

BCH 450 Biochemistry of Specialized Tissues

VII. Renal Structure, Function & Regulation

Kidney Function

 Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

Primary function.

- 2. Regulate volume of blood plasma. Blood Pressure (BP).
- 3. Eliminates waste products from the blood.
- 4. Regulate concentration of electrolytes. Na⁺, K⁺, and HC0₃⁻ and other ions.
- 5. Regulate pH.

Structure of the Kidney

- Outer cortex:
 - Contains many capillaries.
- Medulla:
 - Renal pyramids separated by renal columns.
 - Pyramid contains minor calyces which unite to form a major calyx.

- Major calyces form renal pelvis.
- Renal pelvis collects urine.
- Transports urine to ureters.

Nephron

- Functional unit of the kidney.
- Consists of:
 - Blood vessels:
 - Vasa recta.
 - Peritubular capillaries.
 - Urinary tubules:
 - PCT.
 - LH.
 - DCT.
 - CD.

Renal Blood Vessels

Afferent arteriole:

Delivers blood into the glomeruli.

Glomeruli:

 Capillary network that produces filtrate that enters the urinary tubules.

Efferent arteriole:

- Delivers blood from glomeruli to peritubular capillaries.
- Peritubular capillaries:
 - Deliver blood to vasa recta.

Nephron Tubules

- Glomerular capsule.
- Proximal convoluted tubule (PCT).
- Descending and ascending limbs of Loop of Henle (LH).
- Distal convoluted tubule (DCT).
- Collecting duct (CD).

Glomerular Capsule

- Single layer of cuboidal cells with millions of microvilli.
 - Increase surface area for reabsorption.

- Fluid passes from PCT to LH.
- Descending limb:
 - H₂0 reabsorption.
- Ascending limb:
 - Active transport of Na⁺.
 - Impermeable to H₂0.

Distal Convoluted Tubule

- Contains few microvilli.
- Functions:
 - Secretion.
 - Reabsorption.
- Terminates in CD.

Type of Nephrons

- Cortical nephron:
 - Originates in outer 2/3 of cortex.
 - Osmolarity of 300 mOsm/l.
 - Involved in solute reabsorption.
- Juxtamedullary nephron:
 - Originates in inner 1/3 cortex.
 - Important in the ability to produce a concentrated urine.
 - Has longer LH.

- Receives fluid from the DCT of several nephrons.
- Passes through renal pyramid into minor calyx.
- Functions:
 - Reabsorption.
 - H₂0 reabsorption influenced by ADH.
 - Secretion.

Glomerular Ultrafiltrate

- Fluid that enters glomerular capsule is called ultrafiltrate.
 - Glomerular filtration:
 - Mechanism of producing ultrafiltrate under hydrostatic pressure of the blood.
 - Process similar to the formation of tissue fluid by other capillary beds.
- Glomerular filtration rate (GFR):
 - Volume of filtrate produced by both kidneys each minute.
 - Averages 115 ml/min. in women; 125 ml/min. in men.

Regulation of GFR

- Vasoconstriction or dilation of the afferent arterioles affects the rate of blood flow to the glomerulus.
 - Affects GFR.
- Mechanisms to regulate GFR:
 - Sympathetic nervous system.
 - Autoregulation.
- Changes in diameter result from extrinsic and intrinsic mechanisms.

Reabsorption of Salt and H₂0

- Return of most H₂0 from the urine filtrate back into the peritubular capillaries.
 - About 180 L/day of ultrafiltrate produced; however, only 1–2 L of urine excreted/24 hours.
- Obligatory water loss:
 - Minimum of 400 ml/day urine necessary to excrete metabolic wastes (obligatory water loss).

Significance of PCT Reabsorption

- 65% Na⁺, Cl⁻, and H₂0 reabsorbed across the PCT into the vascular system.
- 90% K⁺ reabsorbed.
- Reabsorption occurs constantly regardless of hydration state and hormones.
- Energy expenditure is 6% of calories consumed at rest.

Collecting Duct

- Medullary area impermeable to high [NaCl] that surrounds it.
 - The walls of the CD are permeable to H_20 .
- H₂0 is drawn out of the CD by osmosis.
 - Rate of osmotic movement is determined by the # of aquaporins in the cell membrane.
- Permeable to H₂0 depends upon the presence of Anti Diuretic Hormone (ADH).

Secretion

- Secretion of substances from the peritubular capillaries into interstitial fluid.
 - Then transported into lumen of tubule, and into the urine.
- Allows the kidneys to rapidly eliminate certain potential toxins.

