
Concepts of Programming Languages
Lecture 2 - History of Programming Languages

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 75

Administrivia

Website:

http://nisl.cs.montana.edu/˜pdonnelly/CSCI305/

Reading:

Chapter 1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 75

http://nisl.cs.montana.edu/~pdonnelly/CSCI305/

A good programming language is a conceptual universe
for thinking about programming.

A. Perlis

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 75

Programming Domains

The following user communities claim major developments in
programming languages:

Artificial Intelligence

Computer Science Education

Science and Engineering

Information Systems

Systems and Networks

World Wide Web

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 75

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 75

GCD Pseudocode

function gcd(a, b)
while b 6= 0

t := b
b := a mod t
a := t

return a

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 75

Machine Code

What was wrong with using machine code?

Poor readability

Poor modifiability

Expression coding was tedious

Machine deficiencies–no indexing or floating point

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 75

Machine Code

What was wrong with using machine code?

Poor readability

Poor modifiability

Expression coding was tedious

Machine deficiencies–no indexing or floating point

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 75

Plankalkül

Designed by: Konrad Zuse Appeared in: 1943 / 1972

Features: advanced data structures:
floating point, arrays, records

never implemented

Domains: designed for engineering purposes

Meaning: “Plan Calculus”

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 75

Shortcode

Designed by: John Mauchly Appeared in: 1949

Features: designed for BINAC computers
statements represented mathematic expressions
allowed for branching and calls to functions

50 times slower than machine code

Contributions: first higher-level language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 75

ShortCode Example

Expressions were coded, left to right.

Example of operations:

* 06 ABS
01 − 07 +
02) 08 pause
03 = 09 (
04 / etc . . .

Example:
a = (b + c) / b * c

X3 = (X1 + Y1) / X1 * Y1

X3 03 09 X1 07 Y1 02 04 X1 Y1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 75

Speedcoding

Designed by: John Backus Appeared in: 1953
IBM Paradigm: structured

Influenced by: assembly language, machine code

Features: pseudo ops for arithmetic and math functions
conditional and unconditional branching
auto-increment registers for array access

slow!
interpreter took 310 words – 30% of the memory

Contributions: first higher-level language for an IBM computer

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 75

Fortran

Designed by: John Backus Appeared in: 1954-57
IBM Paradigm: imperative

Extension: .f
Influenced by: Speedcoding

Features: names could have up to six characters
formatted I/O
user-defined subprograms
three-way selection statement

Contributions: code was very fast, quickly became widely used
Domains: scientific and engineering applications

Acronym: IBM Mathematical Formula Translating System

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 75

Fortran Card

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 75

Fortran gcd Function

subroutine gcd_iter(value, u, v)
integer, intent(out) :: value
integer, intent(inout) :: u, v
integer :: t

do while(v /= 0)
t = u
u = v
v = mod(t, v)

enddo
value = abs(u)

end subroutine gcd_iter

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 75

LISP

Designed by: John McCarthy Appeared in: 1958
MIT Paradigm: functional

Extension: .lisp

Features: processes data in lists
symbolic computation
only two data types: atoms and lists
syntax is based on lambda calculus
control via recursion and conditional expressions

Domains: Artificial intelligence

Acronym: LISt Processing language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 75

LISP

Representation of (A B C D) and (A (B C) D (E (F G)))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 75

LISP gcd Function

(defun gcd2 (a b)
(do () ((zerop b) (abs a))

(shiftf a b (mod a b))))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 75

Cobol

Designed by: Grace Hopper, Appeared in: 1959
et. al Paradigm: imperative

Extension: .cbl
Influenced by: FLOW-MATIC

Features: data and code were completely separate,
English names for arithmetic operators,
long names, be easy to use
records, nested selection statements

Contributions: first macro facility in a high-level language
first language required by DoD

Domains: widely used business applications language
Acronym: COmmon Business-Oriented Language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 75

COBOL gcd Function (1 / 2)

IDENTIFICATION DIVISION.
PROGRAM-ID. GCD.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A PIC 9(10) VALUE ZEROES.
01 B PIC 9(10) VALUE ZEROES.
01 TEMP PIC 9(10) VALUE ZEROES.

.

.

.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 75

COBOL gcd Function (2 / 2)
PROCEDURE DIVISION.
Begin.

