft drink after the bottle is opened and equilibrates at 25 °C under a partial pressure of CO_2 of 4.0×10^{-4} 'atm.

$$\frac{C_1}{P_1} = \frac{C_2}{P_2} \qquad \qquad C_2 = \frac{P_2 C_1}{P_1}$$

$$C_2 = \frac{(0.156 \,\text{mol/L})(4.0 \times 10^{-4} \,\text{atm})}{5.0 \,\text{atm}}$$

$$C_2 = 1.2 \times 10^{-4} \cdot \text{mol/L}$$

When open to air

Learning Check

Ex. What is the concentration of dissolved nitrogen in a solution that is saturated in N_2 at 2.0 atm? $k_H = 8.42 \times 10^{-7} (M / atm)$

- $C_g = k_H P_g$
- $C_q = 8.42 \times 10^{-7} (M / atm) \times 2.0 atm$
- $C_g = 1.7 \times 10^{-6} M$

Your Turn!

Ex. How many grams of oxygen gas at 1.0 atm will dissolve in 10.0 L of water at 25 °C if Henry's constant is 1.3 x 10⁻³ M atm⁻¹ at this temperature?

- A. 0.42 g
- B. 0.013 g
- C. 0.042 g
- D. 0.21 g
- E. 2.4 g

Colligative Properties

- Physical properties of solutions
- Depend mostly on relative populations of particles in mixtures
- Don't depend on their chemical identities

Effects of Solute on Vapor Pressure of Solvents

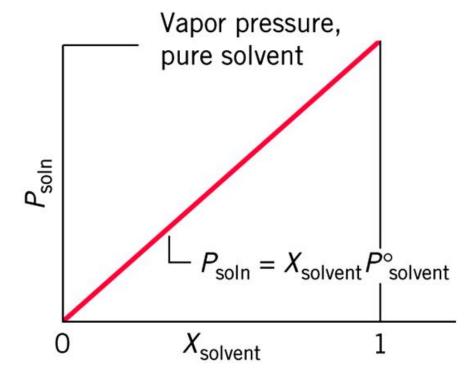
 Solutes that can't evaporate from solution are called **nonvolatile solutes**

Fact: All solutions of **nonvolatile solutes** have lower vapor pressures than their pure solvents

Raoult's Law

- Vapor pressure of solution, P_{soln} , equals product of mole fraction of solvent, $X_{solvent}$, and its vapor pressure when pure, $P_{solvent}$
- Applies for dilute solutions

$$P_{solution} = X_{solvent} P_{solvent}^{\circ}$$

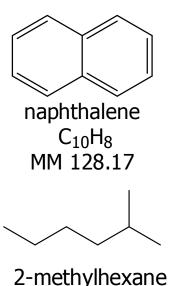

 $P_{solution}$ = vapor pressure of the solution

 $X_{solvent}$ = mole fraction of the solvent

 $P_{solvent}^{\circ}$ = vapor pressure of pure solvent

Alternate form of Raoult's Law

- Plot of P_{soln} vs. X_{solvent} should be linear
 - Slope = $P_{solvent}^{\circ}$
 - *Intercept* = 0
- Change in vapor pressure can be expressed as


$$\Delta P = \text{change in } P = (P_{solvent}^{\circ} - P_{solution})$$

 Usually more interested in how solute's mole fraction changes the vapor pressure of solvent

$$\Delta P = X_{solute} P_{solvent}^{\circ}$$

Learning Check

Ex. The vapor pressure of 2-methylhexane is 37.986 torr at 15°C. What would be the pressure of the mixture of 78.0 g 2-methylhexane and 15 g naphthalene, which is nearly non-volatile at this temperature?

2-methylhexane C₇H₁₆ MM 100.2

$$\begin{aligned} \textbf{P}_{\text{solution}} &= \textbf{X}_{\text{solvent}} \textbf{P}_{\text{solvent}}^{\text{o}} \\ &\text{mole naphthalene} = \frac{15 \text{ g}}{128.17 \text{ g/mol}} = 0.1\underline{1}7 \text{ mol} \\ &\text{mole 2 - methylhexane} = \frac{78.0 \text{ g}}{100.2 \text{ g/mol}} = 0.77\underline{8}4 \text{ mol} \\ &\frac{0.77\underline{8}4 \text{ mol}}{0.77\underline{8}4 \text{ mol}} = 0.8\underline{6}9 \end{aligned}$$

 $P = (0.869 \times 37.986 \text{ torr})$

= 33.02 torr = 33 torr

Solutions That Contain Two or More Volatile Components

- Now vapor contains molecules of both components
 - Partial pressure of each component A and B is given by Raoult's Law

$$P_A = X_A P_A^{\circ}$$
 $P_B = X_B P_B^{\circ}$

 Total pressure of solution of components A and B given by Dalton's Law of Partial Pressures

$$P_{total} = P_A + P_B = X_A P_A^{\circ} + X_B P_B^{\circ}$$

Ex. Benzene and Toluene

Consider a mixture of benzene, C₆H₆, and toluene, C₇H₈, containing 1.0 mol benzene and 2.0 mol toluene. At 20 °C, the vapor pressures of the pure substances are:

```
P^{\circ}_{benzene} = 75 \text{ torr}
P^{\circ}_{toluene} = 22 \text{ torr}
```

what is the total pressure above this solution?

Ex. Benzene and Toluene (cont.)

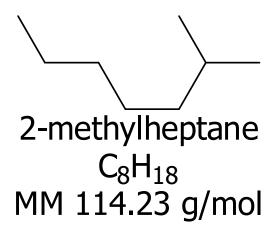
1. Calculate mole fractions of A and B

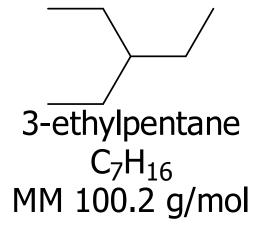
$$X_{benzene} = \frac{1.0mol}{(1.0 + 2.0)mol} = 0.33 \text{ benzene}$$

$$X_{toluene} = \frac{2.0mol}{(1.0 + 2.0)mol} = 0.67 \text{ toluene}$$

2. Calculate partial pressures of A and B

$$P_{benzene} = X_{benzene} * P_{benzene}^{\circ} = 0.33 \times 75 torr = 25 torr$$


$$P_{toluene} = X_{toluene} * P_{toluene}^{\circ} = 0.67 \times 22torr = 15torr$$


3. Calculate total pressure

$$P_{total} = P_{benzene} + P_{toluene}$$

= $(25 + 15)torr = 40torr$

Learning Check

Ex. The vapor pressure of 2-methylheptane is 233.95 torr at 55°C. 3-ethylpentane has a vapor pressure of 207.68 at the same temperature. What would be the pressure of the mixture of 78.0g 2-methylheptane and 15 g 3-ethylpentane?

$$P_{\text{solution}} = X_A P_A^o + X_B P_B^o$$

Learning Check

mole 2 - methylheptane =
$$\frac{78.0 \text{ g}}{114.23 \text{ g/mol}}$$
 = 0.6828 mol mole 3 - ethylpentane = $\frac{15 \text{ g}}{100.2 \text{ g/mol}}$ = 0.1497 mol $X_{2\text{-methylpentane}}$ = $\frac{0.68283 \text{ mol}}{(0.68283 \text{ mol} + 0.14_97 \text{ mol})}$ = 0.827 $X_{3\text{-ethylpentane}}$ = $\frac{0.1497 \text{ mol}}{(0.68283 \text{ mol} + 0.1497 \text{ mol})}$ = 0.173 $P = (0.827 \times 233.95 \text{ torr}) + (0.173 \times 207.68 \text{ torr})$

Your Turn!

Ex. If the vapor pressure of pure hexane is 151.28 mmHg, and heptane is 45.67 mm Hg at 25°, which equation is correct if the mixture's vapor pressure is 145.5 mmHg?

- A. X(151.28 mmHg) = 145.5 mmHg
- B. X(151.28 mmHg) + (X)(45.67 mm Hg) = 145.5 mmHg
- C. X(151.28 mmHg) + (1 X)(45.67 mm Hg) = 145.5 mm Hg
- D. None of these

Solutes also Affect Freezing and **Boiling Points of Solutions**

- Freezing Point of solution always Lower than pure solvent
- Boiling Point of solution always Higher than pure solvent

Colligative properties

- Boiling Point Elevation (ΔT_h)
 - ↑ in boiling point of solution vs. pure solvent
- Freezing Point Depression (ΔT_f)
 - ↓ in freezing point of solution vs. pure solvent

Freezing Point Depression (ΔT_f)

$$\Delta T_f = K_f m$$

where

$$\Delta T_{f} = (T_{fp} - T_{soln})$$

m = concentration in Molality

 $\mathbf{K_f}$ = molal freezing point depression constant Units of °C/molal, Depend on solvent.

Boiling Point Elevation (ΔT_b)

$$\Delta T_b = K_b m$$

where

$$\Delta T_{b} = (T_{soln} - T_{bp})$$

m = concentration in Molality

 K_b = molal boiling point elevation constant Units of ° C/m_t Depend on solvent.

