
COMMUNICATIONS OF THE ACM September 1997/Vol. 40, No. 9 101

W
hat is a process? A
process defines
specifically who does
what, when, and how.

The Webster dictionary defines
it is a “particular method of
doing something, generally
involving a number of steps or
operations.” I want to emphasize
that a process implements one
part of a method, such as an
object modeling technique
(OMT) [5], in sufficient detail
such that the results are repeat-
able by any number of similarly
trained individuals following the
steps of the process. However,
processes are generally locally
documented implementations of
methods. Processes tell which
tools will be used to implement
a method.

Processes generally define what
needs to be done, but they are
only one part of what a method
defines. They may define a set of
high-level or low-level activities
that need to be performed during
the software development effort.
They are usually partially ordered
by time (for instance, activity A
must proceed activities B and C
and activities B and C must be

done concurrently). Software
processes may define a set of
reviews or they may define how a
review is to be conducted. Any
complete set of processes will list
the deliverables resulting from
each process. Processes put
object-oriented techniques to
work.

Where a method or a tech-
nique defines the theory behind
an approach, a process addresses
the practicalities of using the
method in a given development
environment. A technique
explains the ideas applied while a
process lays out the concrete
actions that take place. A tech-
nique can only predict results
while a process might define the
metrics to be used to verify the
result.

The Manager’s Roles and
Responsibilities
OO techniques by themselves do
not include progress reviews,
extensive documentation, or bi-
directional requirements trace-
ability although such features are
necessary to make any significant
development successful. How-
ever, they definitely include con-

cepts, principles, and descriptive
ways of doing things.

To address such topics, a
detailed, repeatable documenta-
tion that can guide and control
our work is needed [1]. A process
is the fundamental way of imple-
menting the link between OO
techniques and controlled devel-
opment. Remember, a process is
a description of the steps
required to implement some
goal, usually part or all of a
method. Processes transform
textbook theories and method
descriptions into real action
steps. Documented processes
enable the development team to
consistently apply and benefit
from the application of OO tech-
niques. It is essential to realize
processes are codified steps
describing a particular organiza-
tion’s way of achieving develop-
ment goals. This means processes
cannot be acquired off the shelf,
but must rather be developed
over time.

Management must support the
move to process-based develop-
ment. This means processes must
not be abandoned when schedule
pressures loom or costs initially

Software Development Process:

A Necessary Evil

PA
U

L
W

A
TS

O
N

Mohamed E. Fayad

slow some development phases.
Processes are especially important
for new OO development teams.
Even in a well-organized group,
new methods and tools introduce
confusion. Individuals will often
perceive themselves as less skilled
than before and the routines
already established with others
will certainly change.

Management must make sure
that establishing process-
oriented development will allow
team members to contribute pos-

itively. It is management’s job to
show how processes will help
achieve the overall goals of the
organization and how each team
and its members fit into the big
picture. But perhaps the hardest
challenge management has in
promoting processes is to make
sure people do not view processes
as weapons to be used against
them. This requires a change in
management’s thinking from the
individual as basic unit to the
team, and from individual perfor-
mance measurement to process
measurement. Process measure-
ment will highlight problems
and errors in the process. If these

measurements are used for per-
formance reviews rather than
process improvement indicators,
the process is doomed to fail.

The Top Five Excuses for No
Process Documentation
Process orientation is hard to
adopt. Processes are commonly
seen as extra bureaucracy only
serving to make a project less
effective. In far too many cases
this perception is correct, and
process adoption is resisted. Even

if the organization is sincerely
committed to adopting a process-
oriented approach, many excuses
will be offered. The following is
a list of some. There are many
others that will require much
effort to overcome.

1. “My team is smart; they’ve
been programming for years.”
This excuse shows a funda-
mental misunderstanding of a
process. Experienced teams
benefit as much or more from
repeatable processes as do new
teams. While an experienced
group may have a perfectly
acceptable approach in doing

certain tasks, the approach is
dependent on the particular
knowledge of particular peo-
ple. The approach is not scal-
able, transferable, or
measurable. Environmental
changes can cause undue diffi-
culty to the team without an
explicit process.

