Accent Method of Voice Therapy for Treatment of Severe Muscle Tension Dysphonia: A Case Report

العلاج الصوتي باستخدام طريقة التبرزات في علاج بحة توتر العضلات الشديدة: حالة مرضية

Khalid H. Malki, MD, PhD
Consultant, Assistant Professor of Phoniatrics
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia

Nasser H. Abdel Nasser, MD, PhD
Consultant, Assistant Professor of Phoniatrics
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia

Sabah M. Hassan, MD, PhD
Consultant of Phoniatrics
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia

Mohammed Farahat, MD, MSc
Assistant Lecturer of Phoniatrics
Phoniatrics Unit
ORL Department, Ain Shams University
Cairo, Egypt

Running Title:
AM of Voice Therapy for Treatment of Severe MTD.

This work was done at Communication and Swallowing Disorders Unit (CSDU), ORL Department, King Abdulaziz University Hospital, Riyadh, Saudi Arabia.
Khalid H. Malki, MD, PhD
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia
وحة أمراض التخاطب والبلع
مستشفى الملك عبد العزيز الجامعي بالرياض

Nasser H. Abdel Nasser, MD, PhD
ناصر حسن عبدالناصر
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia
وحة أمراض التخاطب والبلع
مستشفى الملك عبد العزيز الجامعي بالرياض

Sabah M. Hassan, MD, PhD
صبح محمد حسن
Communication and Swallowing Disorders Unit (CSDU)
ORL Department, King Abdulaziz University Hospital
Riyadh, Saudi Arabia
وحة أمراض التخاطب والبلع
مستشفى الملك عبد العزيز الجامعي بالرياض

Mohammed Farahat, MD, MsC
محمد فراهام
Phoniatrics Unit
ORL Department, Ain Shams University
Cairo, Egypt
وحة أمراض التخاطب
جامعة عين شمس بالقاهرة

This work was carried out at Communication and Swallowing Disorders Unit (CSDU) ORL Department, King Abdulaziz University Hospital Riyadh, Saudi Arabia.

Correspondence address:
Khalid H. Malki, MD, PhD
Consultant, Assistant Professor of Phoniatrics
P.O Box 245
Riyadh, 11411
ORL Department, Communication and Swallowing Disorders Unit (CSDU)
King Abdulaziz University Hospital
Riyadh, Saudi Arabia
0096614786100 Ext. 5203 Fax: 0096614775682
kmalky@yahoo.com
kalmalki@ksu.edu.sa
ABSTRACT

Nonorganic dysphonia may present a challenging diagnosis and management. Here we presented a severe form of nonorganic dysphonia, the authors termed "Arytenoidal Dysphonia". It was a severe form of muscle tension dysphonia, which was described earlier in literature but with different nomenclature. The outcome of Accent Method of voice therapy was also presented. We concluded that Accent Method of voice therapy is proven to be an effective treatment modality of arytenoidal dysphonia.

Key Words: Larynx; vocal folds; arytenoidal dysphonia; voice therapy.
الملخص

بحة الصوت غير العضوية قد تمثل تحديا للطبيب المعالج في تشخيصها وعلاجها، وقد عرضنا في هذه الدراسة لحالة مرضية لبحة صوت غير عضوية، أطلق عليها المؤلفون اسم "السية الطرجهالية"، وهي بحة سابقة وصفها ولكن تحت مسميات أقل دقة، وتعتبر أحد أنواع بحة توتر العضلات الشديدة، كما تم عرض طريقة علاجها بواسطة العلاج الصوتي باستخدام طريقة التبرات، وقد أظهرت هذه الدراسة أن طريقة العلاج الصوتي باستخدام طريقة التبرات هي طريقة ناجحة في علاج "البحة الطرجهالية".
INTRODUCTION

