AIR-CONDITIONING SYSTEMS AND APPLICATIONS

Abdullah Nuhait Ph D.
King Saud University
AIR-CONDITIONING SYSTEMS

• Earliest air conditioning system used only for heating (winter)
 • Provided heated air for comfort
 • Provided ventilation
 • Using simple ductwork and control

• In later time, addition of cooling, dehumidification, and/or humidification provide all year round air conditioning

• Air conditioning:
 • Control of temperature, moisture, cleanliness, air quality, and air circulation in space as required by occupants, process, or product
AIR-CONDITIONING SYSTEMS

• No simple answer on how to select HVAC systems

• General factors to be studied when selecting HVAC systems
 • Performance and capacity requirements
 • Spatial requirements
 • First cost
 • Operating costs (energy, maintenance, labor, supplies of spare parts)
 • Reliability
 • Flexibility
 • Maintainability
APPLICATIONS

• Air conditioning systems found in many applications:
 • Residences
 • Public buildings (mosques, auditoriums, gymnasiums, swimming pool)
 • Office buildings
 • Educational facilities (Schools and universities)
 • Health care facilities (Hospitals)
 • Hotels
 • Stores and shopping centers
 • Manufacturing facilities
 • Ships
 • Trains
 • Airplanes
 • Submarines
 • Restaurants
 • Environmental control for survival (underground shelters)
APPLICATIONS

- Underground shelter
APPLICATIONS

• Office buildings
 • Occupancy varies considerably
 • Interior and exterior spaces (zones)
 • Conference room
 • Private room
 • Waiting room
 • Lighting makes sizable part of cooling load (4-7 w/ft²)
 • Office equipment
 • 8:00am – 5:00pm working hours
 • Supply outdoor air for ventilation
APPLICATIONS: Office buildings
APPLICATIONS : Office buildings
APPLICATIONS: Office buildings
APPLICATIONS: Office buildings
APPLICATIONS: Office buildings
APPLICATIONS: Office buildings
APPLICATIONS

- Schools
 - Occupancy varies (universities)
 - 8:00am-3:30pm teaching time
 - Exterior spaces (zones)
 - Auditorium
 - Libraries
 - class rooms
 - Lighting (2.5 W/ft²)
 - Supply outdoor air for ventilation
 - Every class room zone by itself
APPLICATIONS: Schools
APPLICATIONS

- Hospitals
 - Internal load
 - Restriction on air movement between various departments
 - Air quality
 - Humidity (30-55%)
 - Patient rooms (same as hotel)
 - Waiting room
 - 24 hours, 7 days/week working hours
 - Supply outdoor air for ventilation
 - Surgical department (100% outdoor air), use of HEPA filter
 - Nursery (newborn)
APPLICATIONS: Hospitals
APPLICATIONS: Hospitals
APPLICATIONS: Hospitals
APPLICATIONS

• Extended care centers
 • Patients no longer require hospital facilities
 • Similar to hotels
APPLICATIONS: Extended care centers
APPLICATIONS

• Stores
 • Small stores
 » Large glass area in front
 » Use unitary AC equipment
 • Supermarkets
 » Large glass area in front
 » Most of supply air in front
 » Refrigeration equipment
• Department stores
• Shopping centers (malls)
APPLICATIONS: Stores
APPLICATIONS

• Hotels
 • Single room with toilet and bath adjacent to corridor
 • Single story, low-, or high-rise
 • Multipurpose facilities
 » Gymnasium
 » Meeting room
 » Auditorium
 » kitchenettes
 • Use of FCU system or unitary
 • Use of AC systems require least space because of competitive hotel business
 • Guest rooms frequently unoccupied (use diversity factor)
APPLICATIONS: Hotels
APPLICATIONS: Hotels
APPLICATIONS

• Manufacturing facilities
APPLICATIONS: Manufacturing facilities
AC SYSTEMS

Air-Conditioning Systems can be categorized into six types:

