CHEM 101+103 SECOND SEMISTER 1431-1432H FINAL EXAM SOLUTINS

1. The mass in grams of platinum "Pt" that contains 4.6×10^{22} platinum atoms is:
A) $\mathbf{1 4 . 5}$
B) $\mathbf{1 4 . 9}$
C) $\quad \mathbf{1 3 . 6}$
D) 12.4
$\mathrm{m}=\mathbf{n} \times \mathbf{M}=\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{A}}} \times \mathbf{M}=\frac{4.6 \times 10^{22}}{6.022 \times 10^{23}} \times 195.1=14.9 \mathrm{~g}$
2. The mass in grams of $\mathrm{Na}_{3} \mathrm{~N}$ that contains 1.3×10^{23} sodium " Na " atoms is:
A) 6.0
B) $\quad 7.0$
C) 8.0
D) $\quad 9.0$
$1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{~N}$ contains 3 mol Na
n mol Na ${ }_{3} \mathrm{~N}$ contains $\frac{1.3 \times 10^{23}}{6.022 \times 10^{23}}=0.216 \mathrm{~mol} \mathrm{Na}$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=\frac{0.216 \times 1}{3} \times 82.71=5.995 \mathrm{~g}$
3. The percent by mass of phosphorous " P " in the phosphate rock $\mathrm{Ca}_{10} \mathrm{~F}_{2}\left(\mathrm{PO}_{4}\right)_{6}$ is:
A) 15.7
B) $\quad \mathbf{1 7 . 2}$
C) $\quad 18.4$
D) 20.6
$\mathrm{P} \%=\frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{M}_{\text {compound }}} \times 100=\frac{185.82}{1008.62} \times 100=18.4 \%$
4. According to the following equation:
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathbf{2 H C l}$
The mass in grams of HCl which can be prepared (theoretically) when reacting 150.0 g of NaCl with 150.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A) 79.8
B) $\mathbf{1 0 0 . 4}$
C) $\quad 85.7$
D) 93.6

SOLUTION						
2 NaCl		$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	+	2 HCl
		1		1		2
$\frac{150}{58.44}=2.566$		150				n
		$\begin{gathered} 98.086 \\ \underline{1.53}=1.53 \end{gathered}$				2.566
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=2.566 \times 36.458=93.6 \mathrm{~g}$						2.566

5. The volume in ml of 0.251 M KI solution that contains 13.5 g of KI is:
A) 324
B) 345
C) 363
D) $\mathbf{3 8 2}$
SOLUTION
$\mathrm{V}=\frac{\mathrm{n}}{\mathrm{C}} \frac{13.5 \div 166}{58.44}=0.324 \mathrm{~L}=324 \mathrm{~mL}$
6. A closed gas cylinder contains exactly equal masses of the three gases $\mathrm{CO}_{2}, \mathbf{N}_{2}$ and O_{2}. Which one of the following statements is true?
A) The three partial pressures for the three gases are exactly equal.
B) The partial pressure of the CO_{2} gas is the highest.
C) The partial pressure of the \mathbf{N}_{2} gas is the highest.
D) The partial pressure of the O_{2} gas is the highest.

SOLUTION

Because " $P_{i}=X_{i} \times P_{T}$ ", and $M_{\text {nitr. }}<M_{\text {oxyg. }}<M_{\text {carb.diox., }} X_{\text {nitr. }}$ is the highest. Consequently, \mathbf{N}_{2} partial pressure is the highest.
7. Which of the following pairs of gas mixtures can be most easily separated by gaseous effusion?
A) O_{2} and Ar
B)
O_{2} and $\mathrm{N}_{2} \quad$ C)
Ne and Ar D)
D) Ne and He