DISPLAY "Enter first number, max 10 digits."
ACCEPT A
DISPLAY "Enter second number, max 10 digits."
ACCEPT B
IF A < B

MOVE B TO TEMP
MOVE A TO B
MOVE TEMP TO B

END-IF

PERFORM UNTIL B = 0
MOVE A TO TEMP
MOVE B TO A
DIVIDE TEMP BY B GIVING TEMP REMAINDER B

END-PERFORM
DISPLAY "The gcd is " A
STOP RUN.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 75

ALGOL 60

Designed by: John Backus Appeared in: 1960
et al. Paradigm: imperative

Influenced by: ALGOL 58

Features: concept of type was formalized
names could be any length
arrays could have any number of subscripts
semicolon as a statement separator
subprogram recursion
stack-dynamic arrays

Contributions: subsequent imperative languages are based on it
standard way to publish algorithms for over 20 years

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 75

ALGOL gcd Function

PROC gcd = (INT a, b) INT: (
IF a = 0 THEN

b
ELIF b = 0 THEN

a
ELIF a > b THEN

gcd(b, a MOD b)
ELSE

gcd(a, b MOD a)
FI

);
test:(
INT a = 33, b = 77;
printf(($x"The gcd of"g" and "g" is "gl$,a,b,gcd(a,b)));
INT c = 49865, d = 69811;
printf(($x"The gcd of"g" and "g" is "gl$,c,d,gcd(c,d)))

)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 75

PL/I

Designed by: IBM Appeared in: 1964
SHARE Paradigm: imperative

Influenced by: ALGOL, COBOL, Fortran

Features: designed in five months
floating point, English-like syntax

Domains: scientific, engineering, business

Contributions: first unit-level concurrency, first exception handling
switch-selectable recursion, first pointer data type
first array cross sections

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 75

PL/I gcd Function

GCD: procedure (a, b) returns
(fixed binary (31)) recursive;

declare (a, b) fixed binary (31);

if b = 0 then return (a);

return (GCD (b, mod(a, b)));

end GCD;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 75

BASIC

Designed by: John Kemeny Appeared in: 1964
Thomas Kurtz Paradigm: procedural
Dartmouth College

Influenced by: ALGOL 60, FORTRAN II

Features: easy to learn and use

Notes: first widely used language with time sharing
current popular dialect: Visual BASIC

Acronym: Beginner’s All-purpose Symbolic Instruction Code.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 75

BASIC gcd Function

FUNCTION gcd(a%, b%)
IF a > b THEN

factor = a
ELSE

factor = b
END IF
FOR l = factor TO 1 STEP -1

IF a MOD l = 0 AND b MOD l = 0 THEN
gcd = l

END IF
NEXT l
gcd = 1

END FUNCTION

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 75

APL

Designed by: Kenneth E. Iverson Appeared in: 1964
IBM Paradigm: functional

Extension:
Influenced by:

Features: highly expressive
dynamic typing and dynamic storage allocation

Domains: hardware description language

Notes: programs are very difficult to read
still in use with minimal changes

Acronym: A Programming Language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 75

APL gcd Function

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 75

SNOBOL

Designed by: David J. Farber Appeared in: 1964
Ralph E. Griswold Paradigm: multi-paradigm
Bell Laboratories

Influenced by:

Features: powerful operators for string pattern matching

Domains: text processing tasks

Acronym: StriNg Oriented and symBOlic Language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 75

SNOBOL gcd Function

define(’gcd(i,j)’) :(gcd_end)
gcd ?eq(i,0) :s(freturn)

?eq(j,0) :s(freturn)

loop gcd = remdr(i,j)
gcd = ?eq(gcd,0) j :s(return)
i = j
j = gcd :(loop)

gcd_end

output = gcd(1071,1029)
end

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 75

Simula

Designed by: Ole-Johan Dahl Appeared in: 1967
Kristen Nygaard Paradigm: object-oriented

Influenced by: ALGOL 60

Features: classes, objects, and inheritance

Domains: designed for system simulation

Contributions: coroutines - a kind of subprogram
first object-oriented programming language
influenced C++

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 75

Simula gcd Function

Begin
Integer Procedure GCD(M, N); Integer M, N;
Begin

While M<>N do
If M<N then N := N - M else M := M - N;

GCD := M
End of GCD;