- All-Air Systems
- Air-Water Systems
- All-Water Systems
- Unitary Air Conditioners
- Heat Pump Systems
- Heat Recovery Systems
AC SYSTEMS

- HVAC Systems share common basic elements
- HVAC Systems differ in physical appearance and arrangement
- HVAC Systems differ in manner in control and operation
AC SYSTEMS: complete system

Schematic of a typical commercial HVAC system
AC SYSTEMS: four type of piping systems
AC SYSTEMS: complete system

Air conditioning and air distribution systems (shown in previous slide) have means:

- To heat air
- To cool air
- To humidify air
- To dehumidify air
- To clean air
- To distribute air to various conditioned spaces in a zone
- To admit outdoor air
- To exhaust air
AC SYSTEMS: Cooling

• Removing space load using cooling fluid:

 – Cooling fluid supplied to cooling coil (heat exchanger) in air handler

 • Fluid may be liquid (used in commercial applications)

 • Fluid may be mixture of liquid and vapor (refrigerant)

 – Liquid cooled by chillers

 » Chiller cooled by air (air cooled) or water (water cooled)

 • Pumps used to circulate liquid through piping

 • Liquid cooling equipment may be at remote location
AC SYSTEMS: Heating

- Balancing space loss using heating fluid:
 - Heating fluid supplied to heating coil in air handler
 - Fluid usually hot water provided by boiler at remote location
 - Fluid may be steam provided by boiler at remote location
 - Water may be heated using steam with heat exchanger (converter)
 - Fuel for boilers can be natural gas, liquefied petroleum gas (LPG), fuel oil, solid fuel such as coal or wood
 - Heating can also be provided by direct electrical heating or refrigerant (heat pump)
AC SYSTEMS: Humidification

- Adding moisture to space using humidifier:
 - Humidifier supplied
 - With atomized water
 - with water vapor supplied by steam boiler
 - with water vapor supplied by small special steam-generating device
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Central system design involves:
 - Determination of individual zones to be air conditioned
 - Selection of type of HVAC equipment
 - Location of HVAC equipment

- HVAC equipment location:
 - In basement
 - On roof
 - In surface area
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Thermal zone (zone)
 • Conditioned space under control of single thermostat
 • In special cases: zone humidity controlled by humidistat

• Thermostat control device:
 • Senses temperature
 • Sends correcting signal if that temperature not within some desired range
 • Thermostat location in spot free from local disturbances
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Uniform temperature experienced in spaces
 - With large open areas
 - Small external heat gain (loss)
 - Theaters, auditoriums, department stores, public buildings
 - Interior zones fairly uniform in large commercial buildings
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

Spaces with rigid requirements for

- Cleanliness control
- Humidity control
- Temperature control
- Air distribution

- Usually isolated as separate zones within larger building
 - Served by separate systems
 - Furnished with precision control

» Surgical operation rooms: all-air systems used
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• In spaces such as:
 • Large office buildings
 • Factories
 • Large department stores

• Practical considerations require:
 • Multiple zones
 • Multiple installation of central systems

• In case of tall buildings:
 • Each central system may serve two or more floors
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Large installation such as:
 • College campuses
 • Military bases
 • Research facilities

• Served by central plants:
 • Chillers provide chilled water through piping system to entire facilities
 • boilers provide hot water or steam through piping system to entire facilities
 • Piping located underground

• Used diversity factor to adjust for actual capacity of equipment
 • All buildings not be in full use at same time

 » Capacity of equipment lower than sum of maximum requirement of all buildings
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- For large installations with low diversity factor
 - Central plants allow designs with much smaller total capacity
 - Provide lower capital (first) costs than isolated systems located in each individual building
 - Greater efficiency (lower operating cost)
 - Less maintenance cost
 - Lower labor costs
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Selection and arrangement of various system components by designer when
 - User’s of building needs studied and evaluated carefully
 - Zones defined
 - Loads calculated
 - Air requirement computed
 - Type of overall AC system determined
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Equipment should be suitable
 - For particular application
 - Sized properly
 - Accessible for easy maintenance
 - No more complex in arrangement and control than necessary to meet design criteria

