College of Science.
Department of Statistics \& Operations
كالِية العلوم Research

First Midterm Exam
Academic Year 1443-1444 Hijri-First Semester

Exam Information			
Course name	Modeling and Simulation		
Course Code	OPER 441	441	ربز المقّر
Exam Date	5-10-2021	9-3-1444	تإربغ الاهتحانِ
Exam Time	1:30pm		وكّ الامتحانِ
Exam Duration	2.5 hours	ساعتان ونصف	
Classroom No.			
Instructor Name			

- Your Exam consists of

PAGES

 (except this paper)- Keep your mobile and smart watch out of the classroom.
 الورقةّة)

هـا الجزَ
This section is ONLY for instructor

$\#$	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	Understanding the processes and steps for building a simulation model			
2	Implement an inverse cumulative distribution function based random variate generation algorithm			
3	Explain and implement the convolution algorithm for random variate generation			
4	Explain and implement the acceptance rejection algorithm for random variate generation			
5	Compute statistical quantities from simulation output			
6	Generate random numbers from any given distribution discrete or continuous			
7	Building simulation models from basic applications			
8				

Question \#1: Answer the following with True or False: (15 points)

F	False	1. The sample space in a random experiment is always determined and unique to everyone.
F	False	2. Validation step is to make sure that the simulation program is running correctly.
F	False	3. In call center model with two lines it is impossible to lose any incoming call.
T	True	4. Triangular distribution is used when there is lack of data
F	False	5. Simulating flight distance for an airplane is a discrete system simulation.
T	True	6. In Bank simulation, the variable ($\mathrm{X}=$ number of customers in in service) is a state variable for the system.
F	False	7. In Bank simulation, the variable ($\mathrm{X}=$ number of credit cards with customer) is a state variable for the system.
T	True	8. Every simulation run for the same model give the different results but same statistical properties.
F	False	9. The Geometric ang Gamma distribution both has memory less property
F	False	10. If a used computer didn't fail for the past 6 months then the probability that it will not fail the next month is always the same as buying a new computer now for any distribution.
T	True	11. The normal distribution with parameters μ and σ^{2} always cover more than 80% of the distribution within $\pm 2 \sigma$
T	True	12. The beta distribution between $(0,1)$ can be rescaled for any real values because it has 4 parameters
T	True	13. The random variable with Exponential distribution is always has mean value equals to the standard deviation.
T	True	14. If the random variable has mean value equals to the variance then it must have a Poisson distribution.
F	False	15. The number of trials until first 2 success and stop is a binomial distribution.
T	True	16. The normal distribution always has the mean equals to the median
F	False	17. The Triangular distribution is used if there is no data except the range of the values for the random variable.
T	True	18. The Exponential distribution is a special case of Gamma distribution
F	False	19. Erlang Distribution is a special case of the Exponential distribution
F	False	20. The Uniform distribution is good when there is no data about the random process except the range of the possible values and the most likely value.
F	False	21. In building simulation model, we always have to start data collection after validation.
F	False	22. To use the Empirical distribution for the data, we must first estimate the parameters of the distribution for the data.
T	True	23. T is possible to create a Triangular distribution with exactly two parameters

T	True	24. The Weibull distribution is always having a closed form function for the CDF.
F	False	25. We can directly apply the inverse transform on The chi-Square distribution because has a closed form function for the CDF.

Question \#2: (12 points)

Given the following functions:

\mathbf{A}	$n p(1-p)$
\mathbf{B}	$\frac{q}{p^{2}}$
\mathbf{C}	p
\mathbf{D}	$p(1-p)$
\mathbf{E}	$\frac{e^{-\alpha} \alpha^{k}}{k!}$
\mathbf{F}	$\frac{k q}{p^{2}}$

\mathbf{G}	$\Gamma(\beta)=\int_{0}^{\infty} x^{\beta-1} e^{-x} d x$
\mathbf{H}	$\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{(k-1)!} \quad$ for $x, \lambda \geq 0$,
\mathbf{I}	$\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]$
\mathbf{J}	$\frac{\beta}{\alpha}\left(\frac{x-v}{\alpha}\right)^{\beta-1} \exp \left[-\left(\frac{x-v}{\alpha}\right)^{\beta}\right], \quad x \geq v$
\mathbf{K}	$\frac{\beta \theta}{\Gamma(\beta)}(\beta \theta x)^{\beta-1} e^{-\beta \theta x}, \quad x>0$
\mathbf{L}	$\frac{1}{\sqrt{2 \pi} \sigma x} \exp \left[-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right]$,

\mathbf{M}	$a+(b-a)\left(\frac{\beta_{1}}{\beta_{1}+\beta_{2}}\right)$
\mathbf{N}	$e^{\mu+\sigma^{2} / 2}$
$\mathbf{0}$	$1-e^{-\lambda x}$,
\mathbf{P}	$\frac{1}{k \theta^{2}}$
\mathbf{Q}	$\binom{n}{x} p^{x} q^{n-x}$,

Complete the following by choosing the correct function from above

$\mathbf{1 0}$	The random variable X has Poisson distribution if X has the pdf	E
$\mathbf{1 1}$	The random variable X has Bernoulli distribution (p), then X has the expected value	C
$\mathbf{1}$	The random variable X has Exponential distribution if X has the CDF	\mathbf{O}
$\mathbf{5}$	The random variable X has Lognormal distribution if X has the pdf	L
$\mathbf{7}$	The random variable X has Beta distribution if X has the pdf	K
$\mathbf{8}$	The random variable X has Lognormal distribution, Then X has expected value	\mathbf{N}
$\mathbf{9}$	The random variable X has Beta distribution, then X has the expected value	\mathbf{M}
$\mathbf{1 2}$	The random variable X is has Erlang distribution (k), then it has variance	\mathbf{P}
$\mathbf{6}$	A random variable X has Negative binomial distribution (p) then X has the a variance	\mathbf{F}
$\mathbf{2}$	The random variable X is has Erlang distribution if X has the pdf	H
$\mathbf{4}$	The random variable X has Geometric distribution (p) then X has the a variance	B
$\mathbf{3}$	The random variable X has Beta distribution if X has the pdf	K

Question \#3: (12 points)

An airport has a counter of three servers and a single waiting line. Passenger arrive at random to the airport for check-in of their luggage's. Also, the airport has three run ways for airplanes to land or departing the airport. run servers serve customers in the order in which they arrive. Customers may leave the system without service due to long waiting time. The service time of the customers changes according to their gender and the type of service they request. The service facility provide four types of services.

1. (3 points) Define the three different entities in the system.
2. (3 points) For each entity in (1) define two attributes
3. (3 points) Define three different activities in the system
4. (3 points) Define two state variables for each entity in (1).

ة Ω المllus King Saud University

Question \#4: (8 points)

Consider the following LCG generator: $\mathrm{Xn}=(13 \mathrm{Xn}-1+13) \bmod (16), \quad \mathrm{X} 0=14$
Answer the following:
a) (4 points) Prove that this LCG has Full Period
b) (4 points) Generate all possible uniform pseudo-random numbers from the above LCG.
(a) all possible uniform pseudo-random is listed below:

n	$\mathrm{X}_{\mathrm{n}-1}$	$\mathrm{X}_{\mathrm{n}}=\left(13 \mathrm{X}_{\mathrm{n}-1}+13\right) \bmod (16)$	$\mathrm{U}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}} / 16$	
1	14	$\mathrm{X}_{1}=(13(14)+13) \bmod 16=3$	0.1875	
2	3	$\mathrm{X}_{2}=(13(3)+13) \bmod 16=4$	0.2500	
3	4	$X_{3}=(13(4)+13) \bmod 16=1$	0.0625	
4	1	$X_{4}=(13(1)+13) \bmod 16=10$	0.6250	
5	10	$X_{5}=(13(10)+13) \bmod 16=15$	0.9375	
6	15	$\mathrm{X}_{6}=(13(15)+13) \bmod 16=0$	0.0000	
7	0	$\mathrm{X}_{7}=(13(0)+13) \bmod 16=13$	0.8125	
8	13	$\mathrm{X}_{8}=(13(13)+13) \bmod 16=6$	0.3750	
9	6	$\mathrm{X}_{9}=(13(16)+13) \bmod 16=11$	0.6875	
10	11	$\mathrm{X}_{10}=(13(11)+13) \bmod 16=12$	0.7500	
11	12	$\mathrm{X}_{11}=(13(12)+13) \bmod 16=9$	0.5625	
12	9	$\mathrm{X}_{12}=(13(9)+13) \bmod 16=2$	0.1250	
13	2	$\mathrm{X}_{13}=(13(2)+13) \bmod 16=7$	0.4375	
14	7	$\mathrm{X}_{14}=(13(7)+13) \bmod 16=8$	0.5000	The starting value
15	8	$\mathrm{X}_{15}=(13(8)+13) \bmod 16=5$	0.3125	$\mathrm{X}_{\mathrm{n}}=14$ is repeated. Then STOP
16	5	$\mathrm{X}_{16}=(13(5)+13) \bmod 16=14$	0.8750	calculations

(b)The given LCG has a FULL CYCLE because number of generated pseudonumbers is equal to $\mathrm{m}=16$ number.

