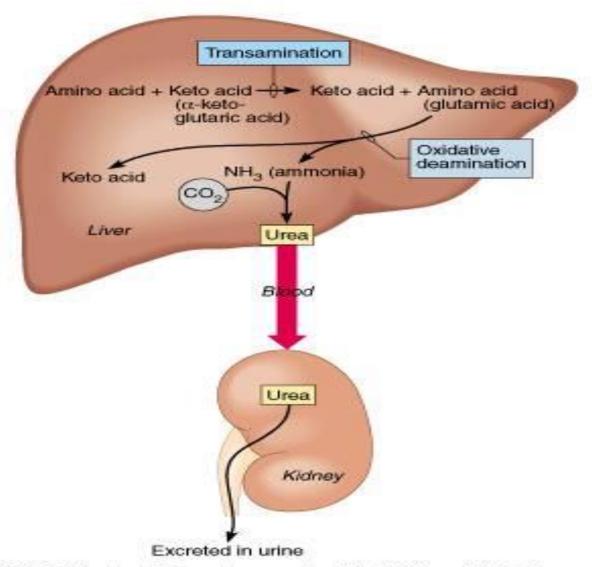

Estimation of Serum Urea

-Urea:


- Urea is the highest non-protein nitrogen compound in the blood.
- Urea is the major excretory product of <u>protein metabolism</u>.
- It is formed by **urea cycle** in the **liver** from **free ammonia** generated during protein <u>catabolism</u>.
- Since historic assays for urea were based on measurement of nitrogen, the term **blood urea nitrogen (BUN)** has been used to refer to <u>urea determination</u>.

-Urea synthesis:

- Protein metabolism produces amino acids that can be oxidized.
- This result in the release of ammonia which is converted to urea (via urea cycle) and excreted as a waste product.
- Following synthesis in the liver, urea is carried out in the blood to the kidney which is readily filtered from the plasma by glomerulus.
- **Most** of the urea in the glomerular filtrate excreted in the urine, and **some** urea is reabsorbed through the renal tubules.
- The **amount reabsorbed** depends on urine flow rate and **extent of hydration** (the amount of urea reabsorbed increases with dehydration.).
- The concentration of urea in the plasma is determined by:
- → Renal and liver function,
- the protein content in diet,
- →and the rate of protein catabolism.

-Urea synthesis:

-Clinical Application:

- Measurement of urea used to in:
- Evaluate renal function.
- To assess hydration status.
- To determine nitrogen balance.
- To aid in the diagnosis of renal diseases.
- To verify adequacy of dialysis.
- Check a person's protein balance.

1-Plasma urea Concentration:

- Measurement of **Blood Urea Nitrogen (BUN)** alone is <u>less useful</u> in diagnosing kidney diseases because it's blood level is influenced by dietary protein and hepatic function (why?).
- But its diagnostic value improves with **serum creatinine values**.

	Type	Cause	Note
High urea (High urea concentration in plasma is called azotemia)	Pre-renal	 Cognitive heart failure. Dehydration. High protein diet. Increased protein catabolism. 	• Cognitive heart failure → reduced renal blood flow, less blood is delivered to kidney, then less urea is filtered.
	Renal	Renal failure .	
	Post-renal	• Urinary tract obstruction.	
Low urea		Low protein intake.Liver disease.Pregnancy.	

2-Urine urea Concentration:

- The Urine Urea Nitrogen test (UUN) determines how much urea is in the urine to assess the amount of <u>protein breakdown</u>.
- The test can help determine how well the kidneys are functioning, and if the intake of protein is too high or low.
- Specimen: The urine urea nitrogen test is performed by collecting a **24-hour urine sample**.

	Cause	
High urea in urine	Too much protein in the diet.Too much protein breakdown in the body.	
Low urea in urine	Malnutrition.Too little protein in the diet.Kidney issues.	

-Reference Value:

SPECIMEN	UREA NITROGEN	UREA
Serum/Plasma	5-23 mg/dL	10-50 mg/dL
Urine 24 h	9-16g/24h	20-35 g/24 h

Practical Part

-Objective:

• Estimation of blood urea nitrogen (BUN).

-Principle (of the used kit):

- The Reagent used contains: Urease, Glutamate Dehydrogenase, NADH, 2-oxoglutarate, buffers and stabilizers.
- 1. Reaction one: Urea is hydrolyzed in the presence of <u>urease enzyme</u> and water to yield ammonia and carbon dioxide.

$$NH_2 - CO - NH_2 + H_2O$$
 Urease $2NH_3 + CO_2$

2. Second reaction: The ammonia reacts with 2-oxoglutarate and reduced nicotinamide adenine dinucleotide (NADH) in the presence of glutamate dehydrogenase (GLDH) to yield glutamate and nicotinamide adenine dinucleotide (NAD).

• The amount of the urea in the sample is proportionally related to the reduced absorbance at 340 nm as a result of NADH oxidation to NAD.

-Materials:

• Stanbio urea nitrogen (BUN) liquid-UV procedure.

-Method:

	Standard	Serum		
Working reagent	1ml	1ml		
Pre-warm at 37°C for 3 min. and add:				
Standard	0.01/10µ1	-		
Serum	-	0.01/10μ1		

- After exactly 30 seconds, read and record absorbance A_1 against distilled water at 340 nm.
- At exactly 60 seconds after A_1 , read and record the absorbance A_2 and determine ΔA (A_1 - A_2).

-Calculations of the Results:

-Serum BUN (mg/dL) =
$$\Delta A$$
 (Sample) x 30 ΔA (Standard)

-Serum urea $(mg/dL) = BUN \times 2.14$

-References:

- Clinical Chemistry: Techniques, Principles, Correlations (Bishop, Clinical Chemistry)Mar 31, 2009,by Michael L. Bishop MS MT (ASCP) CLS (NCA) and Edward P. Fody MD
- http://www.nlm.nih.gov/medlineplus/ency/article/003605.htm