SOLUTION

As ratios between gases molar masses are wider, differences in effusion rates are wider, and separation between gases is easier. Therefore, Ne and He pair is the easier to separate
Ar: $\mathrm{O}_{2}=40: 32=1.25$
$\mathrm{O}_{2}: \mathrm{N}_{2}=32: 28=1.14$
$\mathrm{Ar}: \mathrm{Ne}=40$: $20=2.00$
$\mathrm{Ne}: \mathrm{He}=40: 4=4$
8. The molecular mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of a gas for which 0.125 g occupies 93.3 mL at STP is:
A) 44
B) 30
C) 71
D) $\mathbf{2 8}$
$\mathrm{M}=\frac{\mathrm{dRT}}{\mathrm{P}}=\frac{0.125 \times 0.0821 \times 273}{0.0933 \times 1}=30 \mathrm{~g} / \mathrm{mol}$
9. The amount of heat (in J) required to raise the temperature of 350.0 g of copper from $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ is: (the specific heat of copper is $0.385 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$)
A) 8085
B) $\mathbf{7 6 7 6}$
C) $\mathbf{6 8 0 6}$
D) 6485
$\mathrm{q}=\mathrm{mS} \Delta \mathrm{T}=350 \times 0.385 \times(85-25)=8085 \mathrm{~J}$
10. Given the following thermochemical equations:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta \mathrm{H}^{0}=-1411 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{gr})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{0}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{0}=-286 \mathrm{~kJ}$

The standard enthalpy of formation (in kJ) of ethylene " $\mathrm{C}_{2} \mathrm{H}_{4}$ " is:
A) $\mathbf{8 7}$
B) $\quad \mathbf{- 8 7}$
C) 52
D) $\quad-68$

SOLUTION	
$2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{L}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=+1411 \mathrm{~kJ}$
$2 \mathrm{C}(\mathrm{gr})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-787 \mathrm{~kJ}$
$\mathbf{2 H} \mathbf{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{L})$	$\Delta \mathrm{H}=-572 \mathrm{~kJ}$
$\mathbf{2 H} \mathbf{2}(\mathrm{g})+\mathbf{3 C}(\mathrm{gr}) \rightarrow \mathbf{2} \mathrm{C}_{2} \mathbf{H}_{4}(\mathrm{~g})$	$\Delta \mathrm{H}=+52 \mathrm{~kJ}$

11. The internal energy $\mathbf{E}(\mathbf{U})$ of the system is always of a positive value if the system:
A) Absorbs heat and does work.
B) Gives off heat and does work.
C) Gives off heat and has work done on it.
D) Absorbs and has work done on it.

