تجاوز إلى المحتوى الرئيسي
User Image

Mohammed Hamad Aldosary

Assistant Professor

Faculty

كلية العلوم
Physics and Astronomy Dept., Building 4, 2nd Floor, Office 2B6
المنشورات
مقال فى مجلة

Exploring interfacial exchange coupling and sublattice effect in heavy metal/ferrimagnetic insulator heterostructures using Hall measurements, x-ray magnetic circular dichroism, and neutron reflectometry

We use temperature-dependent Hall measurements to identify contributions of spin Hall, magnetic proximity, and sublattice effects to the anomalous Hall signal in heavy metal/ferrimagnetic insulator heterostructures with perpendicular magnetic anisotropy. This approach enables detection of both the magnetic proximity effect onset temperature and the magnetization compensation temperature and provides essential information regarding the interfacial exchange coupling. Onset of a magnetic proximity effect yields a local extremum in the temperaturedependent anomalous Hall signal, which occurs at higher temperature as magnetic insulator thickness increases. This magnetic proximity effect onset occurs at much higher temperature in Pt than W. The magnetization compensation point is identified by a sharp anomalous Hall sign change and divergent coercive field. We directly probe the magnetic proximity effect using x-ray magnetic circular dichroism and polarized neutron reflectometry, which reveal an antiferromagnetic coupling between W and the magnetic insulator. Finally, we summarize the exchange-coupling configurations and the anomalous Hall-effect sign of the magnetized heavy metal in various heavy metal/magnetic insulator heterostructures

مزيد من المنشورات
publications

Among van der Waals (vdW) layered ferromagnets, Fe3GeTe2 (FGT) is an excellent candidate material to form FGT/heavy metal heterostructures for studying the effect of spin−orbit torques (SOT).

2019
publications

We report a longitudinal spin Seebeck effect (SSE) study in epitaxially grown FeF2ð110Þ antiferromagnetic (AFM) thin films with strong uniaxial anisotropy over the temperature range of 3.8–250 K…

2019
publications

Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit…