Titration curve of amino acids

Titration Curves:

\square Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
\square The curves are usually plots of pH against the volume of titrant added (acid or base).
\square Each dissociation group represent one stage in the titration curve.

Amino acid general Tormula:

\square Amino acids consist of:
> A basic amino group ($-\mathrm{NH}_{2}$)
> An acidic carboxyl group (-COOH)
> A hydrogen atom (-H)
> A distinctive side chain (-R).

Amino Acid Structure

Tittration of amino acid:

\square When an amino acid is dissolved in water it exists predominantly in the isoelectric form (Zwitterion)

\square Amino acid is an amphoteric compound \rightarrow It act as either an acid or a base:
> Upon titration with acid $\boldsymbol{\rightarrow}$ it acts as a BASE (accept a proton).
> Upon titration with base $\boldsymbol{\rightarrow}$ it acts as an ACID (donate a proton)

Titration of amino acid cont:

\square Amino acids are example of weak acid which contain more than one dissociate group.
\square Examples:
(1) Alanine:
-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right)$ and $\mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups (it has one pI value $\left.=6.010\right)$. [Diprotic]

- The COOH will dissociate first then $\mathrm{NH}_{3}{ }^{+}$dissociate later. (Because $\mathrm{pKa}_{1}<\mathrm{pKa}_{2}$)

Full protonated alanine

(2) Arginine:

-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right), \mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups and basic group $\left(\mathrm{pKa}_{3}=12.5\right)$ (it has one pI value $=11$). [Triprotic]

Titration curve of Alanine

Titration curve of alanine or glycine [diprotic]:

[1] In starting point:

\square Alanine is full protonated.

- $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]$.

[2] $\mathbf{C O O H}$ will dissociate first:

$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]>\left[\mathrm{NH} 3+-\mathrm{CH}-\mathrm{CH} 3-\mathrm{COO}^{-}\right]$
$\square \mathrm{pH}<\mathrm{pKa}_{1}$.

[3] In this point the component of alanine

 act as lbuffer:$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]=\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}=\mathrm{pKa}_{1}$

Titration curve of alanine or glycine [diprotic]:

[4] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]<\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \quad \mathrm{pH}>\mathrm{pKa}_{1}$.
[5] Isoelectric point:
\square The COOH is full dissociate to COO^{-}.
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \quad$ Con. of $-v e$ charge $=$ Con. of + ve charge.
\square The amino acid present as Zwetter ion (neutral form).
$\square \quad$ Remember that $: P I$ (isoelectric point) is the pH value at which the net charge of amino acid equal to zero.
$\square \mathrm{pI}=\left(\mathrm{pKa}_{1}+\mathrm{pKa}_{2}\right) / 2=(2.32+9.96) / 2=6.01$
[6] The $\mathbf{N H}_{3}{ }^{+}$start dissociate:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]>\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

Titration curve of alanine or glycine [diprotic]:

[7] In this point the component of alanine act as lbuffer:
$\square\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]=\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}=\mathrm{pKa}_{2}$.
[8] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]<\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \mathrm{pH}>\mathrm{pKa}_{2}$

[9] End point:

\square The alanine is full dissociated.

- $\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$
- $\mathrm{pOH}=(\mathrm{pkb}+\mathrm{P}[\mathrm{A}-]) / 2$
$\rightarrow \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} 2$

Calculating the pH at difilerent point of the tritration curve:

The pH calculated by different way:

[1] at starting point :

$$
\mathrm{pH}=(\mathrm{pka}+\mathrm{P}[\mathrm{HA}]) / 2
$$

[2] At any point within the curve (before or in or after middle titration):

$$
\mathrm{pH}=\mathrm{pka}+\log ([\mathrm{A}-] /[\mathrm{HA}])
$$

[3] At end point:

$$
\begin{aligned}
& \mathrm{pOH}=(\mathrm{pKb}+\mathrm{P}[\mathrm{~A}-]) / 2 \\
& \mathrm{pH}=\mathrm{pKw}-\mathrm{pOH} \\
& \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} 2
\end{aligned}
$$

Remember !!

