Introduction and General Principles of Infectious Diseases

Ted Morton, Pharm.D. BCPS (AQ-ID)
Associate Professor of Clinical Pharmacy
King Saud University
PHCL 430 Spring 2010
Introduction

• Pharmacotherapy II (PHCL 430; PHCL 503)
 – Continuation of 416; 501 & 502
 – Integration:
 • 430 with Pharmaceutical Care 429
 • 503 with case presentation for lab
 – Emphasis is on application to patient care and drug therapy
 – Uses current medical literature (guidelines & studies)
Introduction 2

• Syllabus
 – Overview
 – Objectives
 – Course materials
 • Emphasis is on faculty’s lectures & handouts
 • Articles are usually source documents for recommendations and are for review / reference
 • Book chapters are to help learn material from lecture if you need more explanation.
Introduction 3

• Course documents
 – Available on the internet
 • http://sites.google.com/site/drtedmorton/
 – Syllabus
 – Links to faculty’s presentations etc.
 – Articles & references
• Studying
 – This class will be challenging!
 • Lots of material and requires both critical thinking skills and recall of facts
 – How to pass
 • Study, Study, Study
 – Read course materials before each lecture
 – Review your notes from class immediately
 – Use the objectives to focus your learning
 – Make tables of bugs vs drugs etc.
Introduction 5

• Examinations
 – Multiple choice & short answer
 – Average of 5 per lecture hour
 – Based on objectives / pharmacotherapy

• Attendance & Conduct = Professionalism
 – Welcome to the Profession of Pharmacy
 – Respect for yourself and others (patients, faculty)
Overview

• Objectives
• Review of key concepts from pre-required classes
 – Microbiology
 – Pharmacology
 – Pathophysiology & Immunology
Overview 2

• Diagnosis and treatment of infection
• Clinical use of antibiotics
 – Empiric
 – Definitive
 – Prophylaxis
• Pharmacists Role
 – Patient
 – Institution
Objectives

- Recall foundational principles of microbiology, pharmacology, pathophysiology, & immunology in the treatment of infectious diseases
- Recognize predisposing conditions leading to the development of infection and preventative measures
Objectives 2

• Describe physical findings, lab etc used in the diagnosis of infection and monitoring of response to therapy
• Name and differentiate the 3 primary uses of antibiotics
• Explain the use of patient data to optimize initial and subsequent antibiotic therapy
Background Reading & References

• 430 & 503:
 – Chapter 69
 • Antimicrobial Regimen Selection

• 503 Only:
 – Case # 109
 – Assigned readings
Microbiology

• Structure & function of organisms different than eukaryotes
 – Allows them to invade and cause harm
 – Serves as targets for safe and effective therapy
 – Rapidly mutate, change

• Pathogenesis
 – Exposure to virulent pathogen
 – Compromised innate or adaptive immune system
Microbiology 2

Bacteria

• Gram Positive Cocci
 – Staphylococcus aureus, S. epidermidis
 – Streptococcus viridans, pyogenes; Enterococcus

• Gram Positive Rods
 – Clostridium, Bacillus, Listeria
Microbiology 3

Bacteria

• Gram Negative Rods
 – Enterobacteriaceae (E. coli, Proteus, Klebsiella)
 – Pseudomonas; Haemophilus

• Gram Negative Cocci
 – Neisseria Meningtidis

• Anaerobes
 – Peptostreptococcus, Bacteroides
Microbiology 4

• Atypicals
 – Mycoplasma & Chlamydia

• Acid-Fast Bacilli
 – Mycobacterium tuberculosis

• Protozoa

• Viruses (Hepatitis, Influenza, HIV)

• Fungus (Candida, Aspergillus)
Microbiology 5

• What you need to know about the bugs:
 – General taxonomy & names
 • gram-positive vs negative, aerobic vs anaerobic
 – Disease states they cause
 • Lungs, skin, central nervous system etc.
 – What antibiotics work, drugs of choice
 – What are key resistance mechanisms and how common are they (percent susceptible)
Microbiology 6

• Identification
 – Culture, PCR etc
 – Quantitative thresholds for diagnosis

• Susceptibility testing
 – Minimum Inhibitory Concentration
 • Microtube vs Etest etc
 – Zone of inhibition
 • Kirby-Bauer
 – Interpretation (relative to drug concentrations)
 • Susceptible, Intermediate & Resistant
Susceptibility

• Concentration at the site of infection relative to MIC predicts clinical success but is difficult to measure directly!
 – Measure in vitro MIC or KB zone
 +/- bloodstream levels etc.

