CHEM 101+103 SECND SEMISTER 1431-1432H SECOND EXAM SOLUTINS

1. In a bomb calorimeter that has a heat capacity of $1340 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ and contains 500.0 g of water, 0.1946 g of magnesium " Mg^{\prime} metal is burned. The temperature rise is $1.40^{\circ} \mathrm{C}$. Given the specific heat of water as $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, the molar heat of combustion of magnesium in $\mathrm{kJ} / \mathrm{mol}$ is:

A) 620	B)	610	C)	600	D)	580
SOLUTION$\begin{aligned} & \mathrm{q}_{\text {calorimeter }}=\mathrm{C}_{\text {cal. }} \times \Delta \mathrm{T}=1340 \times 1.4=1867 \mathrm{~J}=1.876 \mathrm{~kJ} \\ & \mathrm{q}_{\mathrm{H}_{2} \mathrm{O}}=\left(\mathrm{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T}\right)_{\mathrm{H}_{2} \mathrm{O}}=500 \times 4.184 \times 1.4=2928.8=2.929 \mathrm{~kJ} \\ & \mathrm{Q}_{\text {total }}=1.876+2.929=4.805 \mathrm{~kJ} \\ & \quad 0.1946 \mathrm{~g} \text { release } 4.805 \mathrm{~kJ} \\ & 1 \mathrm{~mol} \equiv 24.3 \mathrm{~g} \text { release molar heat of combustion } \\ & \text { molar heat of combustion }=-\frac{24.3 \times 4.805}{0.1946}=-600 \mathrm{~kJ} \end{aligned}$						

2. A glass containing 500.0 g of water at $23^{\circ} \mathrm{C}$ was placed into a refrigerator. As the water cools to a constant temperature it looses 31.38 kJ of heat. Given the specific heat of water as $4.184 \mathrm{~J} / \mathrm{g}{ }^{0} \mathrm{C}$, the new temperature of water in ${ }^{0} \mathrm{C}$ is:
A) 10
B) 5
C) 6
D) 8

SOLUTION
$\mathrm{q}=\mathrm{C}_{\mathrm{s} .} \times \mathrm{m} \times \Delta \mathrm{T},-51380=4.185 \times 500 \times\left(\mathrm{T}_{2}-23\right), \mathrm{T}_{2}=8^{\circ} \mathrm{C}$
3. Given the following thermochemical equations:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{C}(\mathrm{gr})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Find $\quad H_{r x n}(i n k J)$ for:

$$
3 \mathrm{C}(\mathrm{gr})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
$$

A) $\mathbf{- 1 3 2}$	B)	-118	C)	-107	D)	-99
SOLUTION						
$3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{L}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$				$\Delta \mathbf{H}=+2043 \mathrm{~kJ}$		
$2 \mathrm{C}(\mathrm{gr})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})$				$\Delta H=-1182 \mathrm{~kJ}$		
$4 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{L})$				$\Delta H=-968 \mathrm{~kJ}$		
$4 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{C}(\mathrm{gr}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$				$\Delta \mathrm{H}=-107 \mathrm{~kJ}$		

4. Given the following thermochemical reaction:
$\mathbf{4} \mathrm{NH}_{3}(\mathrm{~g})+\mathbf{5 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{4 N O}(\mathrm{g})+\mathbf{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta H_{r x n}^{o}=-902 \mathrm{~kJ}$
and knowing that $\Delta \mathrm{H}_{\mathrm{f}}^{\mathbf{0}}$ for: $\quad \mathrm{NO}(\mathrm{g})=91 \mathrm{kJ.mol}^{-1}$ and for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathbf{- 2 4 2}$ kJ. mol^{-1}
Therefore, $\Delta \mathbf{H}_{\mathrm{f}}^{\mathbf{0}} \mathrm{NH}_{3}(\mathrm{~g})$ in $\mathrm{kJ} . \mathrm{mol}^{-1}$ is:
A) $\mathbf{- 1 2 0 . 5}$
B) $\quad \mathbf{- 9 0 . 8}$
C) -65.4
D) $\quad \mathbf{- 4 6 . 5}$

SOLUTION

$\Delta \mathbf{H}_{\mathrm{rxn}}^{\mathrm{o}}=\sum \Delta \mathbf{H}_{\mathrm{f}}^{\mathrm{o}}(\mathbf{p})-\sum \Delta \mathbf{H}_{\mathrm{f}}^{\mathbf{o}}(\mathbf{r})$
$-902=(4 \times 91+6 \times-242)-\left(4 \times \Delta H_{f}^{0}, \mathrm{NH}_{3}(\mathrm{~g})+3 \times 0\right)$
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}, \mathrm{NH}_{3}(\mathrm{~g})=-46.5 \mathrm{~kJ} / \mathrm{mol}$
5. The combustion of natural gas (methane gas " CH_{4} ") produces heat energy according to:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-890 \mathrm{~kJ}
$$