- Economic trade-off between initial investment and operating costs must be kept in mind all time

- Ductwork and piping systems make up significant part of AC systems costs
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Central system components can be grouped into five categories:
 • Air handlers and fans
 • Heating sources
 • Refrigeration devices
 • Pumps
 • Controls and instrumentation

• Familiarity with components of HVAC systems may produce optimum design
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Air-handling equipment
 - Shown general arrangement for commercial central system
 - Components available in sub-assembled sections (field assembled)
 - Completely assembled by manufacturer
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Simplified schematic of air handler shows:
 • Fans
 • Heating and cooling coils
 • Filter
 • Humidifier
 • Controlling dampers
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Fans located downstream of coils
 - Called draw-through configuration
 » Used for single zone system

- Photograph of air handler for single zone shown in next slide
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Draw-through air handler
 - Used for single zone system
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Several zones to be served by single air handler
 - Heating and cooling coils may be placed in side-by-side (parallel) arrangement
 - Heating coil called hot deck
 - Cooling coil called cold deck
 - Fan location in front of coils
 - Fan arrangement called blow-through configuration
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Discharge area of air handler may be divided to serve several zones
- Separate temperature control in each zone
- Air handler may be used without dampers in dual-duct system
- Shown in next slide, one typical of cooling, heating, preheat coils
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Finned –tube type coil
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- One type of humidifier used in commercial air handler
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Typical centrifugal fan used in air handler
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Typical unit-type air filter used in air handler
- Bag filters
- Gas removal
- Particulate removal
 - Check pressure drop
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Heating equipment: boilers

• Boiler considered pressure vessel

 • Designed to transfer heat to fluid (water)

 • Classified on basis:
 » Of working pressure and temperature
 » Fuel used
 » Shape and size,
 » Steam or water

• Constructed to meet ASME Boiler and Pressure Vessel Code
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Refrigeration equipment

• Basic components:
 • Compressor
 • Condenser
 • Evaporator
 • Expansion valve
 • Control system
AC Refrigeration equipment: chillers (air-cooled, water-cooled)
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Compressor major energy-consuming component in HVAC

• Compressor performance and reliability is significant

• Types of compressors used:
 • Reciprocating
 • Scroll
 • Screw
 • Centrifugal
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Water-cooled chillers reject heat atmosphere through cooling tower
 - One type of cooling tower
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Pumps and piping
 • Centrifugal pump used in HVAC system for:
 » Primary chilled water
 » Secondary chilled water
 » Hot water
 » Condenser water
 » Steam condensate return
 » Boiler feed water
 » Fuel oil
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- HVAC piping system consists of two groups:

 - Primary piping (main equipment)
 - Fuel lines
 - Refrigerant piping
 - Steam
 - Water

 - Secondary piping (air-handling system) throughout building
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Control and instrumentation

- Load in building varies with time

 - Needs control to modulate output of HVAC system to satisfy loads

 - Properly designed control system maintains good indoor air quality and comfort

- Controls energized in variety of ways:
 - Pneumatic
 - Electric
 - Electronic
 - Combination
 - Direct digital control (DDC)
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Control and instrumentation – continue

- Necessary elements:
 - Sensor (thermostat)
 - Controller (thermostat)
 - Controlled device (valve)
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

• Electric solenoid valve (on and off)
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Two-way, direct-acting control valve with pneumatic actuator and positioner
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

- Two-way control valve with electric actuator
AC SYSTEMS AND AIR DISTRIBUTION SYSTEM

All-air system

• By supplying air to conditioned space:
 • Provides complete sensible heating and humidification (winter)
 • Provides complete sensible and latent cooling (summer)

