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Administrivia

Website:

http://nisl.cs.montana.edu/˜pdonnelly/CSCI305/

Reading:

Chapter 1
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A good programming language is a conceptual universe
for thinking about programming.

A. Perlis
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Programming Domains

The following user communities claim major developments in
programming languages:

Artificial Intelligence

Computer Science Education

Science and Engineering

Information Systems

Systems and Networks

World Wide Web
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GCD Pseudocode

function gcd(a, b)
while b 6= 0

t := b
b := a mod t
a := t

return a
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Machine Code

What was wrong with using machine code?

Poor readability

Poor modifiability

Expression coding was tedious

Machine deficiencies–no indexing or floating point
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Plankalkül

Designed by: Konrad Zuse Appeared in: 1943 / 1972

Features: advanced data structures:
floating point, arrays, records

never implemented

Domains: designed for engineering purposes

Meaning: “Plan Calculus”
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Shortcode

Designed by: John Mauchly Appeared in: 1949

Features: designed for BINAC computers
statements represented mathematic expressions
allowed for branching and calls to functions

50 times slower than machine code

Contributions: first higher-level language
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ShortCode Example

Expressions were coded, left to right.

Example of operations:

* 06 ABS
01 − 07 +
02 ) 08 pause
03 = 09 (
04 / etc . . .

Example:
a = ( b + c ) / b * c

X3 = ( X1 + Y1 ) / X1 * Y1

X3 03 09 X1 07 Y1 02 04 X1 Y1
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Speedcoding

Designed by: John Backus Appeared in: 1953
IBM Paradigm: structured

Influenced by: assembly language, machine code

Features: pseudo ops for arithmetic and math functions
conditional and unconditional branching
auto-increment registers for array access

slow!
interpreter took 310 words – 30% of the memory

Contributions: first higher-level language for an IBM computer
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Fortran

Designed by: John Backus Appeared in: 1954-57
IBM Paradigm: imperative

Extension: .f
Influenced by: Speedcoding

Features: names could have up to six characters
formatted I/O
user-defined subprograms
three-way selection statement

Contributions: code was very fast, quickly became widely used
Domains: scientific and engineering applications

Acronym: IBM Mathematical Formula Translating System
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Fortran Card
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Fortran gcd Function

subroutine gcd_iter(value, u, v)
integer, intent(out) :: value
integer, intent(inout) :: u, v
integer :: t

do while( v /= 0 )
t = u
u = v
v = mod(t, v)

enddo
value = abs(u)

end subroutine gcd_iter
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LISP

Designed by: John McCarthy Appeared in: 1958
MIT Paradigm: functional

Extension: .lisp

Features: processes data in lists
symbolic computation
only two data types: atoms and lists
syntax is based on lambda calculus
control via recursion and conditional expressions

Domains: Artificial intelligence

Acronym: LISt Processing language
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LISP

Representation of (A B C D) and (A (B C) D (E (F G)))
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LISP gcd Function

(defun gcd2 (a b)
(do () ((zerop b) (abs a))

(shiftf a b (mod a b))))
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Cobol

Designed by: Grace Hopper, Appeared in: 1959
et. al Paradigm: imperative

Extension: .cbl
Influenced by: FLOW-MATIC

Features: data and code were completely separate,
English names for arithmetic operators,
long names, be easy to use
records, nested selection statements

Contributions: first macro facility in a high-level language
first language required by DoD

Domains: widely used business applications language
Acronym: COmmon Business-Oriented Language
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COBOL gcd Function (1 / 2)

IDENTIFICATION DIVISION.
PROGRAM-ID. GCD.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A PIC 9(10) VALUE ZEROES.
01 B PIC 9(10) VALUE ZEROES.
01 TEMP PIC 9(10) VALUE ZEROES.

.

.

.
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COBOL gcd Function (2 / 2)
PROCEDURE DIVISION.
Begin.