Question \#5: (12 points)

\boldsymbol{n}	1	2	3	4	5	6	7	8
$\boldsymbol{U}_{\boldsymbol{x}}(\mathbf{0}, \mathbf{1})$	0.304	0.696	0.171	0.339	0.981	0.125	0.842	0.656
X	$\mathbf{1 . 3 2 9}$	$\mathbf{1 . 5 5 7}$	$\mathbf{1 . 2 1 7 4}$	$\mathbf{1 . 3 5 5}$	$\mathbf{1 . 6 7 5}$	$\mathbf{1 . 1 7 1}$	$\mathbf{1 . 6 2 1}$	$\mathbf{1 . 5 3 8}$
$\boldsymbol{U}_{y}(\mathbf{0}, \mathbf{1})$	0.124	0.842	0.304	0.697	0.842	0.172	0.338	0.697
\boldsymbol{Y}	$\mathbf{0 . 0 5 8}$	$\mathbf{0 . 3 0 5}$	$\mathbf{0 . 1 3 3}$	$\mathbf{0 . 2 6 4}$	$\mathbf{0 . 3 0 5}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 1 4 6}$	$\mathbf{0 . 2 6 4}$

(a) (4 points) Consider the following probability function:

$$
f(x)= \begin{cases}\frac{4}{7} x^{3} ; & 1 \leq x \leq 2 \\ 0 ; & \text { otherwise }\end{cases}
$$

Find the inverse transform of the probability and generate random numbers from $f(x)$ using the table of $U(0,1)$ random numbers above.
c) (4 points) Consider the following probability function:

$$
f(y)=\left\{\begin{array}{cc}
2 e^{2 y} ; \quad 0 \leq y \\
0 \quad ; \quad \text { otherwise }
\end{array}\right.
$$

Find the inverse transform of the probability and generate random numbers from $f(y)$ using the table of $U(0,1)$ random numbers above.
d) (4 points) Consider a car repair workshop. Assume that the variable X is the time in hours until a car is repaired and Y is the time in hours between. Build a flow chart and use your results in (a) and (b) to simulate the system for 8 arriving customers.

(a) Inverse transform

1. Get the CDF of $f(x)$

$$
f(x)=\int_{1}^{x} \frac{4}{7} y^{3} d y=\frac{4}{7}\left[\frac{y^{4}}{4}\right]_{1}^{x}=\frac{1}{7}\left(x^{4}-1\right)
$$

2. Let $u=F(x)$ and solve for x

$$
\begin{aligned}
u=\frac{1}{7}\left(x^{4}-1\right) & \Leftrightarrow 7 u=\left(x^{4}-1\right) \Leftrightarrow 7 u+1=x^{4} \\
& \text { Then } x=\sqrt[4]{7 u+1}
\end{aligned}
$$

Question \#6: (12 points)

High temperature (${ }^{\circ} \mathrm{F}$) in a city on July 21, denoted by the random variable X , has the following probability density function, where X is in degrees F .

$$
f(x)= \begin{cases}\frac{2(x-85)}{119}, & 85 \leq x \leq 92 \\ \frac{2(102-x)}{170}, & 92<x \leq 102 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (3 points) What is the mean of the temperature $\mathrm{E}(\mathrm{X})$?
(b) (3 points) What is the variance of the temperature $\mathrm{V}(\mathrm{X})$?
(c) (3 points) What is the probability that the temperature will be between 90° and 100°.
(d) (3 points) Write the inverse transform for X .

$$
E\left(X^{2}\right)=\int_{85}^{92} \frac{x^{2}(2)(x-85)}{119} d x+\int_{95}^{102} \frac{x^{2}(2)(102-x)}{170} d x=3311.75+5349.41=8661.16
$$

$$
E(X)=(a+b+c) / 3=(85+92+102) / 3=93
$$

$$
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=8661.16-(93)^{2}=12.16^{\circ} F^{2}
$$

P \{that the temperature will be between 90° and $\left.100^{\circ}\right\}=P\{90<=X<=100\}$ $=0.7664$

Question \#6: (15 points)

