faculty image
Sign In

 

                                                MATH 204 (Semester I-2011/2012)

 

MATH 204 Differential Equations (3+0) credit-hours.

 Prerequisite: 201M or 203M:  Language of instruction:English 

 

Various types of first order equations and their applications. Linear equations of higher order. Systems of linear equations with constant coefficients, reduction of order. Power series methods for solving second order equations with polynomial coefficients. Fourier series, Fourier series for even and odd functions. Complex Fourier series. The Fourier integral.

Answer Sheet (Exam 1/2011/S1):

 

p1.jpg, P2.jpg, P3.jpg, P4.jpg

 

 Course_Specification___Math204.pdf

 

 C.Det.Assessment31-32.pdf ,    30.31.S1.rar,     30.31.S2.rar

New homework:HW1.pdf , Homework 02.pdf

Syllabus

COURSE MATH 204  SEMESTER I, 1432 – 1433 H (2011/2012)

Department of Mathematics

TEXT BOOK: Differential equations with boundary value problems

Authors: Dennis G. Zill and Michael R Cullen (Sixth edition)

Additional References:

1. Fundamentals of Differential Equations and Boundary Value Problems (Fourth Edition)

By: R. Kent Nagle, Edward B. Saff, Arthur David Snider

2. Lecture Notes on Differential Equations by Khawaja Zafar Elahi

 

Weekly Course Details

1.Definition of a Diff Eq , Classification of Diff Eq by (type, order, linearity) ,

Interval of definition, Solutions (explicit, implicit). (Chapter 1).

2. Initial value problems. Existence and uniqueness theorem, Separable

equations (Separable variable). (Chap 1+Chap 2). 

3. Linear equations, Exact Equations, Integrating factor. (Chap 2). 

4. Solutions by substitution: Homogeneous equations. (Chap 2). 

5. Bernoulli equation, Equations with linear coefficients. (Chap 2). 

6. Linear Models: Orthogonal trajectories, Growth and decay, Newton’s Law of Cooling/ Warming. (Chap 3). 

7. H.O.D.E. Linear Diff Eqs: Existence-Uniqueness theorem, Linearly

(independent, dependent), Wronskian. Reduction of order . (Chap 4).

8. Hom-Lin-Eq with constant coeffs. Undetermined coefficient method,

Superposition principle. (Chap 4). 

9. Variation of parameters, Cauchy-Euler Equation. (Chap 4). 

10. Solving systems of Linear Equations by Elimination. (Chap 4). 

11. Series solutions of Linear Equations. (Chap 6). 

12. Orthogonal Functions and Fourier Series. (Chap 11). 

13. Fourier cosine and sine series, Complex Fourier Series. (Chap 11). 

14. Fourier Integral. (Chap 14). 

15. Revision.

Assesment: Mid-Term Exam1: 20/100, Mid-Term Exam 2: 20/100, Tutorial+ Quizzes: 10/100 Final Exam: 50/100.

 

 Mid-Term EXAMS:

 Mid-Term Exam 1: Tuesday 27/11/1432 From 7-8.30 PM 

Mid-Term Exam 2: Tuesday 18/01/1433From 7-8.30 PM

 Final Exam: Will be announced later.

 

 

Exams (30/31 S1): 30.31.S1.rar

Exams (30/31 S2): 30.31.S2.rar

 

Correction of Mid-Term Exam 1(SI)(29/30):

 page 1.pdf, page 2.pdfpage 3.pdf, page 4.pdf.

Correction of Mid-Term Exam 2(S1)(29/30):

 P1.tif , P2.tif, P3.tif, P4.tif

28.29.S1

 Homework distributions 2008.pdf

HW1.pdf (29/30).

Homework 03 2008.pdf (29/30)

Homework No4.pdf (29/30)

homework No5.pdf(29/30)

HomeworkNo6.pdf(29/30)

HOMWORK1.pdf:

HWP1.tif,

HWP2.tif,

HWP3.tif,

 Scan0059.tif,

 HWP5.tif

HOMEWORK-2.pdf

Scan0001.tif

Scan0002.tif

 Scan0003.tif 

HOMEWORK 3.pdf

Scan0004.tif

Scan0006.tif

Scan0007.tif 

Scan0008.tif 

Scan0009.tif

Scan0010.tif

Homework 4.pdf 

Sol1.pdf

Sol2.pdf

Sol3.pdf

Sol4.pdf

Homework 5.pdf

HOMEWORK.6.pdf

Some Previous Exams

Midterm1-S2-2007.pdf

Midterm2_2007_.pdf

Mid-T2-2006(SI).pdf 

MdTerm1S2.2006.pdf

F.Ex.I.2005.pdf

F-I-.Ex.II.20006.pdf                               

Alternative ExamII-2007.pdf

Alternative Exam 2007MT2.pdf

Alternative ExamS2 final.pdf

Alternative Exam1-II-2006.pdf

Alternative Exam II2006_.pdf 

King Saud University. All rights reserved, 2009| CiteSeerx