SOLUTION

Because $\Delta \mathbf{U}=\mathbf{q}+\mathbf{w}, \Delta \mathbf{U}$ will be always positive when \mathbf{q} is positive (system absorbs heat), and w is positive (work is done on the system).
12. The molality of a $\mathbf{2 0 \%}$ by mass ammonium sulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ aqueous solution is:
A) 2.15 m
B) $\quad 1.89 \mathrm{~m}$
C) $\quad 1.25 \mathrm{~m}$
D) $\quad 0.87 \mathrm{~m}$
molality $=\frac{\mathrm{n}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{20 \div 132.154}{80+1000}=1.89 \mathrm{molal}$
13. What is the freezing point of an aqueous solution of a nonvolatilenonelectrolyte solute that has a boiling point of $\mathbf{1 0 3 . 8}$ (for water $K_{f}=1.86$ ${ }^{\circ} \mathrm{C} / \mathrm{m}$ and $\left.\mathrm{K}_{\mathrm{b}}=0.52{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$?
A) $-13.6{ }^{\circ} \mathrm{C}$
B)
$-11.2^{\circ} \mathrm{C}$
C) $\quad-9.8^{\circ} \mathrm{C}$
D) $\quad-7.7^{\circ} \mathrm{C}$
molality $=\frac{\mathrm{n}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{20 \div 132.154}{80+1000}=1.89 \mathrm{molal}$
molality $=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{3.8}{0.52}=7.308$ molal
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}=13.59^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=-13.59^{\circ} \mathrm{C}$
14. The observed osmotic pressure (in atm) of a 0.01 M magnesium sulfate " MgSO_{4} " solution at $\mathbf{2 5}^{\circ} \mathrm{C}$ (knowing that the van Hoff factor for $\mathbf{M g S O}_{4}$ in this solution = 1.3) is:
A) 0.488
B) $\mathbf{0 . 4 2 5}$
C) 0.318
D) 0.244
$\Pi_{\text {obs }}=\mathrm{i} \Pi_{\text {theor }}=\mathrm{i} \times \mathrm{CRT}=1.3 \times 0.01 \times 0.0832 \times 298=0.318 \mathrm{~atm}$
15. The reaction $A+2 B \rightarrow$ product is second order in A and first order in B. Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is tripled.
A) 6
B) 12
C) 9
D) 16
$(\text { rate })_{1}=k_{1}[A]^{2}[B] \quad$ and $\quad(\text { rate })_{2}=k_{2}[2 A]^{2}[3 B]$
$\frac{(\text { rate })_{2}}{(\text { rate })_{1}}=\frac{\mathrm{k} \times 4 \times[\mathrm{A}]^{2} \times 3 \times[\mathrm{B}]}{\mathrm{k} \times[\mathrm{A}]^{2} \times[\mathrm{B}]}=\mathbf{1 2}$
16. The radioactive $\mathbf{C}-14$ decays following first order kinetics having a rate constant $=1.2 \times 10^{-4}$ year at $25^{\circ} \mathrm{C}$. The half life period $\left(\mathrm{t}_{1 / 2}\right)$ for $\mathrm{C}-14$ decay rate at $25^{\circ} \mathrm{C}$ is:
A) 12000 y
B)
10858 y
C) 8985 y
D) 5775 y
$\mathrm{t}_{0.5}=\frac{0.693}{\mathrm{k}}=\frac{0.693}{1.2 \times 10^{-4}}=5775 \mathrm{y}$
17. The isomerization reaction of methyl isocyanide $\left(\mathrm{CH}_{3} \mathbf{N C}\right)$ follows first order kinetics. What is the slope of an Arhenius plot knowing that the rate constant $k=0.29 \mathrm{~min}^{-1}$ at 500 K and at 600 K ? (the rate constant $k=16.3 \mathrm{~min}^{-}$ ${ }^{1}$)
A) 5.06×10^{3}
B) -5.06×10^{2}
C) -1.2×10^{4}
D) $\quad-8.18 \times 10^{4}$
$\ln k=\ln A-\frac{E_{a}}{R T} \quad, \quad$ slope $=-\frac{E_{a}}{R}$
$\ln \frac{\mathrm{K}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \times \mathrm{T}_{2}}\right)$
$\ln \frac{16.3}{0.29}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{600-500}{500 \times 600}\right)$
$\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}=1.2 \times 10^{4}$
slope $=-1.2 \times 10^{4}$
18. 2.5 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 4.5 moles of H_{2} were placed in an 1.0 L reaction vessel at $420^{\circ} \mathrm{C}$. After the following reaction reached equilibrium, $\mathbf{1 . 5}$ moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ remained:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The equilibrium constant K_{c} for this reaction at $420^{\circ} \mathrm{C}$ is:
A) $\mathbf{8 . 0}$
B) 21.3
C) 32.0
D) $\mathbf{4 2 . 6}$

$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+	$3 \mathrm{H}_{2}$	\rightarrow	SOLUTION		
				2 Fe	$+$	$\mathbf{3 H 2} \mathbf{}$
		3		2		3
-		$-3 \mathrm{x}$		$+2 \mathrm{x}$		$+3 \mathrm{x}$
$2.5-\mathrm{x}$		$4.5-3 \mathrm{x}$		+2x		$+3 \mathrm{x}$
$2.5-\mathrm{x}=1.5$						
$\mathrm{x}=1$						
$\mathbf{K}=\frac{\left[\mathrm{H}_{2}\right.}{\left[\mathrm{H}_{2}\right]}$	${ }^{3}=$	$\frac{(3)^{3}}{(1.5)^{3}}=8$				

19. At temperature of $500^{\circ} \mathrm{C}$, the equilibrium constant for the following nitrogen fixation reaction is $K_{c}=6.0 \times 10^{-2}$:

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If $0.25 \mathrm{~mol} / \mathrm{L}$ of H_{2} and $0.05 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3}$ are present at equilibrium, what is the concentration of $\mathrm{N}_{2}(\mathrm{in} \mathrm{mol} / \mathrm{L})$ at equilibrium?
A) 3.25
B) $\quad 2.67$
C) 0.85
D) 0.75
$\mathbf{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}=\frac{(0.05)^{2}}{(0.25)^{2}\left[\mathrm{~N}_{2}\right]}=\mathbf{6} \times 10^{-2}$
$\left[\mathrm{N}_{2}\right]=2.67 \mathrm{~mol} / \mathrm{L}$
20. For the following reaction occurring at 500 K :