Integer A, B;
OutText("Enter an integer number: ");
OutImage; A := InInt;
OutText("Enter an integer number: ");
OutImage; B := InInt;
OutText("Greatest Common Divisor of your numbers is ");
OutInt(GCD(A,B), 4); OutImage;

End of Program;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 75

Pascal

Designed by: Niklaus Wirth Appeared in: 1971
Paradigm: imperative
Extension: .pas

Influenced by: ALGOL

Features: small, simple

Domains: Education

Contributions: From mid-1970s until the late 1990s, it was the most
widely used language for teaching programming

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 75

Pascal gcd Function

function gcd_iterative(u, v: longint): longint;
var

t: longint;
begin

while v <> 0 do
begin
t := u;
u := v;
v := t mod v;

end;
gcd_iterative := abs(u);

end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 75

C

Designed by: Dennis Richie Appeared in: 1972
Bell Labs Paradigm: imperative

Extension: .c, .h
Influenced by: ALGOL, Assembly, PL/I, FORTRAN

Features: powerful set of operators
poor type checking

Domains: designed as a systems language
used in many application areas

Contributions: syntax influence is pervasive

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 75

C gcd Function

int
gcd_iter(int u, int v) {
int t;
while (v) {

t = u;
u = v;
v = t % v;

}
return u < 0 ? -u : u; /* abs(u) */

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 75

Prolog

Designed by: Alain Colmerauer Appeared in: 1972
Paradigm: logic
Extension: .pl

Influenced by: PLANNER

Features: based on formal logic
non-procedural

Domains: natural language processing,
but few application areas

Contributions: comparatively inefficient

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 75

Prolog gcd Function

gcd(X, 0, X):- !.
gcd(0, X, X):- !.
gcd(X, Y, D):- X > Y, !, Z is X mod Y, gcd(Y, Z, D).
gcd(X, Y, D):- Z is Y mod X, gcd(X, Z, D).

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 75

Smalltalk

Designed by: Alan Kay Appeared in: 1972
Adele Goldberg Paradigm: object-oriented
Xerox PARC Extension: .st

Influenced by: Lisp, Simula

Features: graphical user interface design
data abstraction
inheritance
dynamic binding

Domains:

Contributions: first full implementation of an
object-oriented language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 75

Smalltalk gcd Function

|gcd_iter|

gcd_iter := [:a :b | |u v| u := a. v := b.
[v > 0]
whileTrue: [|t|

t := u copy.
u := v copy.
v := t rem: v

].
u abs

].

(gcd_iter value: 40902 value: 24140)
printNl.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 75

Scheme

Designed by: Guy Steele Appeared in: 1975
Gerald Sussman Paradigm: multi-paradigm
MIT Extension: .scm

Influenced by: ALGOL, Lisp, MDL

Features: extensive use of static scoping
functions as first-class entities
simple syntax and small size

Domains: Education

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 75

Scheme gcd Function

(define (gcd a b)
(if (= b 0)

a
(gcd b (modulo a b))))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 75

AWK

Designed by: Alfred Aho Appeared in: 1977
et al. Paradigm: scripting
Bell Labs

Influenced by: C SNOBOL

Features: extensively uses strings, hashes and reg ex’s
designed to support one-liner programs
standard feature of Unix

inspired Larry Wall to write Perl

Domains: data extraction and reporting tool

Name: from its authors Aho, Weinberger, and Kernighan

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 43 / 75

AWK gcd Function

$ awk ’func gcd(p,q)
{return(q?gcd(q,(p%q)):p)}
{print gcd($1,$2)}’

12 16
4

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 75

Matlab

Designed by: Cleve Moler Appeared in: 1978
U.of New Mexico Paradigm: multi-paradigm

Extension: .m, .mat
Influenced by:

Features: matrix manipulations
plotting of functions and data

Domains: applied mathematics, image processing

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 45 / 75

Matlab gcd Function

function [gcdValue] =
greatestcommondivisor(integer1, integer2)

gcdValue = gcd(integer1, integer2);

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 46 / 75

Ada

Designed by: Jean Ichbiah Appeared in: 1980
MIL-STD-1815 Paradigm: multi-paradigm

Extension:
Influenced by: ALGOL, C++, Pascal

Features: generic program units
packages - support for data abstraction
elaborate exception handling