• Interpretation of MIC or KB zone result is Bug - Drug combination specific using standards
 – Cannot just pick the drug with the lowest MIC
1) Serially dilute antibiotic

2) Innoculate with fixed concentration of organisms

3) Incubate for fixed time frame

4) Interpret MIC = 1 mcg/mL
Susceptibility 2

• Susceptible (S)
 – Clinical success can be expected if treated with usual doses

• Intermediate (I)
 – Clinical success may be possible if
 • High doses of antibiotic are used
 • Antibiotic concentrates at the site of infection
 • Combination of synergistic agents are used

• Resistant (R)
 – Treatment failure is expected
Pharmacology

- To be effective, antibiotics must reach the site of infection at adequate concentrations to inhibit or kill the bacteria without harming the patient
Pharmacology 2

• Efficacy & Safety
 – Mechanism of action & resistance
 – Spectrum of activity
 – Pharmacokinetics & Pharmacodynamics
 – Adverse effects, Drug Interactions, Cost & Compliance
Mechanism of Action

- Cell wall synthesis
 - Cycloserine
 - Vancomycin
 - Bacitracin
 - Fosfomycin
 - Penicillins
 - Cephalosporins
 - Monobactams
 - Carbapenems

- DNA replication (DNA gyrase)
 - Nalidixic acid
 - Quinolones

- DNA-dependent RNA polymerase
 - Rifampin

- Protein synthesis (50S inhibitors)
 - Erythromycin
 - Chloramphenicol
 - Clindamycin

- Protein synthesis (30S inhibitors)
 - Tetracycline
 - Spectinomycin
 - Streptomycin
 - Gentamicin, tobramycin
 - Amikacin

- Folic acid metabolism
 - Trimethoprim
 - Sulfonamides

- PABA

- THF A
 - DHF A

- Ribosomes
 - mRNA
 - DNA

- Cell membrane
 - Polymyxins
Mechanism of Resistance

• Prevent from reaching target
 – Altered porin channel (pseudomonas)
 – Efflux pumps (tetracyclines)

• Inactivate antibiotic
 – Beta – lactamase (hundreds)
 – AME’s (aminoglycosides)

• Change Target
 – Absolute (PBP 2a in MRSA)
 – Relative (PBP’s in Streptococcus pneumoniae)
Pharmacodynamics

• Bacteriostatic
 – Inhibits growth at all concentrations above MIC
 – Requires intact immune system for killing
 – Avoid in life-threatening diseases states
 – Still may be a drug of choice if no other options
Pharmacodynamics 2

- **Bacteriocidal:**
 - Inhibits growth above MIC, Kills above MBC
 - Dose Dependent Killing (Peak to MIC)
 - Aminoglycosides and Quinolones
 - 10:1 ratio usually best
 - “once daily” aminoglycosides
 - Exposure Dependent Killing (Time Above MIC)
 - Beta-Lactams
 - Depends on organism and host immune status
 - Neutropenic: need 100% T > MIC
Pharmacokinetics (ADME)

• Absorption
 – Many antibiotics are IV only or PO only
 – Others have excellent oral bioavailability
 • safer / outpatient treatment

• Distribution
 – Many sights of infection are not easily reached by antibiotics
 • Central nervous system, lung, bone
Pharmacokinetics (ADME) 2

• Metabolism / Eliminations
 – Hepatic: drug interactions via CYP 450
 • Inhibitors: Macrolides, Azoles
 • Inducers: Rifampin
 • Both: Protease inhibitors
 – Renal: dose adjustment with dysfunction
 • Elderly, critically ill
Rational combination regimens

- Expand spectrum β-Lactam & macrolide in CAP
- Prevent resistance INH & Rifampin for TB
- Enhance Killing (Synergy)
 - $1 + 1 = 3$
 - β-Lactam + Aminoglycoside vs Gram Negative Rod
 - $1 + 0 = 2$
 - (β-Lactam + Aminoglycoside) vs S. aureus, S. viridans & Enterococcus sps
- Avoid Antagonism
 - Static with cidal
 - (Penicillin & Tetracyclines)
Pathophysiology & Immunology

• Host Defense / immune system
 – Innate (skin etc.) & Adaptive (cellular & humeral)
 – How it can be compromised
 • Surgery, immuno-suppression

• Manifestations of infection
 – Diagnosis and assessment of response
 – Local (pain, purulence, inflammation)
 – Systemic (fever, leukocytosis)
Changing Timeline of Infection after Organ Transplantation

Innate Immunity: The Acute Inflammatory Response
Summary from pre-requisites

• Serves as the foundation for this class
 – You should have learned (or are currently learning) this information
 – If you don’t remember or recall it, go back and review
 – Read the recommended book chapters as well if you are having trouble
Pharmacotherapy of Infectious Diseases
General Principles

• Why do we care?
 – Major cause of morbidity & mortality
 – Accounts for billions $ a year world wide
 – Inpatient & Outpatient prescriptions
 • 1/3 of hospital budgets
 • 14 of the top 100 hospital drugs
 • Major % of outpatient prescriptions
Why does it happen?

