BCH312 [Practical]

Preparation of Solutions

Solutions:

Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment.

What is SOLUTIONS ?

A simple solution is basically two substances that are evenly mixed together.

- \rightarrow One of them is called the <u>solute</u> and the other is the <u>solvent</u>.
- → Solution can be composed from **one or more** solute dissolved in a solvent forming a homogenous mixture.
- Example:
 Solute, e.g. sugar
 Solution, solution
 Solvent, e.g. water
 Solvent, bissolve
 Dissolve
 Solution, sugar is dissolved in water.

 Solute → is the substance to be dissolved (sugar)
 Solvent → is the one doing the dissolving (water)

Solutions

Preparation of solutions:

- Solution concentration define as: quantity of a substance dissolved in per unit quantity of another substance (the relative amounts of solute and solvent in a solution).
- **There are different ways to express concentration:**
 - 1. Molarity.
 - 2. W/V %.
 - 3. W/W %.

1. Molarity :

Molarity define as : the number of <u>moles</u> of solute in <u>one liter</u> of a solution.

 \square Molar = number of mole/volume in L

 \square <u>**1** Molar</u> solution is a solution in which <u>**1** mole</u> of solute is dissolved in a total volume of

<u>1 liter (1000ml)</u> (0.5 Molar (M) solution: that mean there are 0.5 mole dissolved in 1L ..etc)

□ Units of molarity are : M, molar or mole/L

Note: The MW of NaCl is 58.44 =(35.5+23)

Example: How to Prepare 2M of NaCl in 100 ml?

 \rightarrow Concentration = 2M, Solution volume= 100 ml \rightarrow So,

Two ways to solve it

(1)

2 mole of NaCl present in 1000 ml [or 1Liter] of solvent (dis.H₂O)

And we know that \rightarrow No of mole = weight (g) / molecular weight.

 $[2 \text{ mole}= \text{ weight (g)} / 58.5] \rightarrow \text{ weight (g)} = 2 \times 58.5 = 117 \text{ g}.$

→ This weight needed if 1000 ml is required to be prepared. Since we need to prepare only 100 ml.

117 g ====> 1000 ml. ? g ====> 100 ml.

[(100 x 117)/1000] = 11.7 g

11.7 g of NaCl dissolved in small volume of dis. H_2O , then complete the volume up to 100 ml.

how many grams of NaCl I need to

prepare 2 Molar NaCl solution?

Molarity= 2M

Solution volume= 100 ml \Rightarrow convert to L = 100/1000 = 0.1L Molecular weight (M.W) = 58.5 g/mole Weight = ? So: Weight = Molarity x volume in L x M.W Weight = 2 x 0.1 x 58.5 = 11.7g 11.7 g of NaCl dissolved in small volume of dis.H₂O, then complete the volume up to 100 ml.

Practically how to prepare 2M NaCl:

- 1. Place a beaker in a balance and zero the balance.
- 2. Weight 11.7 grams of NaCl, in the beaker and dissolve it in a little water (less than 100 ml).
- 3. Once the solid is dissolved the volume is transferred to 100 ml volumetric flask.
- 4. Brought up to a final volume 100 ml by water.

- \square W/V% \rightarrow Weight/Volume Percentage Concentration.
- □ W/V% define as : The number of grams of solute dissolved in 100 mL of solution (% = 100).

$$W/V\% = \frac{\text{weight of solute in (g)}}{\text{volume of solution in (ml)}} X 100$$

□ For example: 3 w/v% NaOH → Mean 3 grams of NaOH is dissolved in 100 ml of the solution.

Example: How to Prepare 50 ml of 4 w/v% NaOH ?

4% NaOH \rightarrow Mean 4 grams of NaOH is dissolved in 100 ml of the solution.

SO → how many grams of NaOH I need to prepare 50ml of 4%NaOH solution?

The Weight in grams of NaOH needed to prepare 4% NaOH is = $(4 \times 50)/100 = 2 \text{ g}$.

So, 2 grams of NaOH is dissolved in little water and the volume made up to 50 ml.

3. W/W % :

 \square W/W% \rightarrow Weight/Weight Percentage Concentration.

W/W% define as: the number of <u>grams</u> of solute dissolved in **100 gram** of solution. (% = 100).

$$W/W\% = \frac{\text{weight of solute in (g)}}{\text{weight of solution in (g)}} X 100$$

 \Box The concentrations of many commercial acids are giving in terms of w/w%.

 \rightarrow In order to calculate the <u>volume of the stock solution required</u> for a given preparation the **density** (specific gravity) of stock solution should be provided.

Weight (wt) = volume (ml) x SG x w/w% (as decimal)

To calculate w/w% as decimal = (w/w)/100, For example: w/w% = 13% \rightarrow 13 / 100 = 0.13

Example: How to Prepare 100ml with 0.4 M HCl solutions starting with the

concentrated HCl solution you are provided with: (w/w% = 36%, S.G= 1.15)?

how many ml of concentrated HCl we need to make 0.4M HCl solution?

Weight= volume (ml) x SG x w/w% (as decimal)

First we must calculate the weight by the following: from molarity formula \rightarrow Mole=Molarity x volume in liter = 0.4 x 0.1= 0.04 mole

> → Weight= mole x MW (Note: The MW of HCl = 36.4) =0.04 x 36.5= 1.46 g

Second:

Weight (wt) = volume (ml) x SG x w/w% (as decimal) \rightarrow 1.46=volume x 1.15 x 0.36

 \rightarrow Volume= 3.53 ml

So, 3.53 ml of stock (i.e. concentrated HCl) solution is needed and the volume made up to 100 ml by the addition of water.

Important Note! : the volume in this formula is not the required volume in the question, it is the volume of the concentrated HCl that you must add to make the solution.

Preichicel Perf

To learn how to prepare solutions with different concentration expression.

Method:

Preparation of solutions:

(1).....

v You are provided with solid NaOH, Prepare 50ml with 0.08M NaOH solution.

□ <u>Calculation:</u>

.....

(2).....

□ You are provided with solid NaCl, Prepare 50ml with 1.5 w/v% solution of NaCl.

□ <u>Calculation:</u>

.....

To prepare the 1.5 w/v% solutiong of NaCl should be dissolved in little water and the volume made up toml by the addition of water.

(3)

Prepare 100ml with 0.4 M HCl solutions starting with the concentrated HCl solution you are provided with: (w/w%= 36, S.Gr =1.15).

□ <u>Calculation:</u>

.....

To prepare the 100ml of 0.4M HCl solution \dots ml of stock (i.e. concentrated HCl) solution is needed and the volume made up to \dots ml by the addition of water.

→ Measure and record the pH value of the acid you prepared.....

→ Calculate the pH of the acid (pH= - log [H+])

→ Determine your accuracy?