
COMMUNICATIONS OF THE ACM May 1998/Vol. 41, No. 5 103

T he people performing the
process must own the
process [1]. While a process

group may be essential in helping
to capture a process or analyzing a
process, it is the group using the
process that is likely to have the
best understanding of its purpose
and appropriate use. In fact, we
recommend forming a process
team to document exactly how to
apply OO techniques. This team
should consist of members from
all phases of software develop-
ment—systems analysts, design-
ers, coders, quality assurance, and
testers. The team should meet reg-
ularly to determine what, how,
and when to document. Obvi-
ously, the people performing the
processes should be included in
meetings.

There are a number of issues
regarding the delegation of the
processes. First, processes do not
usually eliminate the need for
skill and experience. For exam-
ple, if defect tracking has been
done on an ad-hoc basis with
software developers doing the
work, implementing a process
would not necessarily allow the
task to be done by clerical staff.
The judgment of the developers
would still be required, but the

reporting functions could be
done by others. (In some rela-
tively rare cases where the use of
highly trained people compen-
sates for a total lack of process,
defining and implementing a
process can allow less-experi-
enced people to do the same
work.)

Second, it is important to rec-
ognize that the people perform-
ing a task may know well what
they are doing. The knowledge of
the people doing the tasks must
be used as the basis for defining
the new process. This suggests
that when process specialists or
team members from other groups
are brought in to help define the
process, they should not assume a
superior attitude. The process
must also work for the group
doing it, not for an idealized
group with skills and attendance
rates that do not match reality. A
corollary to this is that process
“experts” should not create the
processes by themselves; experts
tend to create processes so com-
plex and fragile they cannot be
used by mere mortals.

Complete uniformity is not
always desirable. Two issues arise
in the management of multiple
processes:

• Each project-level process may
be different.

• Each project-level and micro-
process is similar.

The fact that different groups
have a number of similar
processes leads to the ideas that
each group’s process work should
be absolutely uniform and that
each group should have the same
number of processes. This is not
necessarily correct.

Different groups may be in
different phases of transition to
new development methods, sug-
gesting different procedures. A
group maintaining a reasonably
stable product over time have
different needs and procedures
than a group developing a new
product. There is little point in
destabilizing a working process,
assuming its efficiency is ade-
quate, in order to establish con-
formity with a new process. The
cost is often prohibitive. Obvi-
ously, a small group working on
a small application will not
require the same level of logisti-
cal and coordinating effort a large
group on a large project might
need. Creating a process means
thinking about what is to be
done and how to do it. Having

The Art of Managing
Multiple Processes

Mohamed E. Fayad

104 May 1998/Vol. 41, No. 5 COMMUNICATIONS OF THE ACM

people who use the process as a
tool to achieve an end, and hav-
ing accurate documentation and
measurement is much more
important than some ideal of
process uniformity.

It is common for development
equipment and software to
change during the lifetime of an
application, and it is often desir-
able or necessary to change the
processes in response. Any
change carries some risk, and in
order to minimize the risk, it
makes sense to prototype
changed processes before fully
deploying them. However, even
with prototyping there can be
problems due to environment.
For example, defect tracking
might be done by a single person
in the prototype stage or in a
small group, but if the volume of
defects increases, more people
might be needed and some form
of coordination between them
would be required. Part of a solu-
tion might be to acquire a com-
mercial problem-tracking
program. But almost any pro-
gram contains an implied usage
method that might differ from
the ones established by the
group. And the implied proce-
dure, along with the changes
required by increased defect vol-
ume, would require a few itera-
tions to make a workable process.
A prototyping effort has more
flexibility and can react to
changes more quickly than if the
whole organization has adopted
the new process, and overall time
can be saved. Before committing
to the new program and its new
process some thought must be
given to the effect of the change,
and the new procedures should
be prototyped.

Process experts and process
teams can help identify process
issues, but they should not be the
ones who create the process and
hand it, fully completed, to the
people who will use it to define
the process. A working process is
not a thought experiment. It can-
not be imposed because it looks
good or has some apparently desir-
able property like orthogonality.