We share the world with potential pathogens

• Exposure to a virulent pathogen
 – Brucella, Malaria, HIV, Tb, STD’s, H1N1
 – Protect against with public health measures
 • Hand washing
 • Vaccination
 • Vector control
 • Avoiding contact
 – drinking unpasteurized milk
 – Isolation precautions / masks for respiratory
Why does it happen? 2

• Compromised immune function
 – Innate
 • Skin: surgery, cuts, catheters
 • Respiratory tract: smoking, intubation
 – Adaptive
 • Cellular:
 – Neutrophils (after chemotherapy)
 – Lymphocytes (HIV)
 – Both: immunosuppressive drugs (transplant)
 • Humeral: inherited etc.
What happens to the patient?

• The inflammatory response:
 – Localized
 • Redness, swelling, purulence, pain
 – Systemic
 • Fever (also hypothermia) & Chills
 – Single oral temp >38.3 C or 38.0 C over at least 1 hour
 – Rectal Temp - subtract 0.4 C (0.8 F)
 – Axillary - add 1 C (1.8 F)
 • ‪Heart Rate, Blood Pressure
 • Increased WBC (also decreased) & % Neutrophils
 – Normal 4.8 - 10 x 10^3 cells/mm^3
How is an infection diagnosed?

- **History & Physical Examination**
 - Signs & symptoms

- **Laboratory Studies**
 - WBC, serology

- **Imaging**
 - X-Rays

- **Culture collection**
 - from suspected site of infection (blood, urine...
How do we pick initial antibiotics?

• From the initial diagnosis – likely pathogens
 – Past epidemiologic studies of similar patients

• Picking initial empiric antibiotics
 – Active against likely pathogens
 • May require combination of drugs
 – Effective in clinical trials for empiric therapy
 – Optimal for the individual patient
 • Severity of illness
 • Available routes of administration
 • Allergies, drug interactions, cost, organ dysfunction.
How do we optimize therapy?

• Assess clinical response & lab, cultures
 – Converting to definitive therapy (next slide)
 – De-escalation or escalation
 – Dose, frequency, route & duration
 – Serum drug levels and MIC to optimize PK & PD
 – IV to PO conversion
 – Managing drug interactions, side effects
What is the best (definitive) therapy?

- Cultures & sensitivity confirm microbiologic diagnosis and susceptibility
 - Minimum significant colony count for urine, sputum to distinguish infection vs contamination
- Pick the “drug of choice”
 - Most effective, narrow spectrum, least toxic & least expensive regimen (may be a combination)
 - Based on guidelines, clinical trials etc.
 - Individualized to each patient
When are antibiotics justified to prevent infection?

• Prophylaxis for specific at-risk patients
 – Surgical:
 • Need depends on the risk of post-operative infections
 • Agent depends on likely pathogens (Staph & Strep)
 • Given just before incision & continued < 24 hours
 – Medical:
 • Specific defined risk due to immune deficit or exposure
 – Travel to malaria area
 – Low CD4 cell count (< 200) for PCP
 – Asplenia
Summary:
Use of antibiotics in infection

• Empiric
 – Treat likely / suspected pathogens

• Definitive
 – Treat known / confirmed susceptible pathogen

• Prophylaxis: prevent infection in at-risk patient
 – Surgical & Medical
Pharmacists Role

• Patient Care
 – Empiric treatment selection
 – Optimization of therapy
 • Agent selection & dosing regimen
 – Drug Interactions (prevent & manage)
 – Adverse Drug Events (prevent, detect & manage)
Pharmacists Role

• Organizational
 – P&T
 • Formulary management
 – Committee and Day to Day monitoring
 • Medication Use Evaluation
 – Appropriateness...
 – ADE/MSV (including drug interactions)
 – Infection Control
 • Tracking resistance outbreaks and trends
 • Prevention (surgical prophylaxis and vaccines)