Values of K_f and K_b for solvents

ıstants

Solvent	BP (°C)	<i>K_b</i> (°C <i>m</i> ^{−1})	MP (°C)	<i>K_f</i> (°C <i>m</i> ^{−1})
Water	100	0.51	0	1.86
Acetic acid	118.3	3.07	16.6	3.90
Benzene	80.2	2.53	5.45	5.07
Chloroform	61.2	3.63	-63.5	4.68
Camphor	_	—	178.4	39.7
Cyclohexane	80.7	2.69	6.5	20.2

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Ex. Freezing Point Depression

Estimate the freezing point of solution contain 100.0 g ethylene glycol, $C_2H_6O_2$, (MM = 62.07) and 100.0 g H_2O (MM = 18.02).

$$100.0g \, C_2 H_6 O_2 \times \frac{1mo/\, C_2 H_6 O_2}{62.07g \, C_2 H_6 O_2} \ = 1.611 mo/\, C_2 H_6 O_2$$

$$m = \frac{mo/\, \text{solute}}{kg \, \text{solvent}} = \frac{1.611 mo/\, C_2 H_6 O_2}{0.100 kg \, \text{water}} = 16.11 m \, C_2 H_6 O_2$$

$$\Delta T_f = K_f m = (1.86 \, ^{\circ}\text{C}/m) \times 16.11 m \, = 30.0 \, ^{\circ}\text{C}$$

$$\Delta T_f = (T_{fp} - T_{soln})$$

$$30.0 \, ^{\circ}\text{C} = 0.0 \, ^{\circ}\text{C} - T_{soln}$$

$$T_{soln} = 0.0 \, ^{\circ}\text{C} - 30.0 \, ^{\circ}\text{C} = -30.0 \, ^{\circ}\text{C}$$

Your Turn!

■ Ex. When 0.25 g of an unknown organic compound is added to 25.0 g of cyclohexane, the freezing point of cyclohexane is lowered by 1.6 °C. K_f for the solvent is 20.2 °C m⁻¹. Determine the molar mass of the unknown.

$$\Delta T_f = K_f m$$

$$1.6^{\circ}\text{C} = 20.2 \frac{^{\circ}\text{C}}{m} \times \frac{\left[\frac{0.250 \text{ g}}{MW}\right]}{0.025 \text{ kg}}$$

$$MW = 126 \text{ g/mol}$$

Ex. Boiling Point Elevation

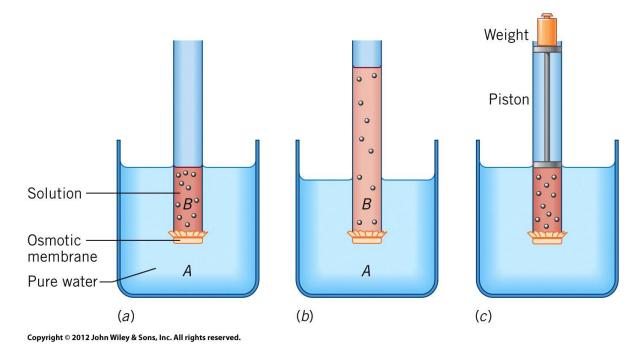
A 2.00 g biomolecule sample was dissolved in 15.0 g of CCl₄. The boiling point of this solution was determined to be 77.85 $^{\circ}$ C. Calculate the molar mass of the biomolecule. For CCl₄, the $K_b = 5.07 \, ^{\circ}$ C/m and BP_{CCl4} = 76.50 $^{\circ}$ C.

$$\Delta T_b = K_b m$$
 $m = \frac{\Delta T_b}{K_b} = \frac{(77.85 - 76.50)^{\circ}C}{5.07^{\circ}C / m} = 0.26\underline{8}4m$

$$m = \frac{mol \text{ solute}}{kg \text{ solvent}}$$
 $mol \text{ solute} = 0.26\underline{8}4m \times 0.0150kg \text{ CCl}_4$
= $4.026 \times 10^{-3} mol$

$$MM_{biomolecule} = \frac{2.00g \ biomoleucle}{4.026 \times 10^{-3} \ mole} = 497g \ / \ mole$$

Osmosis


Osmotic Membrane

 Semipermeable membrane that lets only solvent molecules through

Osmosis

- Net shift of solvent molecules (usually water) through an osmotic membrane
- Direction of flow in osmosis,
 - Solvent flows from dilute to more concentrated side
 - Flow of solvent molecules across osmotic membrane
 - 1 concentration of solute on dilute side
 - ↓ concentration of solute on more concentrated side

Osmosis and Osmotic Pressure

- A. Initially, Soln B separated from pure water, A, by osmotic membrane. No osmosis occurred yet
- **B.** After a while, volume of fluid in tube higher. Osmosis has occurred.
- C. Need back pressure to prevent osmosis = osmotic pressure.

Equation for Osmotic Pressure

Assumes dilute solutions

$$\Pi = MRT$$

- Π = osmotic pressure
- **M** = molarity of solution
- **T** = Kelvin Temperature
- R = Ideal Gas constant
 - $= 0.082057 \text{ L'atm'mol}^{-1}\text{K}^{-1}$

Ex. Using Π to determine MM

A solution contained 3.50 mg of protein in sufficient H_2O to form 5.00 mL of solution. The measured osmotic pressure of this solution was 1.54 torr at 25 $^{\circ}C$. Calculate the molar mass of the protein.

$$M = \frac{\Pi}{RT} = \frac{1.54torr\left(\frac{1atm}{760torr}\right)}{\left(0.08206\frac{L \cdot atm}{K \cdot mol}\right)298K} = 8.28 \times 10^{-5} \frac{mol}{L}$$

$$mol = M * L = (8.28 \times 10^{-5} M) * 5.00 \times 10^{-3} L = 4.14 \times 10^{-7} mol$$

$$MM = \frac{g}{mol} = \frac{3.50 \times 10^{-3} g}{4.14 \times 10^{-7} mol} = 8.45 \times 10^{3} g / mol$$

Learning Check

Ex. For a typical blood plasma, the osmotic pressure at body temperature (37°C) is 5409 mm Hg. If the dominant solute is serum protein, what is the concentration of serum protein?

$$\Pi = MRT$$

$$\frac{5409\,\text{mm Hg}}{760\,\text{mm Hg}} \times \frac{1\text{atm}}{760\,\text{mm Hg}} = \Pi$$

$$7.117atm = \frac{? \, mol}{L} \times \frac{0.082057L \cdot atm}{mol \cdot K} \times 310.\underline{1}5K$$

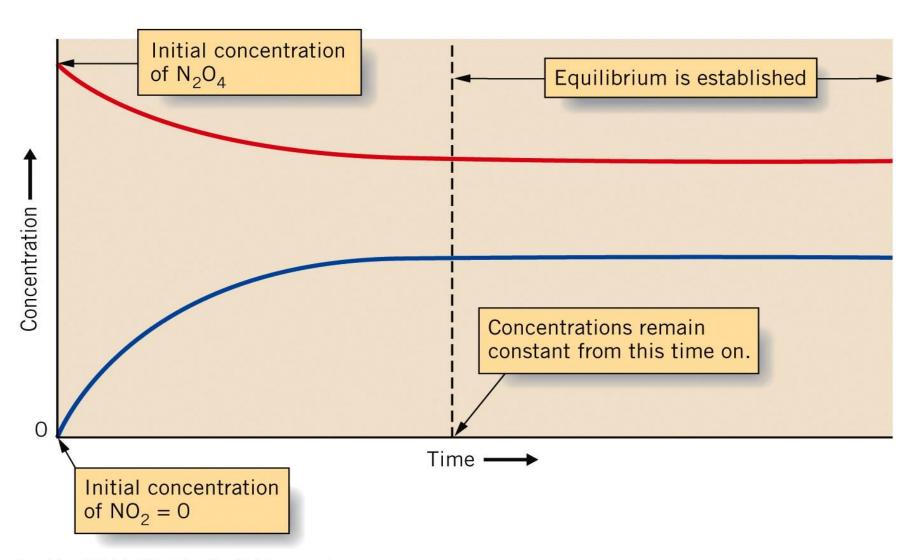
M = 0.280 M

Chapter 6Chemical Equilibrium

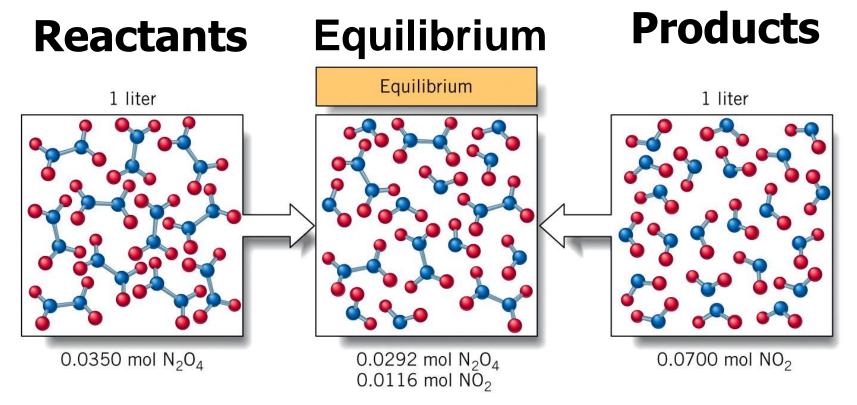
Chemistry: The Molecular Nature of Matter, 6E

Jespersen/Brady/Hyslop

Dynamic Equilibrium in Chemical Systems


- Chemical equilibrium exists when
 - Rates of forward and reverse reactions are equal
 - Reaction appears to stop
 - [reactants] and [products] don't change over time
 - Remain constant
 - Both forward and reverse reaction never cease
- Equilibrium signified by double arrows ()
 or equal sign (=)

Dynamic Equilibrium


$$N_2O_4 \longrightarrow 2 NO_2$$

- Initially forward reaction rapid
 - As some reacts \downarrow [N₂O₄] so rate forward \downarrow
- Initially Reverse reaction slow
 - No products
- As NO₂ forms
 - ↑ Reverse rate
 - Ions collide more frequently as [ions] ↑
- Eventually rate_{forward} = rate_{reverse}
 - Equilibrium