This is why the people who use
the process must own the process;
they will be using it. By owning a
process, we mean those who use
the process must be the ones who
define and modify it. The users
will define the primary metrics
collected from the process and
these metrics must first be used
by the process owners for control
and improvement. Management
information must be a secondary
goal of such data collection. To
counter objections before they are
voiced, we are not saying that
processes should not be subjected
to outside review or benefit from
expert assistance. Certainly, the
identification and analysis of sta-
tistical data gained from the
process will require the help of a
trained statistician. Process
experts should be available to
identify errors such as procedures
that can deadlock or loop indefi-
nitely. They can identify risky
areas such as long feedback loops
and ambiguous states, where, for
example, it is not clear if a task
has been properly completed.
Expert assistance and system
reviews also are useful in reducing
sub-optimization.

Sub-optimization. One of the
major concerns when dealing
with multiple processes is sub-
optimization, that is, simplifying
a process or making it more effi-

cient at the expense of up- or
downstream processes. This is
common between different func-
tional groups. The classic exam-
ple of software sub-optimization
is cutting corners during devel-
opment in order to meet sched-
ule, thus dramatically increasing
the work needed during testing.
This tactic still works. Oddly
enough, as a quality assurance
(QA) team pulls out an increas-
ing number of defects, some still
assume that those testing are
inefficient because they could not
immediately find all the layered
problems. Thus, the QA depart-
ment is blamed for release delays
rather than the software develop-
ers who apparently made their
deadlines.

There are two requirements for
reducing sub-optimization: man-
agement involvement and whole
system analysis. Given that sub-
optimization is a zero-sum game
often existing between separate
groups, and given that separate
groups are unlikely to work for a
mutually beneficial solution
without management involve-
ment, the active involvement of
upper management is without
question. Frequently, basic busi-
ness processes must be modified.

An example might be reevalu-
ating the cost of software devel-
opment to include maintenance
and support. This reevaluation
may require personnel shifts,
retraining, and special informa-
tion system work to add to inter-
group information sharing. At
this level of process improve-
ment, only senior management
can make the changes. Likewise,
a process improvement that
reduces headcount in a group is
unlikely to be recommended by

Thinking Objectively

members of the affected group.
Only upper management can act
appropriately. Davenport [2]
states that the competitive cli-
mate in most companies, espe-
cially at higher management
levels can work against efforts at
process improvement since sub-
optimization is often equated
with greater personal power. At
these levels, there must be a
reward for process improvement
that compensates for potential
loss of functional control.

Given management involve-
ment, the analysis of the system
as a whole can be beneficial. In
the previous QA development
example, an analysis of the sys-
tem would certainly show that
upstream changes in the devel-
opment phase reduces the efforts
in the downstream QA testing
phase. Although this example is
obvious, the development process
changes cause a different product
to be delivered for testing. The
testing phase, in turn, changes
from a desperate search to
uncover layer upon layer of
defects to a more orderly and
consistent verification and valida-
tion of the system. In fact, it
might be found that by careful
analysis of process inputs and
outputs, substantial time and
effort is saved. Analysis also
shows what constraints exist
between processes. For example,
if the development requires new
software to interface with a
legacy system, then the interface
might be more complex and
harder to test than a completely
new development.

Process merging. Use existing
processes and work habits. Build
new processes from these existing
processes or extend existing

processes by adding new func-
tions. Improvement is most often
based on experience. This implies
costs of continuing analysis and
maintenance. When looking at
what to turn into a process, con-
sider the risks. The risks associ-
ated with the actions, the risks
associated with developing a
process (continually changing
operations may risk becoming
quickly obsolete or prohibitively
expensive to processize) and the
risks of failing to implement a
process.

Configuration management.
It is important to treat processes
like other critical development
tools, and therefore all processes
should be put under configuration
management (CM). In this case,
CM may be a category of docu-
ment management, or it may
include configuration control of
software tools used in the
processes as well. CM, because it
becomes possible to reconstruct
the processes used in the develop-
ment environment, is necessary to
analyze procedural problems dur-
ing the lifetime of the project. In
a multiyear project, only complete
CM or processes will provide
enough data. Even if contractual
or legal requirements do not
require process CM, it is still a
good practice.

References
1. Fayad, M.E., Laitinen, M. Transition to Object-

Oriented Software Development. Wiley, New
York, 1998, to appear.

2, Davenport, T. Process Innovation: Reengineering
Work Through Information Technology. Harvard
Business School Press, Boston, 1993.

Mohamed E. Fayad (fayad@cs.unr.edu)
is an associate professor in the computer
science department at the University of
Nevada, Reno.

© ACM 0002-0782/98/0500 $3.50

c

COMMUNICATIONS OF THE ACM May 1998/Vol. 41, No. 5 105