DISPLAY "Enter first number, max 10 digits."
ACCEPT A
DISPLAY "Enter second number, max 10 digits."
ACCEPT B
IF A < B

MOVE B TO TEMP
MOVE A TO B
MOVE TEMP TO B

END-IF

PERFORM UNTIL B = 0
MOVE A TO TEMP
MOVE B TO A
DIVIDE TEMP BY B GIVING TEMP REMAINDER B

END-PERFORM
DISPLAY "The gcd is " A
STOP RUN.
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ALGOL 60

Designed by: John Backus Appeared in: 1960
et al. Paradigm: imperative

Influenced by: ALGOL 58

Features: concept of type was formalized
names could be any length
arrays could have any number of subscripts
semicolon as a statement separator
subprogram recursion
stack-dynamic arrays

Contributions: subsequent imperative languages are based on it
standard way to publish algorithms for over 20 years
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ALGOL gcd Function

PROC gcd = (INT a, b) INT: (
IF a = 0 THEN

b
ELIF b = 0 THEN

a
ELIF a > b THEN

gcd(b, a MOD b)
ELSE

gcd(a, b MOD a)
FI

);
test:(
INT a = 33, b = 77;
printf(($x"The gcd of"g" and "g" is "gl$,a,b,gcd(a,b)));
INT c = 49865, d = 69811;
printf(($x"The gcd of"g" and "g" is "gl$,c,d,gcd(c,d)))

)
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PL/I

Designed by: IBM Appeared in: 1964
SHARE Paradigm: imperative

Influenced by: ALGOL, COBOL, Fortran

Features: designed in five months
floating point, English-like syntax

Domains: scientific, engineering, business

Contributions: first unit-level concurrency, first exception handling
switch-selectable recursion, first pointer data type
first array cross sections
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PL/I gcd Function

GCD: procedure (a, b) returns
(fixed binary (31)) recursive;

declare (a, b) fixed binary (31);

if b = 0 then return (a);

return (GCD (b, mod(a, b)) );

end GCD;
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BASIC

Designed by: John Kemeny Appeared in: 1964
Thomas Kurtz Paradigm: procedural
Dartmouth College

Influenced by: ALGOL 60, FORTRAN II

Features: easy to learn and use

Notes: first widely used language with time sharing
current popular dialect: Visual BASIC

Acronym: Beginner’s All-purpose Symbolic Instruction Code.
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BASIC gcd Function

FUNCTION gcd(a%, b%)
IF a > b THEN

factor = a
ELSE

factor = b
END IF
FOR l = factor TO 1 STEP -1

IF a MOD l = 0 AND b MOD l = 0 THEN
gcd = l

END IF
NEXT l
gcd = 1

END FUNCTION
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APL

Designed by: Kenneth E. Iverson Appeared in: 1964
IBM Paradigm: functional

Extension:
Influenced by:

Features: highly expressive
dynamic typing and dynamic storage allocation

Domains: hardware description language

Notes: programs are very difficult to read
still in use with minimal changes

Acronym: A Programming Language
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APL gcd Function
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SNOBOL

Designed by: David J. Farber Appeared in: 1964
Ralph E. Griswold Paradigm: multi-paradigm
Bell Laboratories

Influenced by:

Features: powerful operators for string pattern matching

Domains: text processing tasks

Acronym: StriNg Oriented and symBOlic Language
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SNOBOL gcd Function

define(’gcd(i,j)’) :(gcd_end)
gcd ?eq(i,0) :s(freturn)

?eq(j,0) :s(freturn)

loop gcd = remdr(i,j)
gcd = ?eq(gcd,0) j :s(return)
i = j
j = gcd :(loop)

gcd_end

output = gcd(1071,1029)
end
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Simula

Designed by: Ole-Johan Dahl Appeared in: 1967
Kristen Nygaard Paradigm: object-oriented

Influenced by: ALGOL 60

Features: classes, objects, and inheritance

Domains: designed for system simulation

Contributions: coroutines - a kind of subprogram
first object-oriented programming language
influenced C++

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 75



Simula gcd Function

Begin
Integer Procedure GCD(M, N); Integer M, N;
Begin

While M<>N do
If M<N then N := N - M else M := M - N;

GCD := M
End of GCD;

Integer A, B;
OutText("Enter an integer number: ");
OutImage; A := InInt;
OutText("Enter an integer number: ");
OutImage; B := InInt;
OutText("Greatest Common Divisor of your numbers is ");
OutInt(GCD(A,B), 4); OutImage;