• No additional cooling required at zone

• All-air system can be used in all HVAC systems for comfort and process work (industrial AC)
All-air system

- All-air system used in buildings that:
 - Requiring individual control of conditioned space
 - Having multiplicity of zones:
 » Office buildings
 » Schools and universities
 » Laboratories
 » Hospitals
 » Stores
 » Hotels ships
 » Clean room
 » Computer room
 » Hospital operation rooms
 » Textile factories
All-Air System

- Single zone (constant air volume)
 - System components
All-Air System (constant volume)
All-Air System (constant volume) - control
All-Air System chilled water AHU (constant volume)
All-Air System chilled water AHU (constant volume) - control
All-Air System

- Reheat (constant air volume) system
 - Modification of single-zone constant-volume system
 - Permit zone control for area of unequal loadings
All-Air System

- Variable-air-volume system
 - Varying load by regulating volume of supplied air
All-Air System: indoor AHU fan powered VAV system
All-Air System: indoor AHU fan powered VAV system (control)
All-Air System: water cooled self-contained air conditioner fan powered VAV system
All-Air System: water cooled self-contained air conditioner fan powered VAV system (control)
All-Air System: roof-top air conditioner VAV system with reheat
All-Air System: roof-top air conditioner VAV system with reheat (control)
All-Air System: roof-top air conditioner VAV system
All-Air System: roof-top air conditioner VAV system (control)
All-Air System: chilled water AHU (outdoor) - VAV system (thermal storage)
All-Air System: chilled water AHU (outdoor) - VAV system (control) - (thermal storage)
All-Air System

- Dual-duct (double-duct) system
 - Supplies warm air through one run and cold air through the other
 - Temperature controlled by mixing warm and cold in proper proportions
 - Installed in office buildings, hotels, hospitals, schools, large laboratories, …etc
 - Control will reset cold air supply to highest temperature acceptable and hot air supply to lowest temperature acceptable
All-Air System

- Dual-duct system
All-Air System

- Dual-duct system – Control system
All-Air System

- Multi-zone system
 - Provides single supply duct for each zone
Air-water System

• Both air and water distributed to each space
 • To perform both cooling and heating

• Water has greater specific heat and density than air (reduced amount of air)
 • Less building space needed
 • Pumping HP less than fan HP

• Commonly used in:
 • Office building
 • Hospitals
 • Hotels
 • Schools
 • High-rise building (to save space)
Air-water System

- Water side consists of
 - Pump
 - Piping
 - Coils

- Schematic of air-water induction used in air-water system
Air-water System

• Typical fan-coil unit used air-water system
Air-water System – unit ventilator
Air-water System - control
All-water System

- All-water systems use fan-coil and ventilator units
- Cooling and dehumidification provided by circulated chilled water
- Similarly heating provided by circulated hot water
- Humidification provided by separate humidifier for each room
Unitary Air Conditioner

- Unitary air-conditioning equipment
 - Factory-matched components (fan, coils, filters, etc.)
 - Packaged (single)
 - Split (two units connected in field)
 - Air cooled (condenser)
 - Water cooled (condenser)
Unitary Air Conditioner

- Typical of large commercial packaged
Unitary Air Conditioner

- Schematic of roof-top packaged
Unitary Air Conditioner

- Schematic of room air conditioners
Unitary Air Conditioner

- Typical of packaged terminal air conditioner
Unitary Air Conditioner for hotel
Heat Pump Systems

- Refrigeration equipment used for cooling and heating
Heat Recovery Systems

- Recovering heat from warm exhaust air (winter) by fresh air
- Cooling fresh air by cool exhaust air (summer)
Heat Recovery Systems

- Schematic of air-to-water-heat-recovery system
Heat Recovery Systems

- Schematic of rotating heat exchanger
Heat Recovery Systems

- Schematic of air-to-air heat-recovery system