Dynamic Equilibrium

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

$$N_2O_4 \longrightarrow 2NO_2$$

- For given overall system composition
- Always reach same equilibrium concentrations
- Whether equilibrium is approached from forward or reverse direction

Equilibrium

- Simple relationship among [reactants] and [products] for any chemical system at equilibrium
- Called = mass action expression
 - Derived from thermodynamics
- Forward reaction: $A \rightarrow B$ Rate = $k_f[A]$
- Reverse reaction: $\mathbf{A} \leftarrow \frac{\kappa_r}{\kappa_r} \mathbf{B}$ Rate = $\kappa_r [\mathbf{B}]$
- At equilibrium: $A \longrightarrow B$ $k_f[A] = k_r[B]$
 - rate forward = rate reverse
- rearranging:

$$\frac{[\mathsf{B}]}{[\mathsf{A}]} = \frac{k_f}{k_r} = \text{constant}$$

Mass Action Expression (MAE)

- Uses stoichiometric coefficients as exponent for each reactant

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Reaction quotient

- Numerical value of mass action expression
- Equals "Q" at any time, and
- Equals "K" only when reaction is known to be at equilibrium

Mass Action Expression

$$Q = \frac{\left[HI\right]^2}{\left[H_2\right]\left[I_2\right]} \text{ = same for all data sets at equilibrium}$$

	Equilibrium Concentrations (M)			$Q = \frac{[HI]^2}{[H_2][I_2]}$
Exp't	[H ₂]	$[I_2]$	[HI]	$[H_2][I_2]$
I	0.0222	0.0222	0.156	$\frac{(0.156)^2}{(0.0222)(0.0222)} = 49.4$
II	0.0350	0.0450	0.280	$\frac{(0.280)^2}{(0.0350)(0.0450)} = 49.8$
III	0.0150	0.0135	0.100	$\frac{(0.100)^2}{(0.0150)(0.0135)} = 49.4$
IV	0.0442	0.0442	0.311	$\frac{(0.311)^2}{(0.0442)(0.0442)} = 49.5$
				Average = 49.5

Equilibrium Law

For reaction at equilibrium write the following

Equilibrium Law (at 440 °C)

$$K_C = \frac{[HI]^2}{[H_2][I_2]} = 49.5$$

- Equilibrium constant = K_c = constant at given T
- Use K_c since usually working with concentrations in mol/L
- For chemical equilibrium to exist in reaction mixture, reaction quotient Q must be equal to equilibrium constant, K_c

Predicting Equilibrium Law

For general chemical reaction:

$$dD + eE \longrightarrow fF + gG$$

- Where **D**, **E**, **F**, and **G** represent chemical formulas
- **d**, **e**, **f**, and **g** are coefficients
- Mass action expression = $\frac{[F]^f[G]^g}{[D]^d[E]^e}$
- Note: Exponents in mass action expression are stoichiometric coefficients in balanced equation.
- equation. • Equilibrium law is: $K_c = \frac{[F]^f [G]^g}{[D]^d [E]^e}$

Ex. Equilibrium Law

$$3 H_2(g) + N_2(g) = 2 NH_3(g)$$

- $K_c = 4.26 \times 10^8 \text{ at } 25 \text{ °C}$
- What is equilibrium law?

$$K_c = \frac{[NH_3]^2}{[H_2]^3[N_2]} = 4.26 \times 10^8$$

Learning Check

Ex. Write mass action expressions for the following:

$$\bullet \ 2 \ \mathsf{NO}_2(g) \longrightarrow \mathsf{N}_2\mathsf{O}_4(g)$$

$$Q = \frac{[N_2O_4]}{[NO_2]^2}$$

•
$$2CO(g) + O_2(g) = 2 CO_2(g)$$

$$Q = \frac{[CO_2]^2}{[CO]^2[O_2]}$$

Manipulating Equations for Chemical Equilibria

Various operations can be performed on equilibrium expressions

1. When direction of equation is reversed, new equilibrium constant is reciprocal of original

$$A + B \longrightarrow C + D$$

$$K_c = \frac{[C][D]}{[A][B]}$$

$$C + D \longrightarrow A + B$$

$$K_c' = \frac{[A][B]}{[C][D]} = \frac{1}{K_c}$$

1. When direction of equation is reversed, new equilibrium constant is reciprocal of original

$$3 H_2(g) + N_2(g) = 2 NH_3(g)$$
 at 25°C

$$K_c = \frac{[NH_3]^2}{[H_2]^3[N_2]} = 4.26 \times 10^8$$

$$2 \text{ NH}_3(g) \longrightarrow 3 \text{ H}_2(g) + \text{N}_2(g)$$
 at 25°C

$$K_c' = \frac{[H_2]^3[N_2]}{[NH_3]^2} = \frac{1}{K_c} = \frac{1}{4.26 \times 10^8} = 2.35 \times 10^{-9}$$

2. When coefficients in equation are multiplied by a factor, equilibrium constant is raised to a power equal to that factor.

$$A + B \longrightarrow C + D$$

$$K_C = \frac{[C][D]}{[A][B]}$$

$$3A + 3B \longrightarrow 3C + 3D$$

$$K_c'' = \frac{[C]^3[D]^3}{[A]^3[B]^3} = \frac{[C][D]}{[A][B]} \times \frac{[C][D]}{[A][B]} \times \frac{[C][D]}{[A][B]} = K_c^3$$

2. When coefficients in equation are *multiplied by factor*, equilibrium constant is *raised to power* equal to that factor

$$3 H_2(g) + N_2(g) = 2 NH_3(g) \text{ at } 25^{\circ}C$$

$$K_C = \frac{[NH_3]^2}{[H_2]^3[N_2]} = 4.26 \times 10^8$$

multiply by 3

$$9 H_2(g) + 3 N_2(g) = 6 NH_3(g)$$

$$K_C'' = \frac{[NH_3]^6}{[H_2]^9[N_2]^3} = K_C^3$$

3. When chemical equilibria are added, their equilibrium constants are multiplied

$$\mathbf{A} + \mathbf{B} = \mathbf{C} + \mathbf{D}$$

$$\mathcal{K}_{c_1} = \frac{[C][D]}{[A][B]}$$

$$\mathbf{C} + \mathbf{E} = \mathbf{F} + \mathbf{G}$$

$$\mathcal{K}_{c_2} = \frac{[F][G]}{[C][E]}$$

$$\mathbf{A} + \mathbf{B} + \mathbf{E} = \mathbf{D} + \mathbf{F} + \mathbf{G}$$

$$K_{c_3} = \frac{[C][D]}{[A][B]} \times \frac{[F][G]}{[C][F]} = \frac{[D][F][G]}{[A][B][E]} = K_{c_1} \times K_{c_2}$$

3. When chemical equilibria are added, their equilibrium constants are multiplied

$$2 \text{ NO}_{2}(g) \longrightarrow \text{NO}_{3}(g) + \text{NO}(g) \qquad \qquad \mathcal{K}_{c_{1}} = \frac{[\text{NO}][\text{NO}_{3}]}{[\text{NO}_{2}]^{2}}$$

$$NO_{3}(g) + \text{CO}(g) \longrightarrow \text{NO}_{2}(g) + \text{CO}_{2}(g) \qquad \qquad \mathcal{K}_{c_{2}} = \frac{[\text{NO}_{2}][\text{CO}_{2}]}{[\text{NO}_{3}][\text{CO}_{2}]}$$

$$NO_{2}(g) + \text{CO}(g) \longrightarrow \text{NO}(g) + \text{CO}_{2}(g) \qquad \qquad \mathcal{K}_{c_{3}} = \frac{[\text{NO}][\text{CO}_{2}]}{[\text{NO}_{2}][\text{CO}_{2}]}$$

$$\frac{[\text{NO}][\text{NO}_{3}]}{[\text{NO}_{2}]^{2}} \times \frac{[\text{NO}_{2}][\text{CO}_{2}]}{[\text{NO}_{3}][\text{CO}_{2}]} = \frac{[\text{NO}][\text{CO}_{2}]}{[\text{NO}_{2}][\text{CO}_{2}]}$$

$$K_{c_1} \times K_{c_2} = K_{c_3}$$

Learning Check

Ex. $N_2(g) + 3 H_2(g) = 2 NH_3(g)$ $K_c = 500$ at a particular temperature.

What would be $\mathbf{K_c}$ for following?

■
$$2 \text{ NH}_3(g) \longrightarrow \text{N}_2(g) + 3 \text{ H}_2(g)$$

$$K_c' = \frac{1}{K_c} = \frac{1}{500} = 0.002$$

• $1/2 N_2(g) + 3/2 H_2(g) \longrightarrow NH_3(g)$

$$K_C'' = K_C^{1/2} = \sqrt{500} = 22.4$$

Equilibrium Constant, K_c

 Constant value equal to ratio of product concentrations to reactant concentrations raised to their respective exponents

$$K_c = \frac{[products]^f}{[reactants]^d}$$

- Changes with temperature (van't Hoff Equation)
- Depends on solution concentrations
- Assumes reactants and products are in solution

Equilibrium Constant, K_p

- Based on reactions in which substances are gaseous
- Assumes gas quantities are expressed in atmospheres in mass action expression
- Use partial pressures for each gas in place of concentrations
- Ex. $N_2(g) + 3 H_2(g) = 2 NH_3(g)$

$$K_P = \frac{P_{NH_3}^2}{P_{N_2}P_{H_2}^3}$$

How are K_p and K_c Related?

