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The purpose of this study was to examine the allometric analysis of

ciprofloxacin and enrofloxacin using pharmacokinetic data from the literature.

The pharmacokinetic parameters used were half-life, clearance and volume of

distribution. Relationships between body weight and the pharmacokinetic

parameter were based on the empirical formula Y ¼ aWb, where Y is half-life,

clearance or volume of distribution, W the body weight and a is an allometric

coefficient (intercept) that is constant for a given drug. The exponential term b

is a proportionality constant that describes the relationship between the

pharmacokinetic parameter of interest and body weight. A total of 21 different

species of animals were studied. Results of the allometric analyses indicated

similarity between clearance and volume of distribution as they related to body

weight for both drugs. Results of the current analyses indicate it is possible to

use allometry to predict pharmacokinetic variables of enrofloxacin or ciprofl-

oxacin based on body size of species. This could provide information on

appropriate doses of ciprofloxacin and enrofloxacin for all species.
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INTRODUCTION

Drug dosage extrapolation among species assumes that pharmac-

odynamic similarities exist when pharmacokinetic equivalency is

achieved. In other words, achieving equivalent peak serum and

tissue concentrations and duration of drug exposure will achieve

similar physiologic effects among species. Species-dependent

differences at the site of drug action, such as the number of

receptors or affinity of receptors for the drug, can preclude

achieving equivalent effects for many classes of drugs. But

achieving equivalent antimicrobial drug exposure in different

species should achieve similar killing of microorganisms. The

ability to achieve pharmacokinetic equivalency depends on the

physiology and morphology of the tissues and organs responsible

for drug absorption, distribution, biotransformation, and excre-

tion of drugs.

The allometric approach is a basic mathematical tool for

analyzing differences in anatomy, physiology, biochemistry, and

pharmacokinetics in animals of different sizes. At least 750

allometric equations have been reported (Calder, 1984). The

usual allometric approach relates one biologic function or

structure (y) to another (x) through an empirical power function:

y ¼ aðxÞb

Drug plasma concentrations are dependent on the pharma-

cokinetic parameters of the drug, including half-life, clearance,

volume of distribution, or the area under the drug concentration

vs. time curve (AUC) (Baggot, 1977; Rowland, 1986; Benet

et al., 1996). Because most pharmacokinetic parameters are

dependent on physiologic functions, it is possible to compare

these parameters among species on the basis of allometric

relationships, i.e. where y is the value of the pharmacokinetic

parameter and x the body weight (Boxenbaum, 1982; Riond &

Riviere, 1990; Pashov et al., 1997; Riviere et al., 1997).

Allometry may be performed on any pharmacokinetic param-

eter, however, the half-life profile is most often studied because of

the abundance of this parameter in the published literature.

Half-life is a composite of volume of distribution and clearance.

Therefore, clearance can be studied and may provide less biased

information.

Interspecies scaling assumes that biochemical and physiologic

processes responsible for rate of drug elimination vary in

accordance to basal metabolic rate. A number of physiologic

factors other than basal metabolism can modify these biochemical/

physiological relationships. These factors include change in

protein binding, saturation of drug elimination processes, diet,

genetic polymorphism, drug-induced alterations in physiologic

processes, biotransformation, interspecies differences in entero-

hepatic circulation, and tubular reabsorption as influenced by

urinary pH (Mellett, 1969; Williams, 1973; Sorgel, 1989; Pashov

et al., 1997; Riviere et al., 1997). Differences in pharmacokinetic

parameters and biologic activity of drugs among species may be
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related to physicochemical interactions of drugs with food, or to

biodegradation of compounds in the rumen, caecum, or colon

(Baggot, 1977, 1980, 1990; Pashov et al., 1997).

Fluoroquinolones, such as enrofloxacin and ciprofloxacin,

have similar distribution characteristics; however, elimination

pathways and rates differ considerably among species. Oral

absorption of fluoroquinolones is generally fast and substantial

in humans, monogastric species, and preruminant age calves,

with up to 80% of the ingested dose absorbed into the systemic

circulation (Vancutsem et al., 1990). These drugs have volumes

of distribution greater than 1 L/kg. Binding to plasma proteins is

variable among species (Bregante et al., 1999) and for different

quinolones (Zlotos et al., 1998a, b). Major elimination pathways

are renal excretion and hepatic metabolism. Fluoroquinolones

are affected by all potential renal excretion mechanisms

(glomerular filtration, tubular secretion, and tubular reabsorp-

tion). In the liver, they are metabolized primarily by oxidation

but also demethylation and deethylation of the parent molecule

(Lode et al., 1989). Conjugative pathways are predominant for

some drugs and some species (Sorgel, 1989); however, the

degree of metabolism varies considerably across species.

