CHEM 101+103 SECOND SEMISTER 1431-1432H FINAL EXAM SOLUTINS

1. The mass in grams of platinum "Pt" that contains 4.6×10^{22} platinum atoms is:

A)	14.5	B)	14.9	C)	13.6	D)	12.4				
				SOLUTIO	N						
m =	$\mathbf{m} = \mathbf{n} \times \mathbf{M} = \frac{N}{N_A} \times \mathbf{M} = \frac{4.6 \times 10^{22}}{6.022 \times 10^{23}} \times 195.1 = 14.9 \text{ g}$										

2. The mass in grams of Na₃N that contains 1.3×10²³ sodium "Na" atoms is:

A)	6.0	B)	7.0	C)	8.0	D)	9.0						
				SOLUTIO	ON								
1 m	1 mol Na ₃ N contains 3 mol Na												
n n m =	nol Na ₃ = n × M	N contains $\frac{1}{6.1}$ [= $\frac{0.216 \times 1}{3} \times \frac{1}{3}$	$\frac{1.3 \times 10^{23}}{022 \times 10^{23}}$ $82.71 = 5$	= 0.216 mol 1 5.995 g	Na								

3. The percent by mass of phosphorous "P" in the phosphate rock Ca₁₀F₂(PO₄)₆ is:

A)	15.7	B)	17.2	C)	18.4	D)	20.6
				SOLUTIC	N		
P%	$h = \frac{M_P}{M_{compound}}$	$\frac{1}{100} \times 100 =$	$\frac{185.82}{1008.62} \times 1$	00 = 18.4%			

4. According to the following equation: 2NaCl + H₂SO₄ → Na₂SO₄ + 2HCl The mass in grams of HCl which can be prepared (theoretically) when reacting 150.0 g of NaCl with 150.0 g of H₂SO₄ is:

A) 79.8	B)	100.4		C)	85.7		D)	93.6				
SOLUTION												
2NaCl	+ H	I_2SO_4	\rightarrow	Na	2 SO 4	+	2HCl					
2		1		1			2					
$\frac{150}{58.44} = 2.566$	150 98.08	$\frac{1}{36} = 1.53$					n					
$\frac{2.566}{2} = 1.283$	<u>1.53</u> 1	$\frac{3}{3} = 1.53$				n =	= 2.566					
$\mathbf{m} = \mathbf{n} \times \mathbf{M} = 2$	$2.566 \times \overline{3}$	6.458 = 93	.6 g									

5. The volume in ml of 0.251 M KI solution that contains 13.5 g of KI is:

A)	324	B)	345	C)	363	D)	382
			SO	LUTIO	N		
V =	$=\frac{n}{C}$ $\frac{13.5 \div 166}{58.44} =$	0.324 I	L = 324 mL				

- 6. A closed gas cylinder contains exactly equal masses of the three gases CO₂, N₂ and O₂. Which one of the following statements is true?
 - A) The three partial pressures for the three gases are exactly equal.
 - B) The partial pressure of the CO₂ gas is the highest.
 - C) The partial pressure of the N₂ gas is the highest.
 - **D)** The partial pressure of the O_2 gas is the highest.

7. Which of the following pairs of gas mixtures can be most easily separated by gaseous effusion?

A)	O ₂ and Ar	B)	O ₂ and N ₂	C)	Ne and Ar	D)	Ne and He						
	SOLUTION												
As ratios between gases molar masses are wider, differences in effusion rates													
are	wider, and so	eparati	on between ga	ses is e	asier. Therefor	e, Ne :	and He pair						
is t	he easier to se	parate	•				-						
Ar	$: O_2 = 40 : 32$	= 1.25											
O ₂	$: N_2 = 32 : 28$	= 1.14											
Ar	: Ne = 40 : 20	= 2.00											
Ne	: He = 40 : 4 =	= 4											

8. The molecular mass (in g mol⁻¹) of a gas for which 0.125 g occupies 93.3 mL at STP is:

A)	44	B)	30	C)	71	D)	28			
				SOLUTIO	DN					
M =										
141 -	Р	0.0933 × 1								

9. The amount of heat (in J) required to raise the temperature of 350.0 g of copper from 25°C to 85°C is: (the specific heat of copper is 0.385 J/g °C)

A) 8	8085	B)	7676	C)	6806	D)	6485				
SOLUTION											
q = n	$q = mS \Delta T = 350 \times 0.385 \times (85 - 25) = 8085 J$										