Start with Ideal Gas Law

- Substituting P/RT for molar concentration into K_c results in pressure-based formula
- Δn = moles of gas in product moles of gas in reactant

$$K_p = K_c(RT)^{\Delta n}$$

For gaseous reactions, use either K_P or K_C For solution reactions, must use K_C

Learning Check

Ex. Consider the reaction: $2NO_2(g) \longrightarrow N_2O_4(g)$

If $\mathbf{K_p} = 0.480$ for the reaction at 25°C, what is value of $\mathbf{K_c}$ at same temperature?

$$-\Delta \mathbf{n} = \mathbf{n}_{\text{products}} - \mathbf{n}_{\text{reactants}} = 1 - 2 = -1$$

$$K_p = K_c(RT)^{\Delta n}$$

$$K_c = \frac{K_p}{(RT)^{\Delta n}} = \frac{0.480}{(0.0821 \times 298 \text{K})^{-1}}$$

$$K_c = 11.7$$

Your Turn!

Ex. Consider the reaction $A(g) + 2B(g) \longrightarrow 4C(g)$ If the K_c for the reaction is 0.99 at 25°C, what would be the K_p ?

$$\Delta n = (4 - 3) = 1$$

$$K_{\rm p} = K_{\rm c}({\rm RT})^{\Delta n}$$

$$K_p = 0.99*(0.082057*298.15)^1$$

$$K_{\rm p} = 24$$

Homogeneous reaction/equilibrium

- All reactants and products in same phase
- Can mix freely

Heterogeneous reaction/equilibrium

- Reactants and products in different phases
- Can't mix freely
- Solutions are expressed in M
- Gases are expressed in M
- Governed by K_c

Heterogeneous Equilibria

$$2NaHCO_3(s) \longrightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

- Equilibrium Law = $K = \frac{[Na_2CO_3(s)][H_2O(g)][CO_2(g)]}{[NaHCO_3(s)]^2}$
- Can write in simpler form
- For any pure liquid or solid, ratio of moles to volume of substance (M) is constant
 - Ex. 1 mol NaHCO₃ occupies 38.9 cm³
 2 mol NaHCO₃ occupies 77.8 cm³

$$M = \frac{2 \text{ mol NaHCO}_3}{0.0778 \text{ L}} = 25.7M$$

$$M = \frac{1 \text{ mol NaHCO}_3}{0.0389 \, \text{L}_{\text{Jespersen/Brady/Hyslop}}} = 25.7M$$

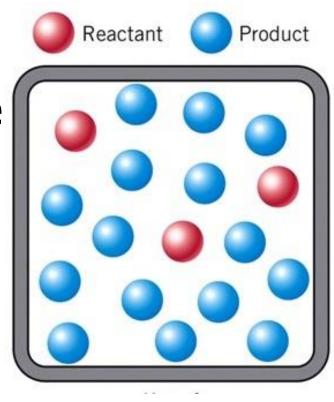
Heterogeneous Equilibria

$$2NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

- concentrations of pure solids and liquids can be incorporated into equilibrium constant, K_c
- Equilibrium law for heterogeneous system written without concentrations of pure solids or liquids

$$K_{c} = K \frac{[\text{Na}_{2}\text{CO}_{3}(s)]}{[\text{NaHCO}_{3}(s)]^{2}} = [\text{H}_{2}\text{O}(g)][\text{CO}_{2}(g)]$$

Interpreting K_C


Large K (K>>1)

- Means product rich mixture
- Reaction goes far toward completion

Ex.

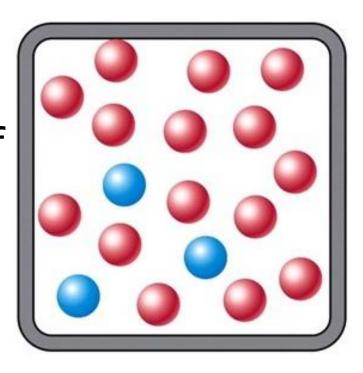
$$2SO_2(g) + O_2(g) = 2SO_3(g)$$

 $K_c = 7.0 \times 10^{25} \text{ at } 25 \,^{\circ} \text{ C}$

$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]} = \frac{7.0 \times 10^{25}}{1}$$

Interpreting K_C

Small K (K<<1)

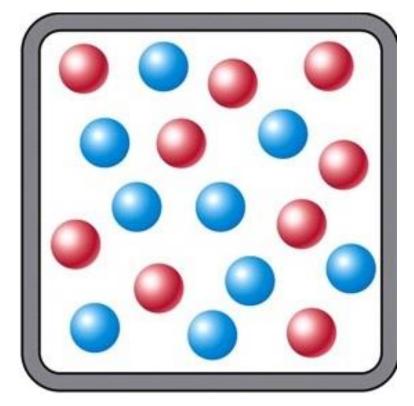

- Means reactant rich mixture
- Only very small amounts of product formed

Ex.

$$H_2(g) + Br_2(g) = 2HBr(g)$$

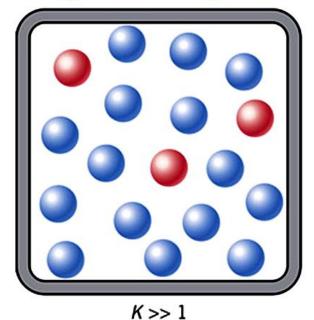
 $K_c = 1.4 \times 10^{-21} \text{ at } 25 \text{ °C}$

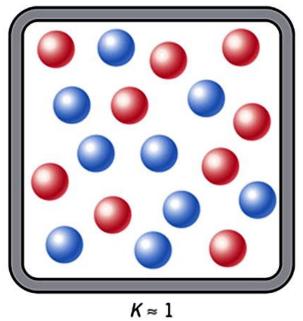
$$K_C = \frac{[HBr]^2}{[H_2][Br_2]} = \frac{1.4 \times 10^{-1}}{1}$$

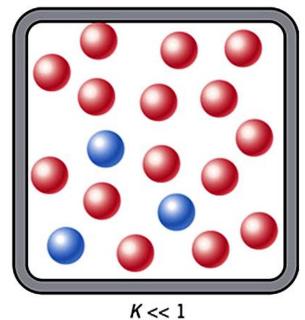


Product

Interpreting K_C


- K ≈ 1
 - Means product and reactant concentrations close to equal
 - Reaction goes only ~ halfway





Size of K gives measure of how reaction proceeds

Reactant Product

- **K >> 1** [products] >> [reactants]
- **K** = **1** [products] = [reactants]
- K << 1 [products] << [reactants]

Learning Check

Ex. Consider the reaction of $2NO_2(g) = N_2O_4(g)$ If $K_p = 0.480$ at 25°C, does the reaction favor product or reactant?

K is small (**K** < 1)

Reaction favors reactant

Since K is close to 1, significant amounts of **both** reactant and product are present

Equilibrium Positions and "Shifts"

Equilibrium positions

- Combination of concentrations that allow Q = K
- Infinite number of possible equilibrium positions

Le Châtelier's principle

- System at equilibrium (Q = K) when upset by disturbance (Q ≠ K) will shift to offset stress
 - System said to "shift to right" when forward reaction is dominant (Q < K)
 - System said to "shift to left" when reverse direction is dominant $(\mathbf{Q} > \mathbf{K})$

Relationship Between Q and K

- Q = K
- Q < K

reaction at equilibrium reactants → products

- Too many reactants
- Must convert some reactant to product to move reaction toward equilibrium
- Q > K

- reactants ← products
- Too many products
- Must convert some product to reactant to move reaction toward equilibrium

Examples of Le Châtelier's Principle

Let's see how this works with changes in

- 1. Concentration
- 2. Pressure and volume
- 3. Temperature
- 4. Catalysts
- 5. Adding inert gas to system at constant volume

Effect of Change in Concentration

- Ex. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- $K_c = 2.4 \times 10^{-3}$ at 700 °C
- Which direction will the reaction move if 0.125 moles of O₂ is added to an equilibrium mixture ?
- A. Towards the products
- B. Towards the reactants
- C. No change will occur

Effect of Change in Concentration

- When changing concentrations of reactants or products
 - Equilibrium shifts to remove reactants or products that have been added
 - Equilibrium shifts to replace reactants or products that have been removed

Effect of Pressure and Volume Changes

Ex. Consider gaseous system at constant T and n

$$3H_2(g) + N_2(g) = 2NH_3(g)$$

- If reduce volume (V↓)
 - Expect Pressure to increase (P1)
- $K_{P} = \frac{P_{\mathrm{NH_3}}^2}{P_{\mathrm{N_2}}P_{\mathrm{H_2}}^3}$
- To reduce pressure, look at each side of reaction
- Which has less moles of gas
- Reactants = 3 + 1 = 4 moles gas
- Products = 2 moles gas
- Reaction favors products (shifts to right)

Effect of P and V Changes

Consider gaseous system at constant **T** and **n**

Ex.
$$H_2(g) + I_2(g) = 2 HI(g)$$

$$K_{P} = \frac{P_{HI}^{2}}{P_{H_{2}}P_{I_{2}}}$$

- If pressure is increased, what is the effect on equilibrium?
 - $n_{reactant} = 1 + 1 = 2$
 - $n_{product} = 2$
 - Predict no change or shift in equilibrium

Effect of P and V Changes

$$2NaHSO_3(s) = NaSO_3(s) + H_2O(g) + SO_2(g)$$

$$K_P = P_{H_2O}P_{SO_2}$$

- If you decrease volume of reaction, what is the effect on equilibrium?
 - Reactants: no moles gas = all solids
 - Products: 2 moles gas
 - ↓V, causes ↑P
 - Reaction shifts to left (reactants), as this has fewer moles of gas