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=1.7 \times 10^{-2}
$$

The equilibrium constant K_{c} for this reaction at 500 K is:
A) $\mathbf{6 . 9 8}$
B) $\quad 0.69$
C) $\quad \mathbf{5 8 . 8 2}$
D) $\quad 4.14 \times 10^{-4}$
$\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}=1.7 \times 10^{-2} \times(0.0821500)=4.4 \times 10^{-4}$
21. Consider the following equilibria occurring at 700 K :

$$
\begin{array}{ll}
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c} 1}=\mathbf{2 . 3} \times 10^{-7} \\
\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c} 2}=?
\end{array}
$$

The value of the equilibrium constant $K_{c 2}$ is:
A) $\mathbf{1 2 7 5}$
B)
C)
2300
D) 4600
$\mathrm{K}_{\mathrm{c} 2}=\frac{1}{\left.\mathrm{~K}_{\mathrm{c} 1}\right)^{0.5}}=\frac{1}{\left(2.3 \times 10^{-7}\right)^{0.5}}=2085$
22. For the following reaction, $K_{c}=2.5 \times 10^{-4}$ at $100^{\circ} \mathrm{C}$.
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The total gas pressure (in atm) at equilibrium is:
A) 0.97
B) $\mathbf{0 . 8 4}$
C) $\mathbf{1 . 2 6}$
D) $\quad 1.42$

$$
\begin{aligned}
& \text { SOLUTION } \\
& \mathbf{K}_{\mathrm{p}}=2.5 \times 10^{-4}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{2}=\left(2.5 \times 10^{-4}\right)(0.0821 \times 373)^{2}=0.234 \\
& \mathrm{~K}_{\mathrm{p}}=\mathbf{P}_{\mathrm{CO}_{2}} \times \mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}, \mathrm{P}_{\mathrm{CO}_{2}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=(0.234)^{0.5}=0.484 \mathrm{~atm} \\
& \mathbf{P}_{\mathrm{T}}=\mathbf{P}_{\mathrm{CO}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=2 \times 0.484=0.968 \mathrm{~atm}
\end{aligned}
$$

23. For the following equilibrium:

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-180 \mathrm{~kJ}
$$

Which of the following statements is true?
A) Higher total pressure shifts the equilibrium to the left.
B) Higher total pressure shifts the equilibrium to the right.
C) K_{p} at 1000 K is larger than K_{p} at 2000 K .
D) K_{p} at 1000 K is less than K_{p} at 2000 K .

$$
\begin{aligned}
& \text { SOLUTION } \\
& \text { Because number of gases' moles in both sides are equal, change in pressure } \\
& \text { will not affect equilibrium. And because the reaction is endothermic from } \\
& \text { right to left, } K_{p} \text { will decrease as temperature increases. }
\end{aligned}
$$

24. The conjugated acid of NH_{2}^{-}is:
A) NH_{4}^{+}
B) NH_{3}
C) $\quad \mathrm{HNO}_{2}$
D) $\quad \mathrm{HNO}_{3}$
SOLUTION