10. Given the following thermochemical equations: $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$ $\Delta H^0 = -1411 \text{ kJ}$ $C(gr) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^0 = -393.5 \text{ kJ}$ $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ $\Delta H^0 = -286 \text{ kJ}$ The standard enthalpy of formation (in kJ) of ethylene "C₂H₄" is:

A) 87 B) -87 C) 52 D) -68

SOLUTI	ON	
$2CO_2(g) + 2H_2O(L) \rightarrow C_2H_4(g) + 3O_2(g)$	$\Delta H = +1411 \text{ kJ}$	
$2C(gr) + 2O_2(g) \rightarrow 2CO_2(g)$	$\Delta \mathbf{H} = -787 \ \mathbf{kJ}$	
$2\mathrm{H}_2(g) + \mathrm{O}_2(g) \to 2\mathrm{H}_2\mathrm{O}(\mathrm{L})$	$\Delta H = -572 \text{ kJ}$	
$\overline{2H_2(g) + 3C(gr) \rightarrow 2C_2H_4(g)}$	$\Delta H = +52 \text{ kJ}$	

- 11. The internal energy E (U) of the system is always of a positive value if the system:
 - A) Absorbs heat and does work.
 - **B)** Gives off heat and does work.
 - C) Gives off heat and has work done on it.
 - D) Absorbs and has work done on it.

SOLUTION Because $\Delta U = q + w$, ΔU will be always positive when q is positive (system absorbs heat), and w is positive (work is done on the system).

12. The molality of a 20% by mass ammonium sulfate (NH₄)₂SO₄ aqueous solution is:

A) 2.15 m	B)	1.89 m	C)	1.25 m	D)	0.87 m						
SOLUTION												
molelity = $\frac{n_2}{n_2} = \frac{20 \div 132.154}{n_2} = 1.80$ molel												
$m_1 + m_2$	80 ·	+1000 - 1.07	mulai									

13. What is the freezing point of an aqueous solution of a nonvolatilenonelectrolyte solute that has a boiling point of 103.8 (for water $K_f = 1.86$ °C/m and $K_b = 0.52$ °C/m)?

A) -13.6 °C B) -11.2 °C C) -9.8 °C D) -7.7 °C
SOLUTION
molality =
$$\frac{n_2}{m_1 + m_2} = \frac{20 \div 132.154}{80 + 1000} = 1.89$$
 molal
molality = $\frac{\Delta T_b}{K_b} = \frac{3.8}{0.52} = 7.308$ molal
 $\Delta T_f = K_f m = 13.59$ °C
 $T_f = -13.59$ °C

14. The observed osmotic pressure (in atm) of a 0.01 M magnesium sulfate "MgSO₄" solution at 25°C (knowing that the van Hoff factor for MgSO₄ in this solution = 1.3) is:

A)	0.488	B)	0.425	C)	0.318	D)	0.244					
	SOLUTION											
$\Pi_{obs} = i \Pi_{theor} = i \times CRT = 1.3 \times 0.01 \times 0.0832 \times 298 = 0.318 \text{ atm}$												

15. The reaction A + 2B → product is second order in A and first order in B. Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is tripled.

A) 6	B)	12	C)	9	D)	16					
SOLUTION											
$(rate)_1 = k_1 [A]^2$	B]	and	$(rate)_2 = k_2 [2]$	$\mathbf{A}]^{2}[\mathbf{3B}]$							
$\frac{(\text{rate})_2}{k} = \frac{\mathbf{k} \times 4 \times [\mathbf{A}]}{k}$	$ ^2 \times 3 \times$	$\frac{[B]}{[B]} = 12$									
$(rate)_1$ k × [A]	$ ^2 \times [B]$	14									

16. The radioactive C-14 decays following first order kinetics having a rate constant = 1.2×10^{-4} year at 25°C. The half life period (t_{1/2}) for C-14 decay rate at 25°C is:

A) 12000 y B) 10858 y C) 8985 y D) 5775 y
SOLUTION
$$t_{0.5} = \frac{0.693}{k} = \frac{0.693}{1.2 \times 10^{-4}} = 5775 y$$

17. The isomerization reaction of methyl isocyanide (CH₃NC) follows first order kinetics. What is the slope of an Arhenius plot knowing that the rate constant k = 0.29 min⁻¹ at 500 K and at 600 K? (the rate constant k = 16.3 min⁻¹)