Pharmacokinetic characteristics of ciprofloxacin and enrofl-

oxacin have been determined in several different species.

Bregante et al. (1999) conducted a study to compare the

pharmacokinetics of enrofloxacin in five species and then

subsequently looked at correlations of pharmacokinetic variables

with body weight. Mahmood (1999) examined correlations of

ciprofloxacin pharmacokinetic variables with body weight in

three species. Both of theses studies examined mammalian

species and in Mahmood’s (1999) study only three different

species were used. According to Riviere et al. (1997) a minimum

of four species is deemed necessary for a proper analysis. Because

of the growing number of exotic species that are being treated we

wanted to include as many species as we could obtain data for in

the study. The objectives of this study were to determine whether

allometric scaling based on body weight could be used to predict

half-life (t1/2), total body clearance (Cl) and volume of distribu-

tion at steady state [Vd(ss)] for these two fluoroquinolones. These

relationships may impact interspecies scaling of drug dose.

MATERIALS AND METHODS

The relationships between body mass and t1/2, Vd(ss), or Cl of

ciprofloxacin and enrofloxacin were analyzed using data from

previously published studies in 21 total species: 13 for ciprofl-

oxacin (Table 1) and 15 for enrofloxacin (Table 2). Reported

values for t1/2, Cl and Vd(ss) were determined after intravenous

(i.v.) administration of the drug. The matrices of interest were

serum, plasma, or blood. Data for body weights were collected

from these same studies. Mean values were used when a range of

body weights was given. When body weights were not indicated,

average values for the species and breed were collected from the

literature sources. Records were deleted if subjects were diseased

Table 1. Ciprofloxacin animal species database

Species t1/2 (h) Cl (mL/min/kg) Vd(ss) (L/kg) Source

Bos domesticus, Cow 2.4 12.1 2.5 Nouws et al. (1988a)

Sus scrofa, Pig 2.6 17.3 3.8 Nouws et al. (1988a)

Ovis ovis, Sheep 1.2 18 1.9 Munoz et al. (1996)

Orictolagus uniculus, Rabbit 1.6 27.2 3.8 Aramayona et al. (1996)

Canis famillaris, Dog 3, 2.2, 2.6 19, 18, 14 4.9, 3.3, 3.1 Abadia et al. (1994)

2.8 7.8 1.9 Cester and Toutain (1997)

Rattus rattus, Rat 2.2 26.7 4.6 Siefert et al. (1986)

Macaca mulatta, Monkey 4.3 4.7 1.8 Siefert et al. (1986)

Homo sapiens, Human 4.3, 4.4 8.3, 8.2 2.4, 2.4 Lettieri et al. (1992)

2.7, 2.9, 2.8 9.6, 9.6, 8.2 9.6, 9.6, 8.2 Dudley et al. (1987a)

2.9 9.3 2.6 Bergan et al. (1987)

4.2 8.2 2 Dudley et al. (1987b)

2.3 9.8 2.0 Deppermann et al. (1989)

3.6, 3.7, 3.5 8.8, 7.6, 7.8 2.1, 1.9, 1.8 Nix et al. (1992)

3.7 9.6 2.0 Wingender et al. (1984)

3.5, 3.9, 3.6 9.0, 8.2, 8.0 2.7, 2.7, 2.5 Bergan et al. (1988)

4.2 8.7 2.3 Catchpole et al. (1994)

3.3, 3.7, 3.5 8.1, 7.9, 7 2.2, 2.3, 1.9 Ljungberg and Nilsson-Ehle (1988)

4.8, 3.3 10.6, 10.2 4.4, 2.9 Lode et al. (1988)

Capra hircus, Goat 2.7 19.6 3.4 Garcia Ovando et al. (2000)

Gallus gallus domesticus, Chicken 2.3 12.5 1.8 Garcia Ovando et al. (1997)

3.1 15.5 4.0 Garcia Ovando et al. (1999)

8.8 8 4 Anadon et al. (2001)

Cyprinus carpio, Carp 14.5 2.5 2.7 Nouws et al. (1988b)

Salmo gairdneri, Trout 11.2 4.8 2.7 Nouws et al. (1988b)

Clarias gariepinus, African catfish 14.2 4.5 5.6 Nouws et al. (1988b)

When more than one value is listed, they represent multiple doses in the citation.
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or if other drugs were co-administered. Analyses did not consider

the influence of age or sex. If values for Cl or Vd(ss) were missing

they were calculated if appropriate information was available

from the citation. Regression analyses were only performed on

data from studies where HPLC analyses were done for both

enrofloxacin and ciprofloxacin. Biological methods (microbiolog-

ic assay) do not differentiate between enrofloxacin and ciprofl-

oxacin and other active metabolites.