Nonorganic dysphonia refers to impairment of voice production in the absence of mucosal or neurogenic disease of the larynx \(^1\). Diagnosis is confounded by inconsistent nomenclature and lack of uniform diagnostic classification systems \(^2\). List of labels includes: functional dysphonia \(^3\), muscle misuse dysphonia \(^4\), and muscle tension dysphonia \(^5\). Laryngeal postures observed in nonorganic dysphonia have different classification systems. Such postures were described by: Van Lawrence \(^6\), Koufman and Blalock \(^7\), Morrison and Rammage \(^4\), and Rosen and Murry \(^8\). The aim of this article was to present a severe form of nonorganic dysphonia (muscle tension dysphonia), in which there was a severe anterior-posterior supraglottic compression during phonation (Morrison-Rammage 3). The patient was using the redundant arytenoidal mucosa for phonation. The authors termed this severe form of muscle tension dysphonia as "arytenoidal dysphonia", as compared to ventricular dysphonia. The outcome of Accent Method of voice therapy was presented. To the best of our knowledge, there are no reports in literature describing management and long-term follow-up of patients using their redundant arytenoidal mucosa for phonation.
CASE REPORT

A 14-year-old Saudi female presented to our Communication and Swallowing Disorders Unit (CSDU), ENT Department at King Abdulaziz University Hospital (KAUH), Riyadh, Saudi Arabia with a markedly low-pitched voice, severe dysphonia, and a history of abnormal voice dated since early childhood. There was a history of un-intentional high-pitched voice which could be produced occasionally by the patient especially during singing. There was no history of dyspnea, dysphagia, diabetes mellitus, surgical intervention, laryngeal trauma, or psychiatric disturbances. Voice Handicap Index (VHI) (9), as rated by the patient, was 43 on presentation. This indicates a moderate vocal handicap. Auditory perceptual assessment (APA) (10) revealed that the overall grade of dysphonia was 3 (severe) with irregular quality. Telescopic laryngostroboscopic examination using digital videolaryngostroboscopy (Model RLS 9100B, Kay Elemetrics Corp., Lincoln Park, NJ, USA) revealed that the true vocal folds appeared only during respiration (true vocal fold abduction). They were pearly white in color, with mild mucosal congestion (Figure 1). The true vocal folds showed small bilateral vocal fold nodules. During phonation, the true vocal folds could not be seen. The patient was using her redundant arytenoidal mucosa to produce the voice by contacting it against the posterior surface of the
epiglottis, with appearance of "mucosal waves" on the redundant arytenoidal mucosa (Figure 2). Acoustic analysis was performed using Multi-dimensional Voice Program (MDVP Model 4305) (Kay Elemetrics Corp., Lincoln Park, NJ, USA) installed into Computerized Speech Lab (CSL model 4300, Kay Elemetrics Corp., Lincoln Park, NJ, USA). The sampling rate was set to 50,000 Hz. In a quite room, the patient was asked to sustain the vowel /α/ for 4 seconds at a comfortable pitch and loudness after she was instructed to clear the throat. A dynamic microphone (Shure prologue 14 H) was positioned at a mouth-to-microphone distance of 20 cm. A 3-second mid-vowel segment was selected and analyzed. The voice signal was considered adequate if it was free of overloads (red signals on the screen) and audible variations in pitch and loudness. The following acoustic parameters were, then, obtained: Average Fundamental Frequency (Fo), Absolute Jitter (Jita), Jitter Percent (jitt), Relative Average Perturbation (RAP), Pitch Perturbation Quotient (PPQ), Fundamental Frequency variation (vFo), Shimmer in dB (ShdB), Shimmer Percent (Shim), Amplitude Perturbation Quotient (APQ), Smoothed Amplitude Perturbation Quotient (sAPQ), Noise-to-Harmonic Ratio (NHR), and Voice Turbulence Index (VTI). The results of the acoustic analysis are represented in the Table I. The patient was managed by Accent Method of voice therapy (11) after
elicitation of the high-pitched voice that the patient was occasionally producing. Voice therapy was performed by one of the authors (S. M. H). We believe that this high-pitched voice sets the true vocal folds into vibration and eliminates the vibrations of the arytenoidal mucosa. The newly acquired voice was stabilized by the Accent Method of voice therapy. Its sessions were given twice weekly, and each lasted for 30 minutes. The patient was instructed to use her newly acquired voice as much as she can. The first post-therapy assessment was done after 6 sessions of voice therapy. All the assessment tools mentioned earlier were repeated. VHI was rated by the patient as 20, which indicates a minimal vocal handicap. At this stage, the patient was using her true vocal folds during phonation, as documented by videolaryngostroboscopy (Figure 3), with appearance of weak, slightly asymmetrical, and slightly aperiodic stroboscopic mucosal waves. After the tenth sessions, a second post-therapy assessment was done, with re-application of the previously-mentioned assessment tools. Post-therapy, acoustic analysis showed that Fo had increased. All other acoustic variable decreased after the tenth session of voice therapy. On her third evaluation one year after presentation, all acoustic variables, except Fo, were slightly worsened (Table I).
DISCUSSION