Transport Process Affecting Renal Clearance

- Renal clearance: The ability of the kidneys to remove molecules from plasma and excrete those molecules in the urine.
- If a substance is not reabsorbed or secreted, then the amount excreted = amount filtered

Quantity excreted (mg/min) = V x U

- V = rate of urine formation;
- U = inulin concentration in urine

• GFR-Glomerular Filtration Rate

 If a substance is not reabsorbed or secreted, then the amount excreted = amount filtered in the glomerulus

Renal Plasma Clearance

- Volume of plasma from which a substance is completely removed in 1 min. excreted in the urine.
- Substance is filtered, but not reabsorbed or secreted:
 - All filtered will be excreted.

Renal Plasma Clearance

Renal plasma clearance = $\frac{V \times U}{P}$

- V = urine volume per min.
- U = concentration of substance in urine
- P = concentration of substance in plasma

- Urea is secreted into blood and filtered into glomerular capsule.
- Urea clearance is 75 ml/min
 - 40-60% of filtered urea is always reabsorbed.
- Passive process due to presence of carriers for facilitative diffusion of urea.

Measurement of Renal Blood Flow

- Not all blood delivered to glomeruli is filtered in the glomerular capsules.
 - Most of glomerular blood passes to the efferent arterioles.
 - 20% renal plasma flow filtered.
- Substances in unfiltered blood must be secreted into tubules to be cleared by active transport.

Glucose and Amino Acid Reabsorption

- Filtered glucose and amino acids are normally reabsorbed by the nephrons.
 - In PCT occurs by secondary active transport with membrane carriers.
- Renal transport threshold:
 - Minimum concentration of substance in plasma that results in excretion of that substance in the urine.
 - Renal plasma threshold for glucose = 180-200 mg/dl.

Electrolyte Balance

- Kidneys regulate Na⁺, K⁺, H⁺, Cl⁻, HCO₃⁻, and PO₄⁻³.
 - Control of plasma Na⁺ is important in regulation of blood volume and pressure.
 - Control of plasma of K⁺ important in proper function of cardiac and skeletal muscles.
 - Match ingestion with urinary excretion.

- 90% filtered K⁺ is reabsorbed in early part of the nephron.
- Secretion of K⁺ occurs in Collecting Duct.
 - Amount of K⁺ secreted depends upon:
 - Amount of Na⁺ delivered to the region.
 - Amount of aldosterone secreted.
 - As Na⁺ is reabsorbed, lumen of tubule becomes charged.
 - Potential difference drives secretion of K⁺ into tubule.

K⁺ Secretion (continued)

 Final [K⁺] controlled in CD by aldosterone.

> When aldosterone is absent, no K⁺ is excreted in the urine.

 High [K⁺] or low [Na⁺] stimulates the secretion of aldosterone.

 Only means by which K⁺ is secreted.

Renal Acid-Base Regulation

- Kidneys help regulate blood pH by excreting H⁺ and reabsorbing HC0₃⁻.
- Most of the H⁺ secretion occurs across the walls of the PCT in exchange for Na⁺.
 - Antiport mechanism.
 - Moves Na⁺ and H⁺ in opposite directions.
- Normal urine normally is slightly acidic because the kidneys reabsorb almost all HC0₃⁻ and excrete H⁺.
 - Returns blood pH back to normal range.

Reabsorption of Bicarbonate-HCO₃⁻

- Powerful Buffer
- Water + Carbon Dioxide → Carbonic Acid →
 H⁺ + Bicarbonate⁻
- Apical membranes of tubule cells are impermeable to HCO₃⁻.
 - Reabsorption is indirect through CO₂ formation.

- Increase urine volume excreted.
 - Increase the proportion of glomerular filtrate that is excreted as urine.
- Loop diuretics:
 - Inhibit NaCl transport out of the ascending limb of the LH.
- Thiazide diuretics:
 - Inhibit NaCl reabsorption in the 1st segment of the DCT.
- Ca inhibitors:
 - Prevent H_20 reabsorption in PCT when $HC0_3^-$ is reabsorbed.
- Osmotic diuretics:
 - Increase osmotic pressure of filtrate.

Kidney Diseases

Acute renal failure:

- Impaired ability of kidneys to excrete wastes and regulate homeostasis of blood volume, pH, and electrolytes.
 - Rise in blood [creatinine].
- Glomerulonephritis:
 - Inflammation of the glomeruli.
 - Autoimmune disease by which antibodies have been formed at the glomerulus basement.
 - Leakage of protein into the urine.

Kidney Diseases (continued)

Renal insufficiency:

- Nephrons are destroyed.
- Clinical manifestations:
 - Salt and H₂0 retention.
 - Uremia.
 - Elevated plasma [H⁺] and [K⁺].
- Kidney Stones (as seen with Melamine)
- Dialysis:
 - Separates molecules on the basis of the ability to diffuse through selectively permeable membrane.