
Concepts of Programming Languages
Lecture 6 - Semantics

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 31

Administrivia

Assignment:

Programming #1 : due 02.10
Homework #2 : due 02.19

Reading:

Chapter 3

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 31

Ishmael: Surely all this is not without meaning.

Moby Dick by Herman Melville

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 31

Thinking about Semantics

Definition
Semantics are the meaning of the expressions, statements, and
program units.

Syntax and semantics together provide a language’s definition.

Who uses these definitions?
Other language designers
Implementers
Programmers (the users of the language)
Standards developers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 31

Semantics

There is no single widely acceptable notation or formalism for
describing semantics.

Several needs for a methodology and notation for semantics:
Programmers need to know what statements mean
Compiler writers must know exactly what language constructs do
Correctness proofs would be possible
Compiler generators would be possible
Designers could detect ambiguities and inconsistencies

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 31

Types of Semantics

Operational Semantics – the execution of the language is described
directly.

Denotational Semantics – each phrase in the language is interpreted
as a conceptual meaning that can be thought of abstractly.

Axiomatic Semantics – meaning to phrases is given by describing
the logical axioms that apply to them.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 31

Operational Semantics

Definition
Operational Semantics describe the meaning of a program by
executing its statements on a machine, either simulated or actual. The
change in the state of the machine (memory, registers, etc.) defines
the meaning of the statement.

To use operational semantics for a high-level language, a virtual
machine is needed.

A hardware pure interpreter would be too expensive

A software pure interpreter also has problems:
The detailed characteristics of the particular computer would
make actions difficult to understand
Such a semantic definition would be machine- dependent

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 31

Operational Semantics

Definition
Operational Semantics describe the meaning of a program by
executing its statements on a machine, either simulated or actual. The
change in the state of the machine (memory, registers, etc.) defines
the meaning of the statement.

To use operational semantics for a high-level language, a virtual
machine is needed.

A hardware pure interpreter would be too expensive

A software pure interpreter also has problems:
The detailed characteristics of the particular computer would
make actions difficult to understand
Such a semantic definition would be machine- dependent

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 31

Operational Semantics

A better alternative: A complete computer simulation

The process:
Build a translator (translates source code to the machine code of
an idealized computer)
Build a simulator for the idealized computer

Evaluation of operational semantics:
Good if used informally (language manuals, etc.)
Extremely complex if used formally (e.g., VDL), it was used for
describing semantics of PL/I.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 31

Operational Semantics

Uses of operational semantics:
Language manuals and textbooks
Teaching programming languages

Two different levels of uses of operational semantics:
Natural operational semantics
Structural operational semantics

Evaluation
Good if used informally (language manuals, etc.)
Extremely complex if used formally (e.g.,VDL)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 31

Denotational Semantics

Definition
Denotational Semantics is an approach of formalizing the meanings
of programming languages by constructing mathematical objects
(called denotations) that describe the meanings of expressions from
the languages.

Based on recursive function theory

The most abstract semantics description method

Originally developed by Scott and Strachey (1970)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 31

Denotational Semantics

Definition
Denotational Semantics is an approach of formalizing the meanings
of programming languages by constructing mathematical objects
(called denotations) that describe the meanings of expressions from
the languages.

Based on recursive function theory

The most abstract semantics description method

Originally developed by Scott and Strachey (1970)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 31

Denotational Semantics

The process of building a denotational specification for a language:

Define a mathematical object for each language entity

Define a function that maps instances of the language entities
onto instances of the corresponding mathematical objects

The meaning of language constructs are defined by only the values of
the program’s variables.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 31

Denotational Semantics: program state

The state of a program is the values of all its current variables

s = <i1, v1>, <i2, v2>, ..., <in, vn>

Let VARMAP be a function that, when given a variable name and a
state, returns the current value of the variable

VARMAP(ij, s) = vj

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 31

Decimal Numbers

<dec_num> → ’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ |
’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’ |

<dec_num> (’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ |
’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ |
’ 8 ’ | ’ 9 ’)

Mdec (’ 0 ’) = 0 , Mdec (’ 1 ’) = 1 , . . . , Mdec (’ 9 ’) = 9
Mdec (<dec_num> ’ 0 ’) = 10 ∗ Mdec (<dec_num>)
Mdec (<dec_num> ’ 1 ’) = 10 ∗ Mdec (<dec_num>) + 1
. . .
Mdec (<dec_num> ’ 9 ’) = 10 ∗ Mdec (<dec_num>) + 9

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 31

Expressions

Map expressions onto Z ∪ {error}

We assume expressions are decimal numbers, variables, or binary
expressions having one arithmetic operator and two operands, each of
which can be an expression

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 31

Expressions
Me(< expr > , s) δ=

case <expr > o f
<dec_num> => Mdec(<dec_num> , s)
<var > =>

i f VARMAP(< var > , s) == undef
then e r r o r
e lse VARMAP(< var > , s)

<binary_expr > =>
i f (Me(< binary_expr >. < l e f t _ e x p r > , s) == undef

OR Me(< binary_expr >. < r igh t_expr > , s) =
undef)

then e r r o r
e lse
i f (< binary_expr >. < operator > == ’+ ’ then

Me(< binary_expr >. < l e f t _ e x p r > , s) +
Me(< binary_expr >. < r igh t_expr > , s)

e lse Me(< binary_expr >. < l e f t _ e x p r > , s) ∗
Me(< binary_expr >. < r igh t_expr > , s)

. . .