The pathophysiology of nonorganic dysphonia is uncertain. It was hypothesized that it could be due to incomplete relaxation of the posterior cricoarytenoid muscle \(^{(3)}\), excessive activity of intrinsic and extrinsic laryngeal muscles during phonation \(^{(4)}\), in-coordination of respiratory effort with vocal fold tension \(^{(8)}\), or it could be due to a maladaptive compensatory laryngeal strategy as a result of glottal pathology \(^{(7)}\).

Anyhow, there is a growing body of evidence \(^{(2, 12, 13)}\) that some laryngeal postures attributed to nonorganic dysphonia may not be signs of abnormal phonatory function. They can be considered as “normal variants” in some normal subjects, especially during connected speech.

The presented patient was using her redundant arytenoidal mucosa for phonation. Arytenoidal mucosa has large mass and reduced elasticity. This can explain the irregular character and the low pitch of the her voice. It is not clear why she used her arytenoidal mucosa to produce phonation. The authors propose that this was the result of inefficient true vocal fold vibration at a certain stage during her early childhood. Transient true vocal fold paralysis and/or vocal misuse or abuse might led to supraglottic hyperfunction, which might induced the use of arytenoidal mucosa as an alternative vibrator. However, the use of arytenoidal
mucosa for phonation might also have been developed as a “habit” during early childhood, and then maintained for reasons of secondary gain, although there was no history of clear emotional or psychiatric disturbances. The use of arytenoidal mucosa and not ventricular folds still needs an explanation.

The associated bilateral vocal fold nodules augment the assumption of vocal trauma as a predisposing factor for the development of the proposed compensatory supraglottic hyperfunction in the pathogenesis of arytenoidal dysphonia.

Occasional high-pitched voicing in the presented patient can be attributed to the patient's need to use her true vocal folds. This was one of the reasons why voice therapy used in her management started with training her to phonate with high-pitched voice, aiming at eliminating the use of arytenoidal mucosa for phonation.

The newly acquired voice with its higher-than-normal pitch was, then, stabilized by Accent Method of voice therapy. This type of voice therapy has a holistic approach for management of voice disorders. It entails two main tasks: (1) voice hygiene advice, and (2) correction of
faulty vocal technique. It entails an integration of abdomino-diaphragmatic breathing, accentuated rhythmic vowel play, phonation, and later articulation. It allows restoration of balance between expiratory phonatory airflow ‘‘excitor’’ and the adjustment of the muscles of the vocal folds ‘‘vibrator’’\(^{(11,14)}\). In spite of limited efficacy studies, Accent Method was used for this case because it is postulated that it allows restoration of the physiologic balance and timing between airflow, sound pressure level and laryngeal muscle contraction, thus allowing emergence of a comfortable pitch\(^{(14)}\).