the mass of methane gas (in g) needed to be burned in order to supply 62692 kJ of heat energy is:
A) 1150
B)
1130
C) 1120
D) $\mathbf{1 1 0 0}$
SOLUTION
$1 \mathrm{~mol} \equiv 16 \mathrm{~g} \mathrm{CH} 44(\mathrm{~g})$ release 890 kJ
$\mathrm{mg} \mathrm{CH}_{4}(\mathrm{~g})$ release 62692 kJ
$\mathrm{m}=-\frac{16 \times 62692}{890}=1127 \mathrm{~g}$
6. 7.0 L of a gas is supplied by 476 J of heat and is allowed to expand to 15.0 L volume against an external pressure of 0.76 atm . The change in the internal energy $E(\mathbf{U})$ for this gas system (in J) is:
A) $\mathbf{- 1 8 0}$
B) +180
C) $\quad \mathbf{- 1 4 0}$
D) $-\mathbf{1 6 0}$
$\Delta E=q+w=(+476)+\left(-076 \times 101325 \frac{15-7}{1000}\right)=-140 \mathrm{~kJ}$
7. The mass (in g) of nitrogen gas " N_{2} " that dissolves in 80.0 L of water at $25^{\circ} \mathrm{C}$ and under nitrogen gas partial pressure of 0.79 atm is:
(The value of Henery's law constant for nitrogen gas in water at $25^{\circ} \mathrm{C}=$ $6.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} . \mathrm{atm}$)

A) 1.8	B)	1.6	C)	1.4	D)	1.2
SOLUTION$\begin{aligned} & \mathrm{S}_{\mathrm{g}}=\mathrm{KP}_{\mathrm{g}}=6.8 \times 10^{-4} \times 0.79=5.372 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\ & 5.372 \times 10^{-4} \mathrm{~mol} \text { is in } 1 \mathrm{~L} \\ & \mathrm{n} \mathrm{~mol} \quad \text { is in } 80 \mathrm{~L} \\ & \mathrm{n}=\frac{80 \times 5.372 \times 10^{-4}}{1}=0.043 \mathrm{~mol} / \mathrm{L} \\ & \mathrm{~m}=\mathrm{n} \times \mathrm{M}=0.034 \times 28=1.2 \mathrm{~g} \end{aligned}$						

8 Three separate aqueous solutions. Each is prepared by dissolving 200.0 g of a nonvolatile and nonelectrolyte solute in 750.0 g of water. These solutes are either sucrose " $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ ", glucose ${ }^{2} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ " or urea ${ }^{\prime} \mathrm{H}_{2} \mathbf{N C O N H}_{2}$ ". At the same temperature, which of the following statements is true:
A) The sucrose solution will have the highest vapor pressure.
B) The glucose solution will have the highest vapor pressure.
C) The urea solution will have the highest vapor pressure.
D) The three solutions will have the same vapor pressure.

SOLUTION

Because $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}} \times \mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}^{\mathbf{O}}, \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ will be higher when $\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}$ is higher, when $X_{\text {solute }}$ is lower, when $M_{\text {solute }}$ is higher. Therefore, sucrose solution has the highest $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$.

9 The freezing point of an aqueous $0.05 \mathrm{~m} \mathrm{CaCl}_{2}$ solution is $-0.27^{\circ} \mathrm{C}$. The Vant's Hoff factor (i) for this CaCl_{2} solution is: $\left(\mathrm{K}_{\mathrm{f}}\right.$ water $\left.=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
A) 2.6
B) $\quad 2.7$
C) $\quad 2.8$
D)
2.9
$\mathrm{i}=\frac{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {measured }}}{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {calculated }}}=\frac{0.27}{\mathrm{~K}_{\mathrm{f}} \mathrm{m}}=\frac{0.27}{1.86 \times 0.05}=2.9$

10 The osmotic pressure (in atm) of a solution containing 24.5 g of glycerin ${ } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ " (a nonvolatile and nonelectrolyte) in 250 mL of aqueous solution at $25^{\circ} \mathrm{C}$ is:
A) 15
B) 21
C) 26
D) 28

$$
\Pi=\frac{\mathrm{mRT}}{\mathrm{MV}}=\frac{24.5 \times 0.0821 \times 298}{92 \times 0.05}=26 \mathrm{~atm}
$$