Domains: DoD

Contributions flexible libraries
concurrency - through the tasking model

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 47 / 75

Ada gcd Function
with Ada.Text_Io; use Ada.Text_Io;
procedure Gcd_Test is

function Gcd (A, B : Integer) return Integer is
M : Integer := A;
N : Integer := B;
T : Integer;

begin
while N /= 0 loop

T := M;
M := N;
N := T mod N;

end loop;
return M;

end Gcd;
begin

Put_Line("GCD of 100,5 is"&Integer’Image(Gcd(100, 5)));
Put_Line("GCD of 5,100 is"&Integer’Image(Gcd(5, 100)));
Put_Line("GCD of 7,23 is"&Integer’Image(Gcd(7, 23)));

end Gcd_Test;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 48 / 75

C++

Designed by: Bjarne Stroustrup Appeared in: 1983
Bell Labs Paradigm: multi-paradigm

Extension: .h, .cpp
Influenced by: Ada, ALGOL, C, ML

Features: large and complex language
supports both procedural and OO programming
efficient compiler to native code

Domains: systems software, application software,
embedded software

Contributions: rapidly grew in popularity

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 49 / 75

C++ gcd Function

int
gcd_iter(int u, int v) {
int t;
while (v) {

t = u;
u = v;
v = t % v;

}
return u < 0 ? -u : u; /* abs(u) */

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 50 / 75

Objective C

Designed by: Brad Cox Appeared in: 1983
Tom Love Paradigm: object-oriented
Apple Extension: .h,.m

Influenced by: C, Smalltalk

Features: C plus support for OOP based on Smalltalk
uses Smalltalk’s method calling syntax
support for reflective features
superset of C

Domains: used by Apple for systems programs

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 51 / 75

Perl

Designed by: Larry Wall Appeared in: 1987
Paradigm: multi-paradigm
Extension: .pl

Influenced by: AWK, C++, Lisp, Pascal, Smalltalk

Features: 3 distinctive namespaces, denoted in var’s name
Regular expression engine
Variables are statically typed but implicitly declared

Domains: CGI, graphics programming, system administration,
network programming, finance, bioinformatics

Backronym: Practical Extraction and Reporting Language

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 52 / 75

Perl gcd Function

sub gcd_iter($$) {
my ($u, $v) = @_;
while ($v) {

($u, $v) = ($v, $u % $v);
}
return abs($u);

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 53 / 75

Haskell

Designed by: Simon Jones Appeared in: 1990
et. al Paradigm: functional

Extension: .hs
Influenced by: Lisp, ML Scheme

Features: primary control construct is the function
non-strict semantics and strong static typing

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 54 / 75

Haskell gcd Function

gcd :: (Integral a) => a -> a -> a
gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y = gcd’ (abs x) (abs y) where
gcd’ a 0 = a
gcd’ a b = gcd’ b (a ‘rem‘ b)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 55 / 75

Python

Designed by: Guido van Rossum Appeared in: 1991
Paradigm: multi-paradigm
Extension: .py

Influenced by: ALGOL, C, C++, Haskell, Java, Lisp, Perl

Features: OO interpreted scripting language
type checked but dynamically typed
supports lists, tuples, and hashes

Domains: CGI programming, form processing

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 56 / 75

Python gcd Function

def gcd_iter(u, v):
while v:

u, v = v, u % v
return abs(u)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 57 / 75

Lua

Designed by: R. Ierusalimschy Appeared in: 1993
W. Celes Paradigm: multi-paradigm
L.H. de Figueiredo

Influenced by: C++, Modula, Scheme

Features: OO interpreted scripting language
type checked but dynamically typed
single data structure – table
easily extendable

Domains: CGI programming, form processing

Means: “moon” in Portuguese

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 58 / 75

Lua gcd Function

function gcd(a,b)
if b ˜= 0 then

return gcd(b, a % b)
else

return math.abs(a)
end

end

function demo(a,b)
print("GCD of "..a.." and "..b.." is "..gcd(a, b))

end

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 59 / 75

JavaScript

Designed by: Brendan Eich Appeared in: 1994
Netscape Paradigm: multi-paradigm

Extension: .js
Influenced by: C, Java, Perl, Python, Scheme

Features: client-side HTML-embedded scripting language
purely interpreted

Domains: dynamic HTML documents

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 60 / 75

JavaScript gcd Function

function gcd(a,b) {
if (a < 0) a = -a;
if (b < 0) b = -b;
if (b > a) {var temp = a; a = b; b = temp;}
while (true) {

a %= b;
if (a == 0) return b;
b %= a;
if (b == 0) return a;