End of Program;
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Pascal

Designed by: Niklaus Wirth Appeared in: 1971
Paradigm: imperative
Extension: .pas

Influenced by: ALGOL

Features: small, simple

Domains: Education

Contributions: From mid-1970s until the late 1990s, it was the most
widely used language for teaching programming
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Pascal gcd Function

function gcd_iterative(u, v: longint): longint;
var

t: longint;
begin

while v <> 0 do
begin
t := u;
u := v;
v := t mod v;

end;
gcd_iterative := abs(u);

end;
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C

Designed by: Dennis Richie Appeared in: 1972
Bell Labs Paradigm: imperative

Extension: .c, .h
Influenced by: ALGOL, Assembly, PL/I, FORTRAN

Features: powerful set of operators
poor type checking

Domains: designed as a systems language
used in many application areas

Contributions: syntax influence is pervasive
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C gcd Function

int
gcd_iter(int u, int v) {
int t;
while (v) {

t = u;
u = v;
v = t % v;

}
return u < 0 ? -u : u; /* abs(u) */

}
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Prolog

Designed by: Alain Colmerauer Appeared in: 1972
Paradigm: logic
Extension: .pl

Influenced by: PLANNER

Features: based on formal logic
non-procedural

Domains: natural language processing,
but few application areas

Contributions: comparatively inefficient
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Prolog gcd Function

gcd(X, 0, X):- !.
gcd(0, X, X):- !.
gcd(X, Y, D):- X > Y, !, Z is X mod Y, gcd(Y, Z, D).
gcd(X, Y, D):- Z is Y mod X, gcd(X, Z, D).
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Smalltalk

Designed by: Alan Kay Appeared in: 1972
Adele Goldberg Paradigm: object-oriented
Xerox PARC Extension: .st

Influenced by: Lisp, Simula

Features: graphical user interface design
data abstraction
inheritance
dynamic binding

Domains:

Contributions: first full implementation of an
object-oriented language
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Smalltalk gcd Function

|gcd_iter|

gcd_iter := [ :a :b | |u v| u := a. v := b.
[ v > 0 ]
whileTrue: [ |t|

t := u copy.
u := v copy.
v := t rem: v

].
u abs

].

(gcd_iter value: 40902 value: 24140)
printNl.
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Scheme

Designed by: Guy Steele Appeared in: 1975
Gerald Sussman Paradigm: multi-paradigm
MIT Extension: .scm

Influenced by: ALGOL, Lisp, MDL

Features: extensive use of static scoping
functions as first-class entities
simple syntax and small size

Domains: Education
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Scheme gcd Function

(define (gcd a b)
(if (= b 0)

a
(gcd b (modulo a b))))
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AWK

Designed by: Alfred Aho Appeared in: 1977
et al. Paradigm: scripting
Bell Labs

Influenced by: C SNOBOL

Features: extensively uses strings, hashes and reg ex’s
designed to support one-liner programs
standard feature of Unix

inspired Larry Wall to write Perl

Domains: data extraction and reporting tool

Name: from its authors Aho, Weinberger, and Kernighan
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AWK gcd Function

$ awk ’func gcd(p,q)
{return(q?gcd(q,(p%q)):p)}
{print gcd($1,$2)}’

12 16
4
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Matlab

Designed by: Cleve Moler Appeared in: 1978
U.of New Mexico Paradigm: multi-paradigm

Extension: .m, .mat
Influenced by:

Features: matrix manipulations
plotting of functions and data

Domains: applied mathematics, image processing
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Matlab gcd Function

function [gcdValue] =
greatestcommondivisor(integer1, integer2)

gcdValue = gcd(integer1, integer2);
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Ada

Designed by: Jean Ichbiah Appeared in: 1980
MIL-STD-1815 Paradigm: multi-paradigm

Extension:
Influenced by: ALGOL, C++, Pascal

Features: generic program units
packages - support for data abstraction
elaborate exception handling