Effect of P and V Changes

- Reducing volume of gaseous reaction mixture causes reaction to decrease number of molecules of gas, if it can
 - Increasing pressure
- Moderate pressure changes have negligible effect on reactions involving only liquids and/or solids
 - Substances are already almost incompressible
- Changes in V, P and [X] effect position of equilibrium (Q), but not K

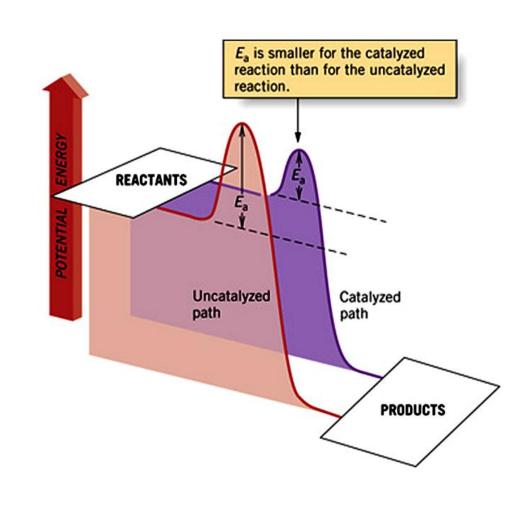
Effect of Temperature Changes

$$H_2O(s) = H_2O(\ell)$$
 $\Delta H^\circ = +6 \text{ kJ (at 0 °C)}$

- Energy + $H_2O(s)$ $H_2O(\ell)$
- Energy is reactant
- Add heat, shift reaction right

$$3H_2(g) + N_2(g) = 2NH_3(g)$$
 $\Delta H_f^{\circ} = -47.19 \text{ kJ}$

- $3 H_2(g) + N_2(g) = 2 NH_3(g) + energy$
- Energy is product
- Add heat, shift reaction left


Effect of Temperature Changes

- ↑ T shifts reaction in direction that produces endothermic (heat absorbing) change
- **T** shifts reaction in direction that produces
 exothermic (heat releasing) change
- Changes in T change value of mass action expression at equilibrium, so K changed
 - K depends on T
 - T of exothermic reaction makes K smaller
 - More heat (product) forces equilibrium to reactants
 - T of endothermic reaction makes K larger
 - More heat (reactant) forces equilibrium to products

Catalysts And Equilibrium

 Catalyst lowers E_a for both forward and reverse reaction

- Change in E_a
 affects rates k_r
 and k_f equally
- Catalysts have no effect on equilibrium

Effect of Adding Inert Gas

Inert gas

- One that does not react with components of reaction
 Ex. Argon, Helium, Neon, usually N₂
- Adding inert gas to reaction at fixed V (n and T), ↑
 P of all reactants and products
- Since it doesn't react with anything
 - No change in concentrations of reactants or products
 - No net effect on reaction

Your Turn!

Ex. The following are equilibrium constants for the reaction of acids in water, K_a. Which is the most acid dissociated reaction?

A.
$$K_a = 2.2 \times 10^{-3}$$

B.
$$K_a = 1.8 \times 10^{-5}$$

C.
$$K_a = 4.0 \times 10^{-10}$$

D.
$$K_a = 6.3 \times 10^{-3}$$

Calculating K_C Given Equilibrium Concentrations

Ex.
$$N_2O_4(g) = 2NO_2(g)$$

- If you place 0.0350 mol N_2O_4 in 1 L flask at equilibrium, what is $K_{C?}$
- $[N_2O_4]_{eq} = 0.0292 \text{ M}$
- $[NO_2]_{eq} = 0.0116 M$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$
 $K_c = \frac{[0.0116]^2}{[0.0292]}$

$$K_{\rm C} = 4.61 \times 10^{-3}$$

Your Turn!

Ex. For the reaction: $2A(aq) + B(aq) \longrightarrow 3C(aq)$ the equilibrium concentrations are: A = 2.0 M, B = 1.0 M and C = 3.0 M. What is the expected value of K_c at this temperature?

$$K_C = \frac{[C]^3}{[A]^2[B]}$$

$$K_c = \frac{[3.0]^3}{[2.0]^2[1.0]}$$

Calculating K_C Given Initial Concentrations and One Final Concentration

Ex. $2SO_2(g) + O_2(g) = 2SO_3(g)$

- 1.000 mol SO₂ and 1.000 mol O₂ are placed in a 1.000 L flask at 1000 K. At equilibrium 0.925 mol SO₃ has formed. Calculate K_C for this reaction.
- 1st calculate concentrations of each
 - Initial $[SO_2] = [O_2] = \frac{1.00mol}{1.00l} = 1.00M$
 - Equilibrium $[SO_3] = \frac{0.925mol}{1.007} = 0.925M$

Set up Concentration Table

$$2SO_2(g) + O_2(g) = 2SO_3(g)$$
 Initial Conc. (M) 1.000 1.000 0.000 Changes in Conc. (M) -0.925 -0.462 +0.925 Equilibrium Conc. (M) 0.075 0.538 0.925

$$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]}$$

$$K_c = \frac{[0.925]^2}{[0.075]^2[0.538]}$$
 $K_c = 2.8 \times 10^2 = 280$

Calculate [X]_{equilibrium} from K_c and [X]_{initial}

Ex.
$$CH_4(g) + H_2O(g) = CO(g) + 3H_2(g)$$

• At 1500 °C, $K_c = 5.67$. An equilibrium mixture of gases had the following concentrations: $[CH_4] = 0.400 \text{ M}$ and $[H_2] = 0.800 \text{M}$ and [CO] = 0.300 M. What is $[H_2O]$ at equilibrium?

Calculate [X]_{equilibrium} from K_c and [X]_{initial}

Ex.
$$CH_4(g) + H_2O(g) = CO(g) + 3H_2(g) K_c = 5.67$$

 $[CH_4] = 0.400 M; [H_2] = 0.800M; [CO] = 0.300M$

- What is [H₂O] at equilibrium?
- First, set up equilibrium

$$K_C = \frac{[CO][H_2]^3}{[CH_4][H_2O]}$$
 $[H_2O] = \frac{[CO][H_2]^3}{[CH_4]K_C}$

• Next, plug in equilibrium concentrations and K_c

$$[H_2O] = \frac{[0.300][0.800]^3}{[0.400](5.67)} = \frac{0.154}{2.27}$$

 $[H_2O] = 0.0678 M$

Calculate [X]_{equilibrium} from [X]_{initial} and K_C

Ex.
$$H_2(g) + I_2(g) = 2HI(g)$$
 at 425 °C
 $K_C = 55.64$

- If one mole each of H₂ and I₂ are placed in a 0.500 L flask at 425 °C, what are the equilibrium concentrations of H₂, I₂ and HI?
- Step 1. Write Equilibrium Law

$$K_C = \frac{[HI]^2}{[H_2][I_2]} = 55.64$$

Ex. Step 2. Concentration Table

Conc (M)	$H_2(g) +$	$I_2(g)$	2HI (<i>g</i>)
Initial	2.00	2.00	0.000
Change	– x	-x	+2x
Equil'm	2.00 - x	2.00 - x	+2x

- Initial $[H_2] = [I_2] = 1.00 \text{ mol}/0.500L = 2.00M$
- Amt of H_2 consumed = Amt of I_2 consumed = x
- Amt of HI formed = 2x

$$55.64 = \frac{(2x)^2}{(2.00 - x)(2.00 - x)} = \frac{(2x)^2}{(2.00 - x)^2}$$

Ex. Step 3. Solve for x

 Both sides are squared so we can take square root of both sides to simplify

$$\sqrt{K} = \sqrt{55.64} = \sqrt{\frac{(2x)^2}{(2.00 - x)^2}}$$

$$7.459 = \frac{2x}{(2.00 - x)}$$

$$7.459(2.00-x)=2x$$

$$14.918 - 7.459x = 2x$$

$$14.918 = 9.459x$$

$$X = \frac{14.918}{9.459} = 1.58$$

Ex. Step 4. Equilibrium Concentrations

Conc (M)	H ₂ (<i>g</i>)	+	I ₂ (<i>g</i>) =	= 2HI (<i>g</i>)
Initial	2.00		2.00	0.00
Change -	1.58		-1.58	+3.16
Equil'm	0.42		0.42	+3.16

•
$$[H_2]_{equil} = [I_2]_{equil} = 2.00 - 1.58 = 0.42 M$$

•
$$[HI]_{equil} = 2x = 2(1.58) = 3.16$$

Your Turn!

Ex.
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

 $K_c = 0.0123 \text{ at } 3900 \text{ }^{\circ}\text{C}$

If 0.25 moles of N_2 and O_2 are placed in a 250 mL container, what are the equilibrium concentrations of all species ?