Example:

Before the titration with acid and base, the amino acid is in its isoelectric form $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$
\square Determine the pH value of 10 ml of 0.1 M alanine solution, titrated with $0.1 \mathrm{M} \mathrm{NaOH} / \mathrm{HCl}$ after the addition of 4 ml of 0.1 M NaOH and 1 ml of 0.1 M HCl
[1] pH after the addition of 4 ml of 0.1 M NaOH :
$\rightarrow\left[\mathbf{N H}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]>\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{A}+\mathrm{H}_{2} \mathrm{O}$
Mole of HA ($\mathbf{N H 3}^{+}$) [original] - mole of $\mathrm{A}^{-} \mathbf{(N a O H)}$ [added] $=$ mole of $\mathbf{H A}\left(\mathbf{N H}^{+}\right)$remaining.
-No. of $\mathrm{NaOH}\left[\mathrm{A}^{-}\right]$mole $=0.1 \mathrm{X} 0.004 \mathrm{~L}=0.0004$ mole -No. of HA mole originally $=0.1 \times 0.01 \mathrm{~L}=0.001$ mole - No. of HA mole remaining $=0.001-0.0004=0.0006 \mathrm{~mole}$

```
So,
pH= pKa2}+\operatorname{log}[\textrm{A}-]/[\textrm{HA}
pH = 9.69 + log[0.0004]/[0.0006]
pH = 9.52(pH<pKa}
```

[2] pH after the addition of 1 ml of 0.1 M HCl :
$\rightarrow\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]<\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\mathrm{A}^{-}+\mathrm{HCl} \rightarrow \mathrm{HA}$
Mole of $\mathrm{A}^{-}\left(\mathrm{COO}^{-}\right)$[original] - mole of $\mathbf{H A}(\mathbf{H C l})$ [added]
$=$ mole of $\mathrm{A}^{-}\left(\mathrm{COO}^{-}\right)$remaining.
-No. of $\mathrm{HCl}[\mathrm{HA}]$ mole $=0.1 \mathrm{X} 0.001 \mathrm{~L}=0.0001$ mole
-No. of A mole originally $=0.1 \mathrm{X} 0.01 \mathrm{~L}=0.001$ mole

- No. of A- mole remaining $=0.001-0.0001=0.0009$ mole

```
So,
pH=pKa,}+\operatorname{log}[\textrm{A}-]/[\textrm{HA}
pH=2.34+log[0.0009]/[0.0001]
pH=3.29(pH > pKa, )
```

Praciical Parf

Objectives:

\square To study titration curves of amino acid.
\square To use this curve to estimate the pKa values of the ionizable groups of the amino acid.
\square To determine pI.
\square To determine the buffering region.
\square To understand the acid base behaviour of an amino acid.

Method:

- Add 10 ml of 0.1 M alanine solution to a beaker.
- Titrate it with 0.1 M NaOH (dropwise) then mix properly.
- Recording the pH after each $\mathbf{0 . 5} \mathbf{~ m l ~ N a O H}$ added until you reach $\mathrm{pH}=11$.
- Repeat the procedure with 0.1 M HCl , and stop the titration when you reach $\mathrm{pH}=2.17$.

ml of 0.1 M NaOH	pH	ml of 0.1 M HCl		
		0		
0.5		0.5		
1		1		
1.5		1.5		
2		2		
2.5		2.5		
3		3.5		
3.5		$4 \ldots$ etc		
$4 \ldots$ etc				

\square Record the titration table and plot a curve of pH versus ml of titrant added.
\square Calculate the pH of the alanine solution after the addition of $0 \mathrm{ml}, 5 \mathrm{ml}$, of 0.1 M NaOH , and calculate the pH after the addition of $0.5 \mathrm{ml}, 2 \mathrm{ml}$ of HCl .
\square Compare the calculated pH values with those obtained from the curve.
\square Determine the pKa of ionizable groups of amino acids from the curve.
\square Determine the PI value from your result the curve

$\mathrm{HCl} \quad \mathrm{NaOH}$

How to determine $\mathrm{pKa}_{1}, \mathrm{pKa}_{2}$ and pI from the curve?

Titration curve of 0.1 M alanine

