## Preparation of Solutions

## Solutions:

$\square$ Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment.

- What is SOLUTIONS?

A simple solution is basically two substances that are evenly mixed together.
$\rightarrow$ One of them is called the solute and the other is the solvent.
$\rightarrow$ Solution can be composed from one or more solute dissolved in a solvent forming a homogenous mixture.

$\square$ Example:


## Solutions



## Preparation of solutions:

$\square$ Solution concentration define as: quantity of a substance dissolved in per unit quantity of another substance (the relative amounts of solute and solvent in a solution).
$\square$ There are different ways to express concentration:

1. Molarity.
2. $\mathrm{W} / \mathrm{V} \%$.
3. $\mathrm{W} / \mathrm{W} \%$.

## 1. Molarity :

- Molarity define as : the number of moles of solute in one liter of a solution.
$\square$ Molar $=$ number of mole/volume in L

$\square \underline{\mathbf{1} \text { Molar }}$ solution is a solution in which $\underline{\mathbf{1} \text { mole }}$ of solute is dissolved in a total volume of

$\square$ Units of molarity are : M, molar or mole/L

How to Prepare 2 M of NaCl in 100 ml ?

## how many grams of NaCl I need to prepare 2 Molar NaCl solution?

## Two ways to solve it

2 mole of NaCl present in 1000 ml [ or 1Liter ] of solvent (dis. $\left.\mathrm{H}_{2} \mathrm{O}\right)$
And we know that $\rightarrow$ No of mole $=$ weight $(\mathrm{g}) /$ molecular weight.
$\rightarrow$ This weight needed if 1000 ml is required to be prepared. Since we need to prepare only 100 ml .

$[(100 \times 117) / 1000]=11.7 \mathbf{g}$
11.7 g of NaCl dissolved in small volume of dis. $\mathrm{H}_{2} \mathrm{O}$, then complete the volume up to 100 ml .

## (2)

$$
\text { Molarity }=\frac{\text { weight }(\mathrm{g})}{\text { volume }(\mathrm{L}) \times \text { M.W }}
$$

Molarity $=2 \mathrm{M}$
Solution volume $=100 \mathrm{ml} \rightarrow$ convert to $\mathrm{L}=100 / 1000=0.1 \mathrm{~L}$
Molecular weight $(\mathrm{M} . \mathrm{W})=58.5 \mathrm{~g} /$ mole
Weight $=$ ?
So:
Weight $=$ Molarity x volume in L x M.W
Weight $=2 \times 0.1 \times 58.5=11.7 \mathrm{~g}$
11.7 g of NaCl dissolved in small volume of dis. $\mathrm{H}_{2} \mathrm{O}$, then complete the volume up to 100 ml .

## Practically how to prepare 2M NaCl:

1. Place a beaker in a balance and zero the balance.
2. Weight 11.7 grams of NaCl , in the beaker and dissolve it in a little water (less than 100 ml ).

Once the solid is dissolved the volume is transferred to 100 ml volumetric flask.
4. Brought up to a final volume 100 ml by water.
$\square \mathrm{W} / \mathrm{V} \% \rightarrow$ Weight/Volume Percentage Concentration.
$\square$ W/V\% define as : The number of grams of solute dissolved in $\mathbf{1 0 0} \mathbf{~ m L}$ of solution ( $\%=100$ ).

$$
\mathrm{W} / \mathrm{V} \%=\frac{\text { weight of solute in }(\mathrm{g})}{\text { volume of solution in }(\mathrm{ml})} \times 100
$$

$\square$ For example: $3 \mathrm{w} / \mathrm{v} \% \mathrm{NaOH} \rightarrow$ Mean 3 grams of NaOH is dissolved in 100 ml of the solution.

How to Prepare 50 ml of $4 \mathrm{w} / \mathrm{v} \% \mathrm{NaOH}$ ?
$4 \% \mathrm{NaOH} \rightarrow$ Mean 4 grams of NaOH is dissolved in 100 ml of the solution.


The Weight in grams of NaOH needed to prepare $4 \% \mathrm{NaOH}$ is $=(4 \times 50) / 100=2 \mathrm{~g}$.

So,
2 grams of NaOH is dissolved in little water and the volume made up to 50 ml .