Domains: DoD

Contributions flexible libraries
concurrency - through the tasking model
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Ada gcd Function
with Ada.Text_Io; use Ada.Text_Io;
procedure Gcd_Test is

function Gcd (A, B : Integer) return Integer is
M : Integer := A;
N : Integer := B;
T : Integer;

begin
while N /= 0 loop

T := M;
M := N;
N := T mod N;

end loop;
return M;

end Gcd;
begin

Put_Line("GCD of 100,5 is"&Integer’Image(Gcd(100, 5)));
Put_Line("GCD of 5,100 is"&Integer’Image(Gcd(5, 100)));
Put_Line("GCD of 7,23 is"&Integer’Image(Gcd(7, 23)));

end Gcd_Test;
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C++

Designed by: Bjarne Stroustrup Appeared in: 1983
Bell Labs Paradigm: multi-paradigm

Extension: .h, .cpp
Influenced by: Ada, ALGOL, C, ML

Features: large and complex language
supports both procedural and OO programming
efficient compiler to native code

Domains: systems software, application software,
embedded software

Contributions: rapidly grew in popularity
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C++ gcd Function

int
gcd_iter(int u, int v) {
int t;
while (v) {

t = u;
u = v;
v = t % v;

}
return u < 0 ? -u : u; /* abs(u) */

}
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Objective C

Designed by: Brad Cox Appeared in: 1983
Tom Love Paradigm: object-oriented
Apple Extension: .h,.m

Influenced by: C, Smalltalk

Features: C plus support for OOP based on Smalltalk
uses Smalltalk’s method calling syntax
support for reflective features
superset of C

Domains: used by Apple for systems programs
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Perl

Designed by: Larry Wall Appeared in: 1987
Paradigm: multi-paradigm
Extension: .pl

Influenced by: AWK, C++, Lisp, Pascal, Smalltalk

Features: 3 distinctive namespaces, denoted in var’s name
Regular expression engine
Variables are statically typed but implicitly declared

Domains: CGI, graphics programming, system administration,
network programming, finance, bioinformatics

Backronym: Practical Extraction and Reporting Language
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Perl gcd Function

sub gcd_iter($$) {
my ($u, $v) = @_;
while ($v) {

($u, $v) = ($v, $u % $v);
}
return abs($u);

}
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Haskell

Designed by: Simon Jones Appeared in: 1990
et. al Paradigm: functional

Extension: .hs
Influenced by: Lisp, ML Scheme

Features: primary control construct is the function
non-strict semantics and strong static typing
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Haskell gcd Function

gcd :: (Integral a) => a -> a -> a
gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y = gcd’ (abs x) (abs y) where
gcd’ a 0 = a
gcd’ a b = gcd’ b (a ‘rem‘ b)
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Python

Designed by: Guido van Rossum Appeared in: 1991
Paradigm: multi-paradigm
Extension: .py

Influenced by: ALGOL, C, C++, Haskell, Java, Lisp, Perl

Features: OO interpreted scripting language
type checked but dynamically typed
supports lists, tuples, and hashes

Domains: CGI programming, form processing
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Python gcd Function

def gcd_iter(u, v):
while v:

u, v = v, u % v
return abs(u)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 57 / 75



Lua

Designed by: R. Ierusalimschy Appeared in: 1993
W. Celes Paradigm: multi-paradigm
L.H. de Figueiredo

Influenced by: C++, Modula, Scheme

Features: OO interpreted scripting language
type checked but dynamically typed
single data structure – table
easily extendable

Domains: CGI programming, form processing

Means: “moon” in Portuguese
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Lua gcd Function

function gcd(a,b)
if b ˜= 0 then

return gcd(b, a % b)
else

return math.abs(a)
end

end

function demo(a,b)
print("GCD of "..a.." and "..b.." is "..gcd(a, b))

end

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 59 / 75



JavaScript

Designed by: Brendan Eich Appeared in: 1994
Netscape Paradigm: multi-paradigm

Extension: .js
Influenced by: C, Java, Perl, Python, Scheme

Features: client-side HTML-embedded scripting language
purely interpreted

Domains: dynamic HTML documents
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JavaScript gcd Function

function gcd(a,b) {
if (a < 0) a = -a;
if (b < 0) b = -b;
if (b > a) {var temp = a; a = b; b = temp;}
while (true) {

a %= b;
if (a == 0) return b;
b %= a;
if (b == 0) return a;