- A. 0.0526 M, 0.947 M, 0.105 M
- B. 0.947 M, 0.947 M, 0.105 M
- C. 0.947 M 0.105 M, 0.0526 M
- D. 0.105 M, 0.105 M, 0.947 M

Your Turn! - Solution

Ex. Conc (M)
$$N_2(g) + O_2(g) = 2NO(g)$$

Initial

- 1.00 1.00
- 0.00

- Change x

+ 2x

- Equil
- 1.00 x 1.00 x

$$[N_2] = [O_2] = \frac{0.250 \text{ mol}}{0.250 \text{ L}} = 1.00 M$$

$$0.0123 = \frac{(2x)^2}{(1-x)^2} \qquad \sqrt{0.0123} = \frac{2x}{1-x}$$

$$x = 0.0526M$$
 [NO] = $2x = 0.105M$

Learning Check

EX. For the reaction $2A(g) \leftrightarrows B(g)$ given that $K_p = 3.5 \times 10^{-16}$ at 25° C, and we place 0.2 atm A into the container, what will be the pressure of B at equilibrium?

$$\begin{array}{cccc} \mathbf{2A} & \leftrightarrow & \mathbf{B} \\ \mathbf{I} & 0.2 & 0 \text{ atm} \\ \mathbf{C} & -2\mathbf{x} & +\mathbf{x} \\ \mathbf{E} & 0.2 - 2\mathbf{x} & \mathbf{x} \end{array}$$

$$3.5 \times 10^{-16} = \frac{x}{(0.2)^2}$$

$$x = 1.4 \times 10^{-17}$$

$$[B] = 1.4 \times 10^{-17} M$$

Calculating K_C Given Initial Concentrations and One Final Concentration

Ex.
$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$
 @ 450 °C

• Initially H_2 and I_2 concentrations are 0.200 mol each in 2.00 L At equilibrium, HI concentration is 0.160 M. Calculate K_C

$$[I_2] = [H_2] = 0.100M$$
 $H_2(g) + I_2(g) \leftrightarrows 2HI(g) @ 450 °C$
 $0.100M 0.100M 0$
 $-x -x 2x$
 $0.100-x 0.100-x 2x$
 $2x=0.160$

- X=0.08 M
- $[I_2] = [H_2] = 0.100 0.08 = 0.020 M$
- $K_C = (0.160)^2/(0.020)^2 = 64$

Chapter 7Acids and Bases

Chemistry: The Molecular Nature of Matter, 6E

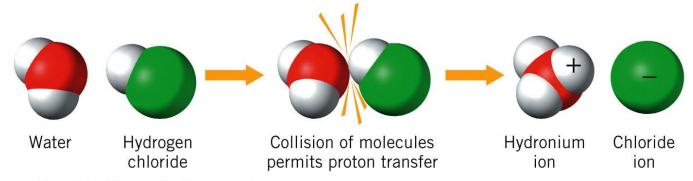
Jespersen/Brady/Hyslop

Arrhenius Acids and Bases

Acid produces H₃O⁺ in water

Base gives OH-

Acid-base neutralization


 Acid and base combine to produce water and a salt.

Ex.
$$HCl(aq) + NaOH(aq) \rightarrow H_2O + NaCl(aq)$$

 $H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq)$
 $\rightarrow 2H_2O + Cl^-(aq) + Na^+(aq)$

 Many reactions resemble this without forming H₃O⁺ or OH⁻ in solution

Brønsted-Lowry Definition

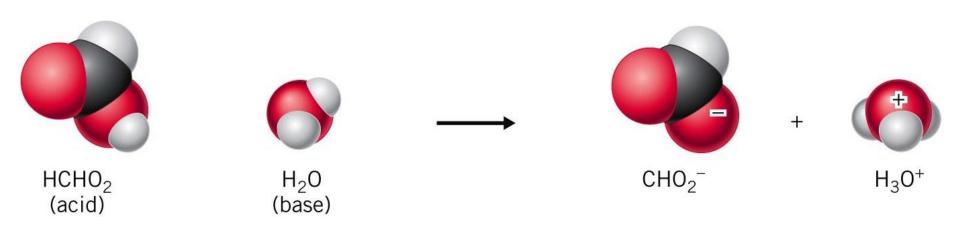
- Acid = proton donor
- Base = proton acceptor
- Allows for gas phase acid-base reactions

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Ex.
$$HCI + H_2O \longrightarrow H_3O^+ + CI^-$$

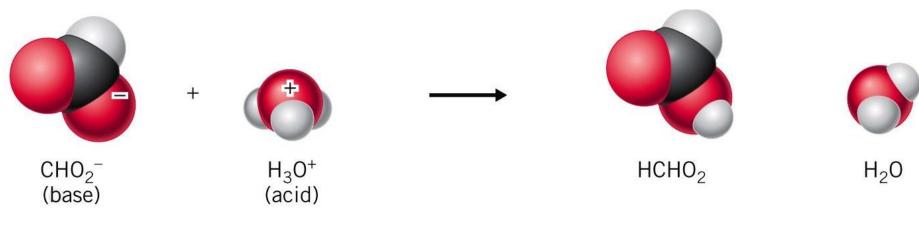
- HCl = acid
 - Donates H+
- Water = base
 - Accepts H+ Brady/Hyslop

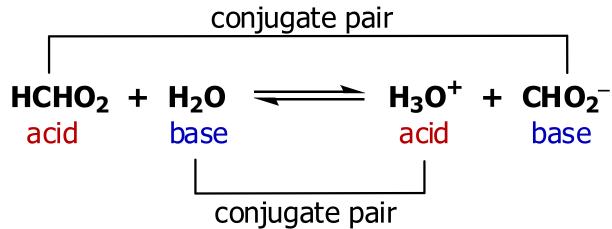
Conjugate Acid-Base Pair


Species that differ by H+

Ex.
$$HCI + H_2O \longrightarrow H_3O^+ + CI^-$$

- HCl = acid
- Water = base
- H₃O⁺
 - Conjugate acid of H₂O
- CI-
 - Conjugate base of HCl


Formic Acid is Bronsted Acid


- Formic acid (HCHO₂) is a weak acid
- Must consider equilibrium
 - $HCHO_2(aq) + H_2O \longrightarrow CHO_2^-(aq) + H_3O^+(aq)$
- Focus on forward reaction

Formate Ion is Bronsted Base

- Now consider reverse reaction
- Hydronium ion transfers H⁺ to CHO₂⁻

Learning Check

Identify the Conjugate Partner for Each

conjugate base	conjugate acid	
CI-	HCl	
NH ₃	NH ₄ +	
C ₂ H ₃ O ₂ ⁻	HC ₂ H ₃ O ₂	
CN-	HCN	
F-	HF	

Learning Check

 Write a reaction that shows that HCO₃⁻ is a Brønsted acid when reacted with OH⁻

•
$$HCO_3^-(aq) + OH^-(aq) \longrightarrow H_2O(\ell) + CO_3^{2-}(aq)$$

• Write a reaction that shows that HCO_3^- is a Brønsted **base** when reacted with $H_3O^+(aq)$

■
$$HCO_3^-(aq) + H_3O^+(aq) \longrightarrow H_2CO_3(aq) + H_2O(\ell)$$

Your Turn!

Ex. In the following reaction, identify the acid/base conjugate pair.

$$(CH_3)_2NH + H_2SO_4 \rightarrow (CH_3)_2NH_2^+ + HSO_4^-$$

- A. $(CH_3)_2NH / H_2SO_4$; $(CH_3)_2NH^+ / HSO_4^-$
- B. $(CH_3)_2NH / (CH_3)_2N^{+2}$; H_2SO_4 / SO_4^{2-1}
- C. H_2SO_4 / HSO_4^- ; $(CH_3)_2NH_2^+$ / $(CH_3)_2NH_3^+$
- D. H_2SO_4 / $(CH_3)_2NH$; $(CH_3)_2NH^+$ / HSO_4^-

Amphoteric Substances

- Can act as either acid or base
 - Also called amphiprotic
 - Can be either molecules or ions

Ex. hydrogen carbonate ion:

Acid:

$$HCO_3^-(aq) + OH^-(aq) \rightarrow CO_3^{2-}(aq) + H_2O(\ell)$$

Base:

$$HCO_3^-(aq) + H_3O^+(aq) \rightarrow H_2CO_3(aq) + H_2O(\ell)$$

 $\rightarrow 2H_2O(\ell) + CO_2(g)$

Your Turn!

Ex. Which of the following can act as an amphoteric substance?

- A. CH₃COOH
- B. HCI
- C. NO_2^-
- D. HPO_4^{2-}

Strengths of Acids and Bases

Strength of Acid

- Measure of its ability to transfer H+
- Strong acids
 - React completely with water Ex. HCl and HNO₃
- Weak acids
 - Less than completely ionized Ex. CH₃COOH and CHOOH
- **Strength of Base** classified in similar fashion:
 - Strong bases
 - React completely with water Ex. Oxide ion (O²⁻) and OH⁻
 - Weak bases
 - Undergo incomplete reactions
 - **Ex.** NH₃ and NRH₂ (NH₂CH₃, methylamine)

Reactions of Strong Acids and Bases

In water

- Strongest acid = hydronium ion, H₃O+
 - If more powerful H+ donor added to H₂O
 - Reacts with H₂O to produce H₃O+

Similarly,

- Strongest base is hydroxide ion (OH-)
 - More powerful H+ acceptors
 - React with H₂O to produce OH⁻

Position of Acid-Base Equilibrium

- Acetic acid (HC₂H₃O₂) is weak acid
 - Ionizes only slightly in water

$$HC_2H_3O_2(aq) + H_2O(\ell) - H_3O^+(aq) + C_2H_3O_2^-(aq)$$

weaker acid

weaker base

stronger acid

stronger base

- Hydronium ion
 - Better H+ donor than acetic acid
 - Stronger acid
- Acetate ion
 - Better H⁺ acceptor than water
 - Stronger base
- Position of equilibrium favors weaker acid and base

Your Turn!

Ex. In the reaction:

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

which species is the weakest base?

