Congestion

- When number of packets sent is within subnet carrying capacity, all are delivered
- As traffic increases, packet loss happens
- At very high traffic, performance collapses
- Both transport and network layers share responsibility of handling congestion
- Network layer is directly affected
- In that chapter, we look at network aspect
Goodput: rate at which *useful* packets are delivered by the network.

How Congestions Happens

- Incoming packets from multiple inputs need to go to same output line; queue builds up
- If insufficient memory, packets lost
- Adding memory helps to some point
- Even with ∞ memory, congestion gets worse
 - delayed packets timeout, retransmitted
 - duplicates increase load
- Congestion collapse: load exceeds capacity
How Congestions Happens

- Slow processors
 - CPU slow in doing bookkeeping tasks
 - queues build up
- Low bandwidth lines
 - can’t forward packets same as arriving speeds
- Mismatch between system parts
 - upgrading some parts only shifts bottleneck

Congestion VS Flow Control

- Congestion control
 - make sure subnet is able to carry offered traffic
 - global, involve behavior of all hosts
 - all factors that diminish carrying capacity
- Flow control
 - traffic between a given sender & given receiver
 - ensure fast sender not overwhelm slow receiver
 - involve feedback from receiver to sender
Example: Congestion VS Flow Control

- Flow control
 - fiber optic network with 1000 Gbps
 - S. Computer try to transfer file to a PC @ 1 Gbps
 - no congestion
 - flow control needed to slow SC

- Congestion control
 - network with 1 Mbps lines, 1000 computers
 - half of them trying to transfer @ 100 kbps
 - no overpowering problem
 - but total traffic exceed network capacity

General Principles of Congestion Control

- Can be viewed as a Control Theory problem

- Open Loop: solve problem by good design
 - attempt to prevent congestion from happening
 - after system is running, no corrections made

- Closed Loop: concept of feedback loop
 - monitor system to detect congestion
 - pass information to where action is taken
 - adjust system operation to correct problem
General Principles of Congestion Control

- Monitoring system
 - % of discarded packets for lack of buffer space
 - number of packets timeout & retransmitted
 - average delay

- Passing information
 - send packet to sources announcing problem
 - bit field in outgoing packets to warn neighbors
 - routers send probe to ask about congestion

Adjusting system
- routers expected to take appropriate action
- timing is very important
- too quick: system will oscillate wildly
- too slow: react too sluggishly to be useful
- possible actions

- Open loop
 - act at source
 - act at destination

- Closed loop
 - explicit feedback
 - implicit feedback
Congestion Prevention Policies

- Retransmission policy
 - fast retransmit, go back N add heavier load than
 - using slow retransmit, selective repeat

- Acknowledgement policy
 - immediate ACK for each packet increases load
 - save, piggyback onto reverse traffic
 - however, timeout causes retransmission

- Virtual circuit or datagram?
 - most congestion control alg require VC
Congestion Prevention Policies

- Routing algorithm
 - good algorithm helps spread traffic on all lines
- Packet lifetime
 - how long packet lives before being discarded
 - too long: lost packets cause congestion
 - too short: timeout quickly, retransmissions
- Timeout determination
 - harder, end-to-end is unpredictable
 - too short: unnecessary retransmissions
 - too long: slow response time

Congestion Control in Virtual-Circuit Subnets

- Admission Control
 - once there’s congestion, no more VCs setup
 - in telephone: no dial tone
- Alternative approach
 - allow but carefully route new VCs
Congestion Control in Datagram Subnets

- Routers monitor utilization of output lines
- Assign utilization variable for each out line
 - u: recent line utilizations $0 < u < 1$
 - $u_{new} = a u_{old} + (1 - a)f$ updated periodically
 - f: instantaneous utilization (0 or 1)
 - a: constant $0 < a < 1$, how fast router forgets recent history
- If $u >$ threshold enter warning state
- At new packet arrival, check state of out line

The Warning Bit
- special bit in packet header
- router in warning state set bit on out packets
- dest copies bit on next ACK packet, send back
- source cut back on traffic
- monitor fraction of warning ACKs, adjust rate
Congestion Control in Datagram Subnets

- Choke Packets
 - instead of indirect warning bit algorithm
 - tell source directly
 - send choke packet back to source
 - original packet is tagged, so will not generate another choke packet, then forwarded as usual

- Hop-by-hop choke packets
 - affect every hop it passes through
 - provide quick relief at the point of congestion

a) A choke packet that affects only the source

b) A choke packet that affects each hop it passes through
Load Shedding

- When other methods fail
- Throw excess packets away
- Term taken from electricity
 - blacking certain areas to save entire grid
 - on hot summer days with high demand
- Choosing packets to discard
 - random, may cause retransmissions
 - priority-based, required coop from senders

Load Shedding

- Random Early Detection (RED)
 - drop packets before situation become hopeless
 - routers maintain average queue length
 - if exceeds threshold, line said to be congested
 - router can’t tell which source most trouble
 - pick packet randomly from congested queue
- TCP responds to lost packets by slowing
 - in wired networks, loss is result of congestion
 - form of indirect feedback
 - in wireless networks, cannot be used
Jitter Control

- For some applications audio, video stream
 - increased delay is not a problem
 - as long as it is constant
- Jitter: variation in delay
- Var bet 20-30 ms unacceptable for sound
- If 99% packets 24.5-25.5 ms might be OK

[Diagram of Jitter Control]

(a) High Jitter
(b) Low Jitter
Jitter Control

- Calculate average time
- Each hop check how close to schedule
 - speed up slow packets
 - slow down fast packets
- For video-on-demand
 - buffering, play from buffer instead of real-time
- For real-time videoconferencing
 - buffering delay unacceptable