}
}
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PHP

Designed by: Rasmus Lerdorf Appeared in: 1995
Paradigm: imperative, OO
Extension: .php

Influenced by: C, C++, Java, Perl

Features: server-side scripting language
purely interpreted

Domains: form processing and database access

Acronym: PHP: Hypertext Preprocessor
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PHP gcd Function

function gcdIter($n, $m) {
while(true) {

if($n == $m) {
return $m;

}
if($n > $m) {

$n -= $m;
} else {

$m -= $n;
}

}
}
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Ruby

Designed by: Yukihiro Matsumoto Appeared in: 1995
Paradigm: multi-paradigm
Extension: .rb

Influenced by: Ada, C++, Lisp, Perl, Python, Smalltalk

Features: pure object-oriented scripting language
purely interpreted
operators are implemented as methods
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Ruby gcd Function

def gcd(u, v)
u, v = u.abs, v.abs
while v > 0

u, v = v, u % v
end
u

end
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Java

Designed by: James Gosling Appeared in: 1995
Sun Microsystems Paradigm: multi-paradigm

Extension: .java, .class
Influenced by: Ada, C++, C#, Pascal, Smalltalk

Features: supports only OOP
references, but not pointers
support for applets
supports concurrency
Java Virtual Machine concept
libraries for applets, GUIs, database access
widely used for Web programming
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Java gcd Function

public static long gcd(long a, long b){
long factor= Math.max(a, b);
for(long loop= factor;loop > 1;loop--){

if(a % loop == 0 && b % loop == 0){
return loop;

}
}
return 1;

}
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OCaml

Designed by: Xavier Leroy Appeared in: 1996
et al. Paradigm: functional, OO

Influenced by: Standard ML

Features: large standard library
robust object-oriented programming constructs
static type system

Name: Objective Caml
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Caml gcd Function

let rec gcd a b =
if a = 0 then b
else if b = 0 then a
else if a > b then gcd b (a mod b)
else gcd a (b mod a)
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C#

Designed by: Microsoft Appeared in: 2000
Paradigm: multi-paradigm
Extension: .cs

Influenced by: C++, Java, Pascal

Features: includes pointers, delegates, properties,
enumeration types, limited kind of dynamic typing,
anonymous types

Domains: .NET

Contributions: is evolving rapidly
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C# gcd Function
private static int gcd(int a, int b)
{

int t;
// Ensure B > A
if (a > b)
{

t = b;
b = a;
a = t;

}
// Find
while (b != 0)
{

t = a % b;
a = b;
b = t;

}
return a;

}
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Go

Designed by: Robert Griesemer Appeared in: 2009
et al. Paradigm: imperative
Google Extension: .go

Influenced by: C, Modula, Pascal, Python

Features: loosely based on C, but also quite different
does not support traditional OOP
goroutines, small lightweight threads
visibility according to capitalization
efficient, latency-free garbage collection
line-ending semicolons are optional
designed for exceptionally fast compiling times
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Go gcd Function

package main

import "fmt"

func gcd(x, y int) int {
for y != 0 {

x, y = y, x%y
}
return x

}

func main() {
fmt.Println(gcd(33, 77))
fmt.Println(gcd(49865, 69811))

}
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Rust

Designed by: Graydon Hoare Appeared in: 2012
et al. Paradigm: multi-paradigm
Mozilla Research Extension: .rs

Influenced by:

Features: designed for large client and server programs
syntax similar to subset of C and C++
memory safe (no null or dangling pointers
type system supports ’traits’, inspired by Haskell
features type inference
supports concurrency
performance of safe code is slower than C++
sponsored by Mozilla and Samsung
open community project
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Rust gcd Function

fn gcd(mut m: int, mut n: int) -> int {
while m != 0 {

let temp = m;
m = n % temp;
n = temp;

}
n.abs()

}

fn gcd(m: int, n: int) -> int {
if m == 0

{ n.abs() }
else

{ gcd(n % m, m) }
}
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