- A. HCI
- B. H_2O
- C. H₃O⁺
- D. Cl-

In General

- Stronger acids and bases tend to react with each other to produce their weaker conjugates
 - Stronger Brønsted acid has weaker conjugate base
 - Weaker Brønsted acid has stronger conjugate base

Autoionization of water

Trace ionization ≡ self-ionization of water

■
$$H_2O(\ell)$$
 + $H_2O(\ell)$ = $H_3O^+(aq)$ + $OH^-(aq)$ acid base acid base

Equilibrium law is:

$$K_c = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

■ But
$$[H_2O]_{pure} = \frac{1000g}{18.0g/mol} = 55.6 M$$

1.00L

• $[H_2O] = constant$

Autoionization of water

$$H_2O(\ell) + H_2O(\ell) = H_3O^+(aq) + OH^-(aq)$$

- Since \therefore [H₂O] = constant
- Equilibrium law simplifies to

$$K_{c} \times [H_{2}O]^{2} = [H^{+}][OH^{-}] = K_{w}$$

- Where $K_w = \text{ion product constant for water}$
- Often omit 2nd H₂O molecule and write
- $\bullet \ \mathsf{H}_2\mathsf{O}(\ell) = \mathsf{H}^+(aq) \ + \ \mathsf{OH}^-(aq)$

$$K_{\mathbf{W}} = [\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]$$

Autoionization of water

$$H_2O(1) \Rightarrow H^+(aq) + OH^-(aq)$$

- for pure H₂O at 25 °C
- $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$
- $K_{W} = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$

H₂O auto-ionization occurs in any solution

•
$$K_{w} = [H^{+}] \cdot [OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25 \text{ }^{\circ}\text{C}$$

Self-Ionization of Water

- In aqueous solution,
- Product of [H+] and [OH-] equals K_w
- [H+] and [OH-] may not actually equal each other

Solution Classification

Neutral	$[H_3O^+] = [OH^-]$
Acidic	$[H_3O^+] > [OH^-]$
Basic	[H ₃ O ⁺] < [OH ⁻]

Ex. In a sample of blood at 25 °C, $[H^+] = 4.6 \times 10^{-8}$ *M*. Find $[OH^-]$ and determine if the solution is acidic, basic or neutral.

$$K_{W} = [H^{+}][OH^{-}] = 1 \times 10^{-14}$$

$$[OH^{-}] = \frac{K_{W}}{[H^{+}]} = \frac{1.0 \times 10^{-14}}{4.6 \times 10^{-8}} = 2.2 \times 10^{-7}$$

- ■So $2.2 \times 10^{-7} M > 4.6 \times 10^{-8} M$
- $-[OH^-] > [H_3O^+]$
- Solution slightly basic

The pH Concept

In general

$$\mathbf{pH} = -\log[\mathbf{H}^+]$$

$$[H^{+}] = 10^{-pH}$$

$$pX = -\log X$$

$$pOH = -log[OH^{-}]$$

 $pK_{w} = -log K_{w} = 14.00$

Using Logarithms

$$K_{\mathbf{W}} = [\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]$$

$$-\log([H^+][OH^-]) = -\log K_W = -\log(1.0 \times 10^{-14})$$

$$-\log[H^+] - \log[OH^-] = -\log K_W = -(-14.00)$$

$$pH + pOH = pK_W = 14.00$$

Redefine Acidic, Basic and Neutral Solutions in terms of pH!

- As pH ↑, [H+] ↓; pOH ↓, and [OH-] ↑
- As pH ↓, [H+] ↑; pOH ↑, and [OH-] ↓

Neutral	pH = 7.00
Acidic	pH < 7.00
Basic	pH > 7.00

Your Turn!

Ex. K_w increases with increasing temperature. At 50 °C, $K_w = 5.476 \times 10^{-14}$. What is the pH of a neutral solution at 50 °C?

- A. 7.00
- B. 6.63
- C. 7.37
- D. 15.3

$$[H^{+}] = [OH^{-}] = (5.476 \times 10^{-14})^{1/2} = 2.34 \times 10^{-7}$$

$$pH=-log[H^+] = -log 2.34 \times 10^{-7} = 6.63$$

Ex. What are $[H^+]$ and $[OH^-]$ of pH = 3.00 solution?

• [H+] =
$$10^{-3.00}$$
 = 1.0×10^{-3} M

$$- [OH^{-}] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}} = \boxed{1.0 \times 10^{-11} M}$$

Ex. What are $[H^+]$ and $[OH^-]$ of **pH** = **4.00** solution?

• **pH** =
$$4.00$$
 [**H**⁺] = 1.0×10^{-4} *M*

$$- [OH^-] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-4}} = \boxed{1.0 \times 10^{-10} M}$$

 Or pH 4.00 solution has 10 times less H+ than pH 3.00 solution

Sample pH Calculations

Ex. Calculate pH and pOH of blood where

$$[H^{+}] = 4.6 \times 10^{-8} M$$

$$[OH^{-}] = 2.2 \times 10^{-7} M$$

$$pH = -\log(4.6 \times 10^{-8}) = 7.34$$

$$pOH = -\log(2.2 \times 10^{-7}) = \underline{6.66}$$

$$14.00 = pK_{W}$$
or

Or

$$pOH = 14.00 - pH = 14.00 - 7.34 = 6.66$$

Sample pH Calculations (cont'd)

Ex. What is the pH of NaOH solution at 25 °C in which the OH⁻ concentration is 0.0026 *M*?

- $[OH^-] = 0.0026 M$
- **pOH** = $-\log(0.0026) = 2.59$
- pH = 14.00 pOH
- = 14.00 2.59
- **-** = **11.41**

Your Turn!

Ex. A sample of juice has a pH of 3.76. Calculate [H⁺].

A.
$$7.6 \times 10^{-3} M$$

D. 5.9 x
$$10^{-9}$$
 M

$$[H^+] = 10^{-pH}$$

$$= 10^{-3.76}$$

$$= 1.7 \times 10^{-4} M$$

Ex. What is the $[H_3O^+]$ and pH of a solution that has $[OH^-] = 3.2 \times 10^{-3}$ M?

- $[H_3O^+][OH^-] = 1 \times 10^{-14}$
- \blacksquare [H₃O⁺] = 1 x 10⁻¹⁴/3.2 x 10⁻³ = 3.1 x 10⁻¹² M
- pH = -log [H_3O^+] = -log(3.1 x 10^{-12})= 11.50

Your Turn!

Ex. What is the [OH⁻] and pH of a solution that has $[H_3O^+] = 2.3 \times 10^{-5} M$?

[H₃O+] pH
A.
$$2.3 \times 10^{-5}$$
 M 9.40
B. 1.0×10^{-14} M 14.00
C. 4.3×10^{-10} M 4.60
D. 7.7×10^{-9} M 5.23
E. 1.0×10^{-7} M 7.00

Ex. What is the pOH and the $[H_3O^+]$ of a solution that has a pH of 2.33?

$$pOH = 11.67$$

$$[H_3O^+] = 4.7 \times 10^{-3}$$

Your Turn!

Ex. What is the pH and the $[H_3O^+]$ of a solution that has a pOH of 1.89?

		рн
A.	$1.29 \times 10^{-2} \mathrm{M}$	1.89
В.	$1.0 \times 10^{-14} \text{ M}$	14.00
C.	$1.50 \times 10^{-11} M$	10.82
D.	$7.8 \times 10^{-13} \mathrm{M}$	12.11
Ε.	$1.0 \times 10^{-7} \text{ M}$	7.00

```
pOH= 1.89

[OH<sup>-</sup>] = Shift log –pOH

[OH<sup>-</sup>] =0.0129

[H<sup>+</sup>]=10<sup>-14</sup> / 0.0129=7.8 x 10<sup>-13</sup>

pH= -log H<sup>+</sup> = -log 7.8 x 10<sup>-13</sup>

pH=12.11
```

Strong Acids: pH of Dilute Solutions

Strong Acids

- Assume 100% dissociated in solution
 - Good ~ if dilute
- Makes calculating [H+] and [OH-] easier
- 1 mole H+ for every 1 mole HA
 - So [H+] = [HA] for strong acids
- Thus, if 0.040 M HClO₄
- $[H^+] = 0.040 M$
- And $pH = -\log(0.040) = 1.40$

HCI

HBr

HΙ

HNO₃

H₂SO₄

HClO₃

HCIO₄

pH of Dilute Solutions of Strong Bases

Strong Bases

```
NaOH

    1 mole OH<sup>-</sup> for every 1 mole B
    [OH<sup>-</sup>] = [B] for strong bases

 KOH
 LiOH
Ca(OH)<sub>2</sub>
Ba(OH)<sub>2</sub>
\bullet 2 mole OH<sup>-</sup> for every 1 mole \boldsymbol{B}
\bullet [OH<sup>-</sup>] = 2*[\boldsymbol{B}] for strong bases
Sr(OH)<sub>2</sub>
```

Ex. Calculate the pH of $0.011 \text{ M Ca}(OH)_2$.

$$Ca(OH)_2(s) + H_2O \rightarrow Ca^{2+}(aq) + 2 OH^{-}(aq)$$

- $[OH^-] = 2*[Ca(OH)_2] = 2*0.011M = 0.022M$
- **pOH** = $-\log(0.022) = 1.66$
- pH = 14.00 pOH
- = 14.00 1.66 = **12.34**
- What is this in the [H+] of the solution?
- [H+] = $10^{-12.34}$ = 4.6 x 10^{-13} M

Ex. What is the pH of 0.1M HCl?

Assume 100% dissociation

$$HCl(aq) + H_2O(l) \rightarrow H^+(aq) + OH^-(aq)$$
I 0.1 N/A 0 0
C -0.1 -0.1 0.1 0.1
End 0 N/A 0.1 0.1

$$pH = -log(0.1) = 1$$

Ex. What is the pH of $0.5M Ca(OH)_2$?