Because the conjugate acid has one \mathbf{H}^{+}more than its conjugate base, $\mathbf{N H}_{3}$ is the conjugate acid of NH_{2}^{-1}.
25. Lactic acid is a weak monoprotic acid that has $K_{a}=8.0 \times 10^{-4}$. The $\mathbf{p H}$ value of a 0.35 M lactic acid is:
A) $\mathbf{1 . 7 8}$
B) $\mathbf{2 . 6 4}$
C)
3.85
D) 4.25
$[\mathrm{H}]^{+}=\sqrt{ } \mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}=\sqrt{ } \mathbf{8} \times 10^{-4} \times \mathbf{0 . 3 5}=\mathbf{0 . 0 1 7}$ molar
$\mathrm{pH}=-\log [\mathrm{H}]^{+}=-\log 0.017=1.78$
26. For nitrous acid " HNO_{2} ", $\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}$, the K_{b} value for NO_{2}^{-}is:
A) 5.5×10^{-8}
B)
4.5×10^{-18}
C) $\quad 2.2 \times 10^{-11}$
D) $\quad 5.5 \times 10^{-10}$
$\mathrm{K}_{\mathrm{b}}=\frac{1 \times 10^{-14}}{K_{a}}=\frac{1 \times 10^{-14}}{4.5 \times 10^{-4}}=2.22 \times 10^{-11}$
27. The $\mathbf{p H}$ of $\mathbf{1 . 2} \mathbf{M}$ ethylamine ${ } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ " (weak base) solution is 12.41. The K_{b} value of ethylamine is:
A) 4.5×10^{-10}
B) $\quad 1.8 \times 10^{-11}$
C) 1.2×10^{-9}
D) $\quad 5.5 \times 10^{-4}$

$$
\begin{array}{|l}
\hline \text { SOLUTION } \\
\mathrm{pOH}=14-\mathrm{pH}=14-12.41=1.59,\left[\mathrm{OH}^{-1}\right]=\mathbf{0 . 0 2 5 7} \text { molar } \\
{\left[\mathrm{OH}^{-1}\right]=\mathbf{0 . 0 2 5 7}=\sqrt{ } \mathrm{K}_{\mathrm{b}} \mathbf{C}_{\mathrm{b}}=\sqrt{ } \mathrm{K}_{\mathrm{b}} \times \mathbf{1 . 2}, \mathrm{K}_{\mathrm{b}}=\mathbf{5 . 5} \times 10^{-4}}
\end{array}
$$

28. $\quad \mathrm{K}_{\mathrm{a}}$ for acetic acid ${ }^{\prime} \mathrm{CH}_{3} \mathrm{COOH}^{\prime}=1.8 \times 10^{-5}$. In which one of the following solutions will acetic acid have the greatest degree of ionization:
A) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$.
B) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ plus 0.1 M HCl .
C) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ plus $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$.
D) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ plus $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$.

SOLUTION

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Solution in choice B contains more $\mathrm{H}_{3} \mathrm{O}^{+}$than solution in A , and solutions in choices \mathbf{C} and D contains more $\mathrm{CH}_{3} \mathrm{COO}^{-}$than solution in A . All of that shifts equilibrium position toward left, which in turn decreases the ionization degree of $\mathrm{CH}_{3} \mathbf{C O O H}$. Therefore acetic acid in choice A has the greatest degree of ionization.
29. The pH value of $8.5 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ "strong base" solution is:
A) 1.07
B) $\quad 0.77$
C) $\quad 12.93$
D) $\quad \mathbf{1 0 . 2 3}$

SOLUTION
$\left[\mathrm{OH}^{-1}\right]=\mathrm{n} \mathrm{C}_{\mathrm{b}}=1 \times 8.5 \times 10^{-2}=8.5 \times 10^{-2}$ molar
$\mathrm{pOH}=-\log 8.5 \times 10^{-2}=1.07, \mathrm{pH}=14-1.07=12.93$
30. Calculate the $\mathbf{p H}$ of a buffer solution that is prepared by dissolving $\mathbf{0 . 4}$ mol of ammonia " NH_{3} " and 0.6 mol ammonium chloride " $\mathrm{NH}_{4} \mathrm{Cl}$ " in enough water to make 500 mL of solution
$\mathrm{NH}_{3}=1.8 \times 10^{-5}$):
A) 4.9
B) $\quad 9.1$
C) 10.3
D) $\quad 3.7$

SOLUTION

$\left[\mathrm{NH}_{3}\right]=\frac{\mathrm{n}_{2}}{\mathrm{~V}}=\frac{0.4}{0.5}=0.8 \mathrm{molar} \quad, \quad\left[\mathrm{NH}_{4}^{+}\right]=\frac{\mathrm{n}_{2}}{\mathrm{~V}}=\frac{0.6}{0.5}=1.2 \mathrm{molar}$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { base }]}=1.8 \times 10^{-5}+\frac{1.2}{0.8}=4.92$
$\mathrm{pH}=14-4.92=9.08$