11 A solution containing 50.0 g of heptane ${ } \mathrm{C}_{7} \mathrm{H}_{16}$ " and 50.0 g of octane " $\mathrm{C}_{8} \mathrm{H}_{18}$ " at $25^{\circ} \mathrm{C}$. Knowing that at $25^{\circ} \mathrm{C}$ the vapor pressure of pure heptane is $\mathbf{4 5 . 8}$ torr and that of pure octane is $\mathbf{1 0 . 9}$ torr, and assuming ideal behavior, the total vapor pressure (in torr) above the solution is:
A) 32.7
B) 29.5
C) $\quad 27.7$
D) $\quad 25.3$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}, \mathrm{n}_{1}=\frac{50}{100}=0.5 \mathrm{~mol}, \mathrm{n}_{2}=\frac{50}{114}=0.44 \mathrm{~mol}, \mathrm{n}_{\mathrm{T}}=0.94 \mathrm{~mol}$
$X=\frac{n_{i}}{n_{T}}, X_{1}=\frac{0.5}{0.94}=0.53, X_{2}=1-X_{1}=1-0.53=0.47$
$P_{T}=X_{1} P_{1}+X_{1} P_{1}=0.53 \times 54.8+0.47 \times 10.9=29.4 \mathrm{~atm}$
12 A hypothetical reaction: A B follows a first order kinetics. Which of the following statements is true regarding the half life period " $\mathrm{t} 1 / 2$ " for such reaction?
A) $t^{1} / 2$ increases as the magnitude of $[A]_{0}$ increases.
B) $\mathbf{t} 1 / 2$ increases as the temperature increases.
C) $t 1 / 2$ increases as the temperature decreases.
D) $t^{11 / 2}$ is always constant for the first order reaction and never changes with either the temperature or the magnitude of $[A]_{0}$.

SOLUTION

According to Arrhenius equatin: $\ln k=\ln A-\frac{E_{a}}{R T}$
as T decreases, k decreases. And because:
$\mathrm{t}_{0.5}=\frac{\ln 2}{\mathrm{k}}$
$\mathrm{t}_{0.5}$ increases as k decreases by decreasing T .

13 Given the following reaction:

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

and the following initial rates of the reaction have been measured for the given reagent concentrations:

Exp.	$\left[\mathrm{ClO}_{2}\right](\mathrm{M})$	$\left[\mathrm{OH}^{-}\right](\mathrm{M})$	Initial rate (M/s)
1	0.060	0.03	0.0243
2	0.020	0.03	0.0027
3	0.020	0.09	0.0081

The rate law for this reaction is
A) rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]$
B) rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]^{2}$
C) rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{3}\left[\mathrm{OH}^{-}\right]$
D) \quad rate $=k\left[\mathrm{ClO}_{2}\right]^{3}\left[\mathrm{OH}^{-}\right]^{2}$

$$
\begin{aligned}
& \text { rate }=k\left[\mathrm{ClO}_{2}\right]^{\mathrm{x}}\left[\mathrm{OH}^{-}\right]^{\mathrm{y}} \\
& \frac{(\text { rate })_{1}}{(\text { rate })_{2}}=\frac{0.0243}{0.0027}=\frac{\mathrm{k}(0.06)^{\mathrm{x}}(0.03)^{\mathrm{y}}}{\mathrm{k}(0.02)^{\mathrm{x}}(0.03)^{\mathrm{y}}}, 9=3^{\mathrm{x}}, \mathrm{x}=2 \\
& \frac{(\text { rate })_{3}}{(\text { rate })_{2}}=\frac{0.0081}{0.0027}=\frac{\mathrm{k}(0.02)^{\mathrm{x}}(0.09)^{\mathrm{y}}}{\mathrm{k}(0.02)^{\mathrm{x}}(0.03)^{\mathrm{y}}}, 3=3^{\mathrm{y}}, \mathrm{y}=1 \\
& \text { rate }=k\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

14 A first order reaction has a rate constant of $7.5 \times 10^{-3} \mathrm{~s}^{-1}$. The time (in seconds) required for the reaction to be $\mathbf{6 0 \%}$ complete is:
A) $\mathbf{1 1 6}$
B) 118
C) 122
D) 112 SOLUTION
$\ln \frac{[\mathrm{A}]_{\mathbf{o}}}{[\mathrm{A}]_{\mathrm{t}}}=\mathbf{k t}$,
$\mathrm{t}=\frac{\ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}}}{k}=\frac{\ln \frac{100}{40}}{7.5 \times 10^{-3}}=122 \mathrm{~s}$

15 The isomerization of cyclopropane follows first order kinetics. The rate constant at 700 K is $\mathbf{6 . 2 \times 1 0 ^ { - 4 }}$ and at $\mathbf{7 6 0 ~ K}$ is 2.4×10^{-2}. The activation energy (in kJ) for this reaction is:
A) $\mathbf{4 6 5 . 8}$
B) $\mathbf{3 2 5 . 6}$
C) 312.7
D) 269.5

$$
\begin{aligned}
& \frac{\operatorname{lnk}_{2}}{\operatorname{lnk}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}=\left(\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{T_{1} \mathrm{~T}_{2}}\right) \\
& \frac{2.4 \times 10^{2}}{6.2 \times 10^{4}}=\frac{\mathrm{E}_{\mathrm{a}}}{8.414 \times 10^{3}}=\left(\frac{760-700}{700 \times 760}\right) \\
& E_{a}=269.5 \mathrm{k}
\end{aligned}
$$