Busses arrive to a station at random. It is estimated that the time between busses is an exponential distribution with mean 15 minutes. The number of passengers on the bus is also random follows a binomial distribution with parameter 10 and probability 0.75 .
(1) (3 points)If you arrive at 10:00 am, What is the probability you will wait more than 30 min for your bus?
(2) (3 points)What is the expected number of busses that will arrive to the station between 10:00 to 11:00 am?
(3) (3 points)What is the expected number of passengers that will drop off to the station between 10:00 to 11:00 am?
(4) (3 points) Given that 15 passengers arrived between 10:00 to 11:00 am what is the probability that the next bus will have 3 passengers on board?
(5) (3 points)Draw the flowchart that will simulate the bus arrival and passenger's drop-off to this station? (Use the command Generate RV from Dist.--- to complete your flowchart)

Let N : be number of busses arrived, X : be number of passengers on board the bus, T : time between busses
(1) $\mathrm{P}\{$ wait more than 30 min for your bus| arrive at 10:00 am $\}=\mathrm{P}\{\mathrm{T}>30\}=e^{-2}=0.13534$
(2) $\mathrm{E}[$ busses that will arrive to the station between 10:00 to 11:00 am] $=1 \mathrm{hr}(60 / 15)=4$ busses
(3) E[passengers that will drop off to the station between 10:00 to 11:00 am] $=\mathrm{E}$ [number of busses arrive 10 to 11] * E[number of passengers on each bus] $=4(10 * 0.75)=4 * 7.5=30$ pasenger
(4) P\{ next bus will have 3 passengers on board | 15 passengers arrived 10 to 11$\}$ Busses are independent
$P\{X=3\}=C^{10_{3}}(0.75)^{3}(0.25)^{7}=0.0031$

Question \#6: (12 points)

A supermarket sells fresh milk daily. Customers arrive to supermarket buy milk. Customers may buy 1 bottle, 2 bottle or 3 bottles at random (let $\mathrm{B}(j)$: number of bottles bought by customer j). The number of customers demanding the milk varies between 5 to 15 customers daily (let $\mathrm{N}(k)$: number customers arrived in day k asking for milk). The supermarket stores the milk in a refrigerator that can hold up to 20 bottles of milk. By the end of each day, the owner will decide wither to order more milk for next day or not. If he finds 10 or less in that the refrigerator then he will refill the refrigerator for next day.

Day	$\begin{gathered} \text { Cust- } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 7 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ \hline 8 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 9 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \text { Cust- } \\ \hline 11 \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cust- } \\ \hline 15 \end{gathered}$
1	1	1	2	1	3	1	1	3	3	1	2				
2	1	3	1	3	3	1	3	2	1	3	1	2	1	3	3
3	3	1	3	2	1	2	1	1	1						
4	2	3	1	2	3	3									
5	1	2	3	1	3	1	2	3							

(1) Draw the flowchart that will simulate number of sold bottles. (4 points)
(2) Do the manual simulation to determine the status of customer (accepted, rejected) and amount of milk in the frig. (4 points)
(3) From the manual simulation, estimate the number of sold units and the number of lost customers per day. (4 points)

	Day	$\begin{gathered} \text { Cust- } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cust- } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 10 \\ \hline \end{gathered}$	Cust-	$\begin{gathered} \text { Cust- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cust- } \\ 13 \\ \hline \end{gathered}$	Cust-	$\begin{gathered} \text { Cust- } \\ 15 \\ \hline \end{gathered}$
	1	1	1	2	1	3	1	1	3	3	1	2				
	Q1	19	18	16	15	12	11	10	7	4	3	1				
	A/R	A	A	A	A	A	A	A	A	A	A	A				
	2	1	3	1	3	3	1	3	2	1	3	1	2	1	3	3
order	Q1	19	16	15	12	9	8	5	3	2	A	0	0	0	0	0
$N \mathrm{Q}=19$	A/R	A	A	A	A	A	A	A	A	A	A	A	R	R	R	R
	3	3	1	3	2	1	2	1	1	1						
order	Q1	17	16	13	11	10	8	7	6	5						
$N Q=20$	A/R	A	A	A	A	A	A	A	A	A						
	4	2	3	1	2	3	3									
order	Q1	18	15	14	12	9	6									
$\mathrm{NQ}=15$	A/R	A	A	A	A	A	A									
	5	1	2	3	1	3	1	2	3							
order	Q1	19	17	14	13	10	9	7	4							
$N Q=14$	A/R	A	A	A	A	A	A	A	A							