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 31

Assignment Statements

Maps state sets to state sets ∪ {error}
Ma(x := E, s) δ =

i f Me(E, s) == e r r o r
then e r r o r
e lse s ’ =
{ < i1 , v1 ’ > , < i2 , v2 ’ > , . . . , < in , vn ’ > } ,

where f o r j = 1 , 2 , . . . , n ,
i f i j == x

then v j ’ = Me(E, s)
e lse v j ’ = VARMAP(i j , s)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 31

Logical Pretest Loops

Maps state sets to state sets ∪ {error}
Ml (wh i le B do L , s) δ =

i f Mb(B, s) == undef
then e r r o r
e lse i f Mb(B, s) == f a l s e

then s
else i f Msl (L , s) == e r r o r

then e r r o r
e lse Ml (wh i le B do L , Msl (L , s))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 31

Loop Meaning

The meaning of the loop is the value of the program variables after the
statements in the loop have been executed the prescribed number of
times, assuming there have been no errors

In essence, the loop has been converted from iteration to recursion,
where the recursive control is mathematically defined by other
recursive state mapping functions

Recursion, when compared to iteration, is easier to describe with
mathematical rigor

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 31

Evaluation of Denotational Semantics

Can be used to prove the correctness of programs

Provides a rigorous way to think about programs

Can be an aid to language design

Has been used in compiler generation systems

Because of its complexity, it are of little use to language users

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 31

Axiomatic Semantics

Based on formal logic (predicate calculus)

Original purpose: formal program verification

Axioms or inference rules are defined for each statement type in the
language (to allow transformations of logic expressions into more
formal logic expressions)

Definition
The logic expressions are called assertions.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 31

Axiomatic Semantics

Definition
An assertion before a statement (a precondition) states the
relationships and constraints among variables that are true at that
point in execution.

Definition
An assertion following a statement is a postcondition.

Definition
A weakest precondition is the least restrictive precondition that will
guarantee the postcondition.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 31

Axiomatic Semantics Form

Pre-, post form: {P} statement {Q}

An example:

a = b + 1 {a > 1}

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 31

Program Proof Process

The postcondition for the entire program is the desired result:

Work back through the program to the first statement. If the
precondition on the first statement is the same as the program
specification, the program is correct.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 31

Axiomatic Semantics: Assignment

An axiom for assignment statements:

(x = E): {Qx−>E} x = E {Q}

The Rule of Consequence:

{P} S {Q}, P’ => P, Q => Q’

{P’} S {Q’}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 31

Axiomatic Semantics: Sequences

An inference rule for sequences of the form S1; S2

{P1} S1 {P2}
{P2} S2 {P3}

{P1} S1 {P2}, {P2} S2 {P3}

{P1} S1; S2 {P3}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 31

Axiomatic Semantics: Selection

An inference rules for selection

if B then S1 else S2

{B and P} S1 {Q}, {(not B) and P} S2 {Q}

{P} if B then S1 else S2 {Q}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 31

Axiomatic Semantics: Loops

An inference rule for logical pretest loops:

{P} while B do S end {Q}

(I and B) S {I}

{I} while B do S {I} and (not B)}

where I is the loop invariant (the inductive hypothesis)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 31

Axiomatic Semantics: Axioms

Characteristics of the loop invariant: I must meet the following
conditions:

P => I the loop invariant must be true initially

{I} B {I} evaluation of the Boolean must not
change the validity of I

{I and B} S {I} I is not changed by executing
the body of the loop

(I and (not B)) => Q if I is true and B is false, Q is implied

The loop terminates can be difficult to prove

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 31

Loop Invariant

The loop invariant I is a weakened version of the loop postcondition,
and it is also a precondition.

I must be weak enough to be satisfied prior to the beginning of the
loop, but when combined with the loop exit condition, it must be strong
enough to force the truth of the postcondition

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 31

Evaluation of Axiomatic Semantics

Developing axioms or inference rules for all of the statements in a
language is difficult

It is a good tool for correctness proofs, and an excellent framework for
reasoning about programs, but it is not as useful for language users
and compiler writers

Its usefulness in describing the meaning of a programming language is
limited for language users or compiler writers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 31

Denotation Semantics vs Operational Semantics

In operational semantics, the state changes are defined by coded
algorithms

In denotational semantics, the state changes are defined by rigorous
mathematical functions

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 31