The Fo had increased from 101 Hz pre-therapy to 329 Hz after the 6\(^{th}\) session of voice therapy. This increase is attributed to the use of the normal vibrator (true vocal folds). After the 10\(^{th}\) session, Fo had decreased slightly to 297 Hz, which is still slightly higher than her normal age-and-sex-matched pitch \(^{(15)}\). Pitch perturbation and amplitude perturbation variables, in addition to noise-related variables, improved after voice therapy. Acoustic variables of voice are expected to improve when true vocal folds and not other abnormal vibrators are used for phonation.
Although the patient was still using her true vocal folds, it was noticed that all acoustic variables of our patient's voice, except Fo, were slightly worsened on her third evaluation one year after presentation (Table I). Since she was not compliant to the use of her newly acquired voice at home, and because she was still abusing her voice, this slight deterioration was expected. Such finding emphasizes the importance of compliance to voice therapy techniques in nonorganic dysphonia.
REFERENCES

(14) Kotby MN, El Sady SR. Care of the professional voice in Egypt.

Table I: Acoustic (MDVP) variables.

<table>
<thead>
<tr>
<th>MDVP parameters</th>
<th>Pre-therapy evaluation</th>
<th>1st post-therapy evaluation</th>
<th>2nd post-therapy evaluation</th>
<th>3rd post-therapy evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Fundamental Frequency (Fo) Hz</td>
<td>101.01</td>
<td>329.31</td>
<td>297.09</td>
<td>272.27</td>
</tr>
<tr>
<td>Absolute Jitter (jita) us</td>
<td>592.21</td>
<td>107.13</td>
<td>52.12</td>
<td>89.96</td>
</tr>
<tr>
<td>Jitter percent (jitt) %</td>
<td>5.96</td>
<td>3.52</td>
<td>1.55</td>
<td>2.45</td>
</tr>
<tr>
<td>Relative Average Perturbation (RAP) %</td>
<td>3.38</td>
<td>2.13</td>
<td>0.95</td>
<td>1.48</td>
</tr>
<tr>
<td>Pitch perturbation Quotient (PPQ) %</td>
<td>3.87</td>
<td>2.09</td>
<td>0.90</td>
<td>1.44</td>
</tr>
<tr>
<td>Smoothed Pitch Perturbation Quotient (sPPQ) %</td>
<td>4.83</td>
<td>2.08</td>
<td>0.94</td>
<td>1.46</td>
</tr>
<tr>
<td>Fundamental frequency variation (vFo) %</td>
<td>6.40</td>
<td>3.32</td>
<td>1.67</td>
<td>2.84</td>
</tr>
<tr>
<td>Shimmer in dB (ShdB)</td>
<td>1.06</td>
<td>0.45</td>
<td>0.38</td>
<td>0.43</td>
</tr>
<tr>
<td>Shimmer Percent (Shim) %</td>
<td>12.16</td>
<td>5.19</td>
<td>4.33</td>
<td>4.91</td>
</tr>
<tr>
<td>Amplitude Perturbation Quotient (APQ) %</td>
<td>8.43</td>
<td>3.86</td>
<td>3.19</td>
<td>3.36</td>
</tr>
<tr>
<td>Smoothed Amplitude Perturbation quotient (sAPQ) %</td>
<td>10.50</td>
<td>5.17</td>
<td>4.35</td>
<td>4.94</td>
</tr>
<tr>
<td>Noise to Harmonic Ratio (NHR)</td>
<td>0.32</td>
<td>0.12</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>Voice Turbulence Index (VTI)</td>
<td>0.24</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Figure Legends

Fig. 1. Laryngeal videostroboscopic image at presentation. During breathing, early bilateral vocal fold nodules and bilateral shallow sulcus vocalis type II are noticed.

Fig. 2. Laryngeal videostroboscopic image at presentation. During phonation, the patient is using her redundant arytenoidal mucosa to produce the voice by contacting it against the posterior surface of the epiglottis, with appearance of mucosal waves.

Fig. 3. Laryngeal videostroboscopic image after 6 sessions of voice therapy. During phonation, the patient is now using her true vocal folds to produce voice.