## 3. W/W \% :

$\square \mathrm{W} / \mathrm{W} \% \rightarrow$ Weight/Weight Percentage Concentration.
$\square \mathbf{W} / \mathbf{W} \%$ define as: the number of grams of solute dissolved in 100 gram of solution. $(\%=100)$.

$$
\mathrm{W} / \mathrm{W} \%=\frac{\text { weight of solute in }(\mathrm{g})}{\text { weight of solution in }(\mathrm{g})} \quad \times 100
$$

$\square$ The concentrations of many commercial acids are giving in terms of $w / w \%$.
$\rightarrow$ In order to calculate the volume of the stock solution required for a given preparation the density (specific gravity) of stock solution should be provided.

```
Weight (wt) = volume (ml) x SG x w/w% (as decimal)
```

$\rightarrow$ To calculate $\mathrm{w} / \mathrm{w} \%$ as decimal $=(\mathrm{w} / \mathrm{w}) / 100$, For example: $\mathrm{w} / \mathrm{w} \%=13 \% \boldsymbol{\rightarrow} 13 / 100=\mathbf{0 . 1 3}$

How to Prepare 100 ml with 0.4 M HCl solutions starting with the
concentrated HCl solution you are provided with: $(\mathrm{w} / \mathrm{w} \%=36 \%, \mathrm{~S} . \mathrm{G}=1.15$ )?

```
how many ml of concentrated HCl we
```

    need to make \(\mathbf{0 . 4} \mathbf{M ~ H C l}\) solution?
    Weight= volume (ml) x SG x w/w\% (as decimal)

First we must calculate the weight by the following:
from molarity formula $\rightarrow$ Mole $=$ Molarity x volume in liter

$$
=0.4 \times 0.1=\mathbf{0 . 0 4} \text { mole }
$$

$\rightarrow$ Weight $=$ mole $\times$ MW $\quad$ (Note: The MW of $\mathrm{HCl}=36.4$ )

$$
=0.04 \times 36.5=1.46 \mathrm{~g}
$$

Second:
Weight $(\mathbf{w t})=$ volume $(\mathbf{m l}) \mathbf{x} \mathbf{S G} \mathbf{x} \mathbf{w} / \mathbf{w} \%(\mathbf{a s}$ decimal) $\boldsymbol{\rightarrow} \boldsymbol{1 . 4 6 = \text { volume } \times 1 . 1 5 \times 0 . 3 6}$

$$
\rightarrow \text { Volume }=3.53 \mathrm{ml}
$$

So, 3.53 ml of stock (i.e. concentrated HCl ) solution is needed and the volume made up to 100 ml by the addition of water.

## Ppaciical Parf

## Objectives:

$\square$ To learn how to prepare solutions with different concentration expression.

## Method:

## Preppratiom of solutioms:

(1) $\qquad$
$\square$ You are provided with solid NaOH , Prepare 50 ml with 0.08 M NaOH solution.
$\square$ Calculation:
$\rightarrow$ To prepare the 0.08 M NaOH solution
g of solid NaOH should be dissolved in a little volume of water then the volume made up to .ml , by the addition of water.

## Method:

(2) $\qquad$
$\square \quad$ You are provided with solid NaCl , Prepare 50 ml with $1.5 \mathrm{w} / \mathrm{v} \%$ solution of NaCl .
$\square$ Calculation:
$\qquad$
$\qquad$
$\rightarrow$ To prepare the $1.5 \mathrm{w} / \mathrm{v} \%$ solution $\ldots . . . . . . . . \mathrm{g}$ of NaCl should be dissolved in little water and the volume made up to . ml by the addition of water.

## Method:

(3) $\qquad$
$\square$ Prepare 100 ml with 0.4 M HCl solutions starting with the concentrated HCl solution you are provided with: ( $\mathbf{w} / \mathbf{w} \%=36$, $\mathrm{S} . \mathrm{Gr}=1.15$ ).
$\square$ Calculation:
$\qquad$
$\qquad$
$\rightarrow$ To prepare the 100 ml of 0.4 M HCl solution $\ldots . . . . . . \mathrm{ml}$ of stock (i.e. concentrated HCl ) solution is needed and the volume made up to $\ldots . . . . \mathrm{ml}$ by the addition of water.
$\rightarrow$ Measure and record the pH value of the acid you prepared $\qquad$
$\rightarrow$ Calculate the pH of the acid $(\mathrm{pH}=-\log [\mathrm{H}+])$ $\qquad$
$\rightarrow$ Determine your accuracy?