Assume 100% dissociation

$$Ca(OH)_2 (aq) \rightarrow Ca^{2+} (aq) + 2 OH^- (aq)$$
I 0.5 0 0
C -0.5 +0.5 +0.5×2
E 0 0.5 1.0

$$pOH = -log(1.0) = 0$$

$$pH = 14.00 - pOH = 14.00 - 0 = 14$$

Weak Acids and Bases

- Incompletely ionized
- Molecules and ions exist in equilibrium
- Reaction of a Weak Acid with Water

$$CH_3COOH(aq) + H_2O(l) \leftrightarrows CH_3COO^-(aq) + H_3O^+(aq)$$

$$HSO_3^-(aq) + H_2O(1) \Rightarrow SO_3^{2-}(aq) + H_3O^+(aq)$$

$$NH_4^+(aq) + H_2O(l) \Rightarrow NH_3(aq) + H_3O^+(aq)$$

Weak Acid/Base Equilibria

Acid + Water

Conjugate Base + Hydronium Ion
Or generally

$$HA(aq) + H_2O(1) \leftrightarrows A^-(aq) + H_3O^+(aq)$$

$$K'_c = \frac{[A^-][H_3O^+]}{[HA][H_2O]}$$

• But $[H_2O]$ = constant (55.6 M) so rewrite as

$$K'_{c} \times [H_{2}O] = \frac{[A^{-}][H_{3}O^{+}]}{[HA]} = K_{a}$$

• Where $K_a = acid ionization constant$

Weak Acid/Base Equilibria

- Often simplify as
- $\blacksquare HA (aq) \Leftrightarrow A^{-}(aq) + H^{+}(aq)$

$$K_a = \frac{[A^-][H^+]}{[HA]}$$

$$pK_a = -\log K_a$$

$$K_a = 10^{-pK_a}$$

Table 17.2 Weak Monoprotic Acids at 25 °C

Table 17.2 K_a and p K_a Values for Weak Monoprotic Acids at 25 °C

Name of Acid	Formula	K a	p <i>K</i> a
Iodic acid	HIO_3	1.7×10^{-1}	0.77
Chloroacetic acid	HC ₂ H ₂ O ₂ Cl	1.4×10^{-3}	2.85
Nitrous acid	HNO_2	4.6×10^{-4}	3.34
Hydrofluoric acid	HF	3.5×10^{-4}	3.46
Cyanic acid	HOCN	2×10^{-4}	3.7
Formic acid	HCHO ₂	1.8×10^{-4}	3.74
Barbituric acid	$HC_4H_3N_2O_3$	9.8×10^{-5}	4.01
Hydrazoic acid	HN_3	2.5×10^{-5}	4.60
Acetic acid	$HC_2H_3O_2$	1.8×10^{-5}	4.74
Butanoic acid	$HC_4H_7O_2$	1.5×10^{-5}	4.82
Propanoic acid	$HC_3H_5O_2$	1.3×10^{-5}	4.89
Hypochlorous acid	HOCl	3.0×10^{-8}	7.52
Hydrocyanic acid	HCN	4.9×10^{-10}	9.31
Phenol	HC ₆ H ₅ O	1.3×10^{-10}	9.89
Hydrogen peroxide	H_2O_2	2.4×10^{-12}	11.62

Ex. What is the p K_a of HOAC if $K_a = 3.5 \times 10^{-4}$?

HOCN(aq) + H₂O(l) \leftrightarrows OCN⁻(aq) + H₃O⁺(aq) or

 $HOCN(aq) \subseteq OCN^{-}(aq) + H^{+}(aq)$

$$K_{\rm a} = \frac{[{\rm OCN}^-][{\rm H}^+]}{[{\rm HOCN}]} = 3.5 \times 10^{-4}$$

$$pK_a = -\log K_a = -\log(3.5 \times 10^{-4}) = 3.46$$

Reaction of a Weak Base with Water

$$CH_{3}COO^{-}(aq) + H_{2}O(l) \leftrightarrows CH_{3}COOH(aq) + OH^{-}(aq)$$

$$NH_{3}(aq) + H_{2}O(l) \leftrightarrows NH_{4}^{+}(aq) + OH^{-}(aq)$$

Or generally

$$B(aq) + H_2O(1) + BH^+(aq) + OH^-(aq)$$

$$K'_{c} = \frac{[BH^{+}][OH^{-}]}{[B][H_{2}O]}$$
 But $[H_{2}O] = constant$ so can rewrite as

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

 $K_b = \frac{[BH^+][OH^-]}{[B]}$ Where $K_b =$ base ionization constant

$$pK_b = -\log K_b \qquad K_b = 10^{-pK_b}$$

Ex. What is the p K_b of $C_5H_5Nif K_a = 3.5 \times 10^{-4}$? $C_5H_5N(aq) + H_2O(\ell) \Longrightarrow C_5H_5NH^+(aq) + OH^-(aq)$

$$K_{b} = \frac{[C_{5}H_{5}NH^{+}][OH^{-}]}{[C_{5}H_{5}N]} = 1.7 \times 10^{-9}$$

$$pK_b = -\log K_b = -\log(1.7 \times 10^{-9}) = 8.76$$

Table 17.3 Weak Bases at 25 °C

Table 17.3 K_b and p K_b Values for Weak Molecular Bases at 25 °C

Name of Base	Formula	K _b	р <i>К</i> _b
Butylamine	$C_4H_9NH_2$	5.9×10^{-4}	3.23
Methylamine	CH ₃ NH ₂	4.4×10^{-4}	3.36
Ammonia	NH_3	1.8×10^{-5}	4.74
Strychnine	$C_{21}H_{22}N_2O_2$	1.8×10^{-6}	5.74
Morphine	$C_{17}H_{19}NO_3$	1.6×10^{-6}	5.80
Hydrazine	N_2H_4	1.3×10^{-6}	5.89
Hydroxylamine	HONH ₂	1.1×10^{-8}	7.96
Pyridine	C_5H_5N	1.7×10^{-9}	8.87
Aniline	$C_6H_5NH_2$	3.9×10^{-10}	9.41

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Conjugate Acid-Base Pairs and Values of K_a and K_b

$$K_{a} \times K_{b} = \frac{[A^{-}][H^{+}]}{[HA]} \times \frac{[HA][OH^{-}]}{[A^{-}]} = [H^{+}][OH^{-}] = K_{w}$$

For any conjugate acid base pair:

$$K_a \times K_b = K_w = 1.0 \times 10^{-14}$$
 (at 25 °C)

$$pK_a + pK_b = pK_w = 14.00$$

Ex. Niotinic acid (niacin) is a monoprotic acid with the formula $HC_6H_4NO_2$. A solution that is 0.012 M in nicotinic acid has a pH of 3.39 at 25 °C. What are the acid-ionization constant, K_a , and pK_a for this acid at 25 °C? What is the degree of ionization of nicotinic acid in this solution? Let **HNic** = nicotinic acid and **Nic** = anion.

 $HNic(aq) + H₂O(I) \Rightarrow Nic^{-}(aq) + H₃O^{+}(aq)$

$$K_{a} = \frac{[Nic^{-}][H^{+}]}{[HNic]}$$

	[HNic] (<i>M</i>)	[Nic ⁻] (<i>M</i>)	[H ₃ O ⁺] (<i>M</i>)
I	0.012	0	0
C	- x	+ x	+*
E	0.012 - x	X	X

What is value of x?

- Only source of H+ is ionization of HNic, then can get
 x from [H+]
- $x = antilog(-pH) = 10^{-pH} = 10^{-3.39}$ = $4.1 \times 10^{-4} = [H^+]$

- Since Nic⁻ is formed in 1:1 ratio with H⁺, then
 - [Nic⁻] = $x = 4.1 \times 10^{-4}$
- Finally only reason HNic disappears is because it ionizes, so loss of [HNic] = -x

$$K_{a} = \frac{[\text{Nic}^{-}][\text{H}^{+}]}{[\text{HNic}]} = \frac{x * x}{0.012 - x} = \frac{x^{2}}{0.012 - x}$$

 But we know [Nic-], so can put into concentration table and solve for each

$$K_{a} = \frac{[Nic^{-}][H^{+}]}{[HNic]}$$

	[HNic] (<i>M</i>)	[Nic ⁻] (<i>M</i>)	[H+] (<i>M</i>)
I	0.0120	0	0
С	- 0.00041	+ 0.00041	+ 0.00041
E	0.0120 - 0.00041 = $0.01159 \approx 0.012$	0.00041	0.00041

• Notice if $c >> K_a$, then equilibrium concentration of acid is approximated as initial concentration

• Now ready to calculate K_a .

$$K_{a} = \frac{x^{2}}{0.012 - x} \approx \frac{x^{2}}{0.012} = \frac{(0.00041)^{2}}{0.012} = 1.4 \times 10^{-5}$$

$$pK_{a} = -\log(1.4 \times 10^{-5}) = 4.85$$

% ionization

% ionization =
$$\frac{\text{moles ionized per liter}}{\text{moles available per liter}} \times 100\%$$

$$=\frac{x}{C}=\frac{0.00041}{0.012}\times100\%=3.4\%$$

Your Turn!

Ex. The base ionization constant for methylamine is 4.4×10^{-4} . What is the pH of a 0.050 M solution of this base ?

A. 1.03

B. 2.33

C. 11.67

D. 12.97

Your Turn! - Solution

$$K_b = 4.4 \times 10^{-4} = \frac{\left[CH_3NH_3^+\right]\left[OH^-\right]}{\left[CH_3NH_2\right]} = \frac{\chi^2}{0.05 - \chi}$$

Assume x is small

4.4 x
$$10^{-4} = \frac{X^2}{0.05 - X}$$
 $X^2 = 2.2 \times 10^{-5}$
 $X = 4.69 \times 10^{-3}$ pOH = -log (4.69 x 10^{-3}) = 2.33
pH=14.00 - pOH = $14.00 - 2.33 = 11.67$