}
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 61 / 75

PHP

Designed by: Rasmus Lerdorf Appeared in: 1995
Paradigm: imperative, OO
Extension: .php

Influenced by: C, C++, Java, Perl

Features: server-side scripting language
purely interpreted

Domains: form processing and database access

Acronym: PHP: Hypertext Preprocessor

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 62 / 75

PHP gcd Function

function gcdIter($n, $m) {
while(true) {

if($n == $m) {
return $m;

}
if($n > $m) {

$n -= $m;
} else {

$m -= $n;
}

}
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 63 / 75

Ruby

Designed by: Yukihiro Matsumoto Appeared in: 1995
Paradigm: multi-paradigm
Extension: .rb

Influenced by: Ada, C++, Lisp, Perl, Python, Smalltalk

Features: pure object-oriented scripting language
purely interpreted
operators are implemented as methods

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 64 / 75

Ruby gcd Function

def gcd(u, v)
u, v = u.abs, v.abs
while v > 0

u, v = v, u % v
end
u

end

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 65 / 75

Java

Designed by: James Gosling Appeared in: 1995
Sun Microsystems Paradigm: multi-paradigm

Extension: .java, .class
Influenced by: Ada, C++, C#, Pascal, Smalltalk

Features: supports only OOP
references, but not pointers
support for applets
supports concurrency
Java Virtual Machine concept
libraries for applets, GUIs, database access
widely used for Web programming

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 66 / 75

Java gcd Function

public static long gcd(long a, long b){
long factor= Math.max(a, b);
for(long loop= factor;loop > 1;loop--){

if(a % loop == 0 && b % loop == 0){
return loop;

}
}
return 1;

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 67 / 75

OCaml

Designed by: Xavier Leroy Appeared in: 1996
et al. Paradigm: functional, OO

Influenced by: Standard ML

Features: large standard library
robust object-oriented programming constructs
static type system

Name: Objective Caml

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 68 / 75

Caml gcd Function

let rec gcd a b =
if a = 0 then b
else if b = 0 then a
else if a > b then gcd b (a mod b)
else gcd a (b mod a)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 69 / 75

C#

Designed by: Microsoft Appeared in: 2000
Paradigm: multi-paradigm
Extension: .cs

Influenced by: C++, Java, Pascal

Features: includes pointers, delegates, properties,
enumeration types, limited kind of dynamic typing,
anonymous types

Domains: .NET

Contributions: is evolving rapidly

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 70 / 75

C# gcd Function
private static int gcd(int a, int b)
{

int t;
// Ensure B > A
if (a > b)
{

t = b;
b = a;
a = t;

}
// Find
while (b != 0)
{

t = a % b;
a = b;
b = t;

}
return a;

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 71 / 75

Go

Designed by: Robert Griesemer Appeared in: 2009
et al. Paradigm: imperative
Google Extension: .go

Influenced by: C, Modula, Pascal, Python

Features: loosely based on C, but also quite different
does not support traditional OOP
goroutines, small lightweight threads
visibility according to capitalization
efficient, latency-free garbage collection
line-ending semicolons are optional
designed for exceptionally fast compiling times

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 72 / 75

Go gcd Function

package main

import "fmt"

func gcd(x, y int) int {
for y != 0 {

x, y = y, x%y
}
return x

}

func main() {
fmt.Println(gcd(33, 77))
fmt.Println(gcd(49865, 69811))

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 73 / 75

Rust

Designed by: Graydon Hoare Appeared in: 2012
et al. Paradigm: multi-paradigm
Mozilla Research Extension: .rs

Influenced by:

Features: designed for large client and server programs
syntax similar to subset of C and C++
memory safe (no null or dangling pointers
type system supports ’traits’, inspired by Haskell
features type inference
supports concurrency
performance of safe code is slower than C++
sponsored by Mozilla and Samsung
open community project

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 74 / 75

Rust gcd Function

fn gcd(mut m: int, mut n: int) -> int {
while m != 0 {

let temp = m;
m = n % temp;
n = temp;

}
n.abs()

}

fn gcd(m: int, n: int) -> int {
if m == 0

{ n.abs() }
else

{ gcd(n % m, m) }
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 75 / 75