A)
$$5.06 \times 10^{3}$$
 B) -5.06×10^{2} C) -1.2×10^{4} D) -8.18×10^{4}
SOLUTION
 $lnk = lnA - \frac{E_{a}}{RT}$, $slope = -\frac{E_{a}}{R}$
 $ln\frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{T_{2} - T_{1}}{T_{1} \times T_{2}}\right)$
 $ln\frac{16.3}{0.29} = \frac{E_{a}}{R} \left(\frac{600 - 500}{500 \times 600}\right)$
 $\frac{E_{a}}{R} = 1.2 \times 10^{4}$
 $slope = -1.2 \times 10^{4}$

2.5 moles of Fe₂O₃ and 4.5 moles of H₂ were placed in an 1.0 L reaction vessel at 420°C. After the following reaction reached equilibrium, 1.5 moles of Fe₂O₃ remained:

 $Fe_2O_3(s) + 3H_2(g) \Rightarrow 2Fe(s) + 3H_2O(g)$ The equilibrium constant K_c for this reaction at 420°C is:

A) 8.0 B) 21.3 C) 32.0 D) 42.6

	SOLUTION									
Fe ₂ O ₃	+	3H ₂	\rightarrow	2Fe	+	3H₂O				
1		3		2		3				
-X		-3 x		+2x		+3x				
2.5 - x		4.5 – 3 x		+2x		+3x				
2.5 - x =	= 1.5									
x = 1										
$\mathbf{K} = \frac{[\mathbf{H}_2]}{[\mathbf{H}_2]}$	$\frac{[3]^3}{[3]^3} = \frac{1}{[3]^3}$	$\frac{(3)^3}{(1.5)^3} = 8$								

19. At temperature of 500°C, the equilibrium constant for the following nitrogen fixation reaction is $K_c = 6.0 \times 10^{-2}$:

$$3H_2(g) + N_2(g) \Rightarrow 2NH_3(g)$$

If 0.25 mol/L of H_2 and 0.05 mol/L NH_3 are present at equilibrium, what is the concentration of N_2 (in mol/L) at equilibrium?

A)	3.25	B)	2.67	C)	0.85	D)	0.75	
				SOLUTIO	DN			
K _c [N ₂	$=\frac{[NH_3]^2}{[H_2]^3[N_2]} =$] = 2.67 mol	$\frac{(0.05)^2}{(0.25)^2 [N_2]}$	$= 6 \times 10$	- ²				

20. For the following reaction occurring at 500 K:

 $2NOCl(g) \Rightarrow 2NO(g) + Cl_2(g)$ $K_p = 1.7 \times 10^{-2}$ The equilibrium constant K_c for this reaction at 500 K is:

A)	6.98	B)	0.69	C)	58.82	D)	4.14×10^{-4}				
	SOLUTION										
K _c :	$= \mathbf{K}_{\mathbf{p}} (\mathbf{RT})^{-\Delta \mathbf{r}}$	^{lg} = 1.7	$\times 10^{-2} \times (0)$	0.0821 500)	$= 4.4 \times 10^{-4}$	ł.					

21. Consider the following equilibria occurring at 700 K:

$$\begin{split} 2SO_3(g) &\rightleftharpoons 2SO_2(g) + O_2(g) & K_{c1} = 2.3 \times 10^{-7} \\ SO_2(g) + \frac{1}{2}O_2(g) &\rightleftharpoons SO_3(g) & K_{c2} = ? \\ \text{The value of the equilibrium constant } K_{c2} \text{ is:} \end{split}$$

A)	1275	B)	2085	C)	2300	D)	4600
				SOLUTIO	ON		
Ka	= 1 =	=	- = 2085				
02	K _{c1}) ^{0.5}	$(2.3 \times 10^{-7})^{0}$.5 _000				

22. For the following reaction, $K_c = 2.5 \times 10^{-4}$ at 100°C.

 $2NaHCO_3(s) \Rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$ The total gas pressure (in atm) at equilibrium is:

A) 0.97 B) 0.84 C) 1.26 D) 1.42

 $\begin{aligned} & \text{SOLUTION} \\ K_p &= 2.5 \times 10^{-4} = K_c \; (\text{RT})^2 = (2.5 \times 10^{-4}) (0.0821 \times 373)^2 = 0.234 \\ K_p &= P_{\text{CO}_2} \times P_{\text{H}_2\text{O}} \;, \; P_{\text{CO}_2} = P_{\text{H}_2\text{O}} = (0.234)^{0.5} = 0.484 \; \text{atm} \\ P_T &= P_{\text{CO}_2} + P_{\text{H}_2\text{O}} = 2 \times 0.484 = 0.968 \; \text{atm} \end{aligned}$

23. For the following equilibrium:

 $2NO(g) \Rightarrow N_2(g) + O_2(g)$ $\Delta H^\circ = -180 \text{ kJ}$ Which of the following statements is true?