2. “We’re too busy. No time for
processes.” This might be true,
but implementing processes
will reduce the time it takes to
perform some tasks. On a
larger scale, process improve-
ment should shorten the
development cycle.

3. “Maybe on a new start, but
my program has been around
for years.” What better oppor-
tunity can there be? For a
team that knows its goals,
implementing processes is
easier. The team understands
what must be done and how
to do it. Documenting new
methods and techniques is
considerably harder.

4. “Processes are busywork no
one ever reads.” This is
unfortunately true in far too
many organizations. If the
only purpose of the process
documentation is to sit on a
shelf, then don’t bother
implementing processes. But
if the team understands the
processes are for them, the
measurements they make
will mostly be for process
improvement. If the team
realizes processes allow them
to improve their own work,
then processes are not busy-
work.

5. “Software is a creative process,
not an assembly line.” This is
one of the hardest excuses to
overcome because it requires
substantial re-education
throughout the organization.

102 September 1997/Vol. 40, No. 9 COMMUNICATIONS OF THE ACM

• Theoretical

• Ideas

• Predictions

• Practical

• Concrete Actions

• Metrics

The differences between a method and a process

Method Process

At its core is the misconception
techniques such as software
development involving creativ-
ity cannot be documented. I
would argue that without
defined processes the develop-
ment team cannot consistently
apply any development
approach. Indeed, the Software
Engineering Institute (SEI)
strongly advocates this position.
Without the process, developers
freely apply their own unique
version of software develop-
ment. This approach becomes
especially risky when imple-
menting a new OO technique.
Core development processes
should exist before starting a
project, and should be continu-
ously tuned as the program
matures.

Where to Start and How?
Very few organizations have
established a set of defined
processes for software develop-
ment. Groups that have processes
often don’t spend the time and
money to do real process assess-
ment and improvement. It is
common to see processes passed
off as merely lists of rules in a
somewhat arbitrary order. In
many organizations, especially
those trying to conform to the
SEI’s Capability Maturity Model
(SEI/CMM), turning everything
into a process has become a major
goal. I believe this is the wrong
approach. Software development
organizations exist to develop
software rather than processes.

The intent of the SEI/CMM,
1

and other process improvement
programs, such as Bootstrap [3]
and SPICE [2], is not to change

focus from developing software to
developing processes, but instead
to use processes and process
improvement to better develop
software. Because of the hype and
pressure to improve processes, it
is easy to move into “process
paralysis.” Process paralysis, as
defined by Yourdon [6], is when
the project team becomes thor-
oughly overwhelmed by the new
technology and gradually end up
spending all of its time (a) trying
to understand the new technol-
ogy, (b) arguing about the merits
of the new technology, or (c) try-
ing to make it work. At the
micro (detailed) process level,
this paralysis can cause groups to
forget they are developing soft-
ware rather than processes.

References

1. Fayad, M.E. et al. Transition to object-ori-
ented software development. Commun. ACM 2,
9 (Feb. 1996), 108–121.

2. Dorling A. SPICE—Software process
improvement and capability determination.
Softw. Qual. J. 2, (1993), 209–224.

3. Kuvaja P. et al. Software Process assessment and
Improvement, The BOOTSTRAP Approach.
Blackwell Business, Oxford, UK, 1994.

4. Paulk M.C., Weber C.V., Chrissis M.B. The
Capability Maturity Model: Guidelines for
Improving the Software Process. Addison Wesley,
Reading, Mass, 1995.

5. Rumbaug, J. et al. Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ,
1991.

6. Yourdon E. A Game Plan for Technology Trans-
fer, Tutorial: Software Engineering Project Man-
agement. R.H. Thayer, ed. Computer Society
Press, 1987 .

Mohamed E. Fayed (fayad@cs.unr.edu)
is an associate professor at the University of
Nevada.

© ACM 0002-0782/97/0900 $3.50c

COMMUNICATIONS OF THE ACM September 1997/Vol. 40, No. 9 103

1SEI/CMM, called Software CMM, consists of five
maturity levels: Initial, Repeatable, Defined, Managed,
and Optimized. The Software CMM levels have become
part of management and practitioner language (see [4]).