- A) Higher total pressure shifts the equilibrium to the left.
- B) Higher total pressure shifts the equilibrium to the right.
- C) K_p at 1000 K is larger than K_p at 2000 K.
- D) K_p at 1000 K is less than K_p at 2000 K.

Because number of gases' moles in both sides are equal, change in pressure will not affect equilibrium. And because the reaction is endothermic from right to left, K_p will decrease as temperature increases.

24. The conjugated acid of NH₂⁻ is:

A)	NH ⁺	B)	NH ₃	C)	HNO ₂	D)	HNO ₃		
				SOLUTIO	ON				
Because the conjugate acid has one H ⁺ more than its conjugate base, NH ₃ is									
the	the conjugate acid of NH ₂ ⁻¹ .								

25. Lactic acid is a weak monoprotic acid that has $K_a = 8.0 \times 10^{-4}$. The pH value of a 0.35 M lactic acid is:

A)	1.78	B)	2.64	C)	3.85	D)	4.25			
	SOLUTION									
[H]	$[H]^+ = \sqrt{K_a C_a} = \sqrt{8 \times 10^{-4} \times 0.35} = 0.017 \text{ molar}$									
pН	$pH = -log [H]^+ = -log 0.017 = 1.78$									

26. For nitrous acid "HNO₂",
$$K_a = 4.5 \times 10^{-4}$$
, the K_b value for NO_2^- is:

A)
$$5.5 \times 10^{-8}$$
 B) 4.5×10^{-18} C) 2.2×10^{-11} D) 5.5×10^{-10}
SOLUTION
 $K_b = \frac{1 \times 10^{-14}}{K_a} = \frac{1 \times 10^{-14}}{4.5 \times 10^{-4}} = 2.22 \times 10^{-11}$

27. The pH of 1.2 M ethylamine "C₂H₅NH₂" (weak base) solution is 12.41. The K_b value of ethylamine is:

A)
$$4.5 \times 10^{-10}$$
 B) 1.8×10^{-11} C) 1.2×10^{-9} D) 5.5×10^{-4}

SOLUTION	
$pOH = 14 - pH = 14 - 12.41 = 1.59$, $[OH^{-1}] = 0.0257$ molar	
$[OH^{-1}] = 0.0257 = \sqrt{K_b} C_b = \sqrt{K_b} \times 1.2$, $K_b = 5.5 \times 10^{-4}$	

- 28. K_a for acetic acid "CH₃COOH" = 1.8×10^{-5} . In which one of the following solutions will acetic acid have the greatest degree of ionization:
 - A) 0.1 M CH₃COOH.
 - B) 0.1 M CH₃COOH plus 0.1 M HCl.
 - C) 0.1 M CH₃COOH plus 0.1 M CH₃COONa.
 - D) 0.1 M CH₃COOH plus 0.2 M CH₃COONa. SOLUTION

 $CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$

Solution in choice B contains more H_3O^+ than solution in A, and solutions in choices C and D contains more CH_3COO^- than solution in A. All of that shifts equilibrium position toward left, which in turn decreases the ionization degree of CH_3COOH . Therefore acetic acid in choice A has the greatest degree of ionization.

29. The pH value of 8.5×10⁻² M NaOH "strong base" solution is:

A) 1.07	B)	0.77	C)	12.93	D)	10.23		
SOLUTION								
$[OH^{-1}] = n C_b = 1 \times 8.5 \times 10^{-2} = 8.5 \times 10^{-2} molar$								
$pOH = -log \ 8.5 \times 10^{-2} = 1.07, \ pH = 14 - 1.07 = 12.93$								

30. Calculate the pH of a buffer solution that is prepared by dissolving 0.4 mol of ammonia "NH₃" and 0.6 mol ammonium chloride "NH₄Cl" in enough water to make 500 mL of solution $(K_b NH_3 = 1.8 \times 10^{-5})$:

A)	4.9	B)	9.1	C)	10.3	D)	3.7			
				SOLUTIO	DN					
[N.	$[NH_3] = \frac{n_2}{V} = \frac{0.4}{0.5} = 0.8 \text{ molar}$, $[NH_4^+] = \frac{n_2}{V} = \frac{0.6}{0.5} = 1.2 \text{ molar}$									
$pOH = pK_a + log \frac{[salt]}{[base]} = 1.8 \times 10^{-5} + \frac{1.2}{0.8} = 4.92$										
pН	[= 14 - 4]	.92 = 9.08								