Data were separated into two groups for both drugs. The

groups were: (1) all species (including mammals, fish, reptiles,

and birds), and (2) mammals only.

Regression analysis of logarithmic values for body weight, t1/2,

Cl or Vd(ss) was preformed using SAS software (SAS Institute, Cary,

NC, USA). The analyses were performed using mean values from

individual citations, although there was no verification that the

data was normally distributed. The linear regression of log t1/2 (h),

log Vd(ss) (L) or log Cl (mL/min) vs. log body weight (W, kg) was

analyzed so that estimates of the intercept c and slope b could be

computed by the following equations:

log t1=2 ¼ c þ bðlog WÞ; log VdðssÞ ¼ c þ bðlog WÞ or

log C� ¼ c þ bðlog WÞ

The allometric equation was then applied [t1/2 ¼ a(W)b,

Vd(ss) ¼ a(W)b or Cl ¼ a(W)b], where a is the antilogarithm of

c. Coefficients of determination and P-values were computed for

each regression analysis under study. Double logarithmic plots of

body weight vs. t1/2, Cl or Vd(ss) were constructed to demonstrate

significance found in the regression analysis.

RESULTS

Results of the regression analyses conducted on the logarithm of

t1/2, Vd(ss), or Cl vs. the logarithm of body weight for

ciprofloxacin are listed in Table 3. There was a statistically

significant relationship between Cl (P ¼ 0.0001), volume of

distribution (P ¼ 0.0001) and t1/2 (P ¼ 0.004) compared with

body weight when all species were analyzed. Ciprofloxacin

Table 2. Enrofloxacin animal species database

Species t1/2 (h) Cl (mL/min/kg) Vd(ss) (L/kg) Source

Bos domesticus, Cow 6.6, 4.9 3.2, 6.5 1.8, 2.3 Kaartinen et al. (1997a)

16.3 7.5 0.18 Martinez-Larranaga et al. (1997)

2.6 19.1 0.45 Varma et al. (2003)

Sus scrofa, Pig 7.3 6.2 3.9 Nielson and Gyrd-Hansen (1997)

7.7 4.5 2.7 Richez et al. (1997b)

3.5 7 2.9 Zeng and Fung (1997)

9.6 1.7 1.3 Anadon et al. (1999)

21,10.5 2.7, 7.5 5.5, 6.8 Post et al. (2002, 2003)

Ovis ovis, Sheep 3.7 9.2 3.0 Mengozzi et al. (1996)

3.8 4 2.2 Pozzin et al. (1997)

4.8 3.4 1.0 Bermingham et al. (2000, 2002)

Orictolagus uniculus, Rabbit 2.2 22.8 3.4 Cabanes et al. (1992)

1.9 23.9 3.9 Aramayona et al. (1996)

Canis famillaris, Dog 2.4 27.1 7 Kung et al. (1993)

4.4 10.9 3.7 Monlouis et al. (1997)

2.3 12.2 2.5 Cester and Toutain (1997)

Lama glama, Llama 3.4 11.7 3.5 Christensen et al. (1996)

Felis domestica, Cat 6.7 9.5 4 Richez et al. (1997a)

Camelus dromedarius, Camel 11.9, 5.8, 4.9, 3.8 1.0, 1.4, 1.2, 1.4 1.0, 0.5, 0.7, 0.4 Harron et al. (1997)

Equus caballus, Horse 17.1 1.7 2.5 Bermingham et al. (2000)

4.4 8.5 2.3 Kaartinen et al. (1997b)

6.7 3.7 1.7 Papich et al. (2002)

5.9 9.4 2.1 Boeckh et al. (2001)

Capra hircus, Goat 1.1 13.5 1.2 Rao et al. (2000)

4.0 4 1.2 Elmas et al. (2001)

Gallus gallus domesticus, Chicken 10.3 4.8 2.8 Anadon et al. (1995)

7.5 3 1.8 Garcia Ovando et al. (1997)

7.0 3.3 2.0 Garcia Ovando et al. (1999)

5.6 10.3 3.9 Knoll et al. (1999)

Dormaius novaehollandiae, Emu 3.3 6 1.6 Helmick et al. (1997)

Chlamydotis undulata macqueenii,

Houbara bustard

5.6 5.7 3.0 Bailey et al. (1998)

Salmo salar, Atlantic salmon 34.2 2.3 6.1 Martinsen and Horsberg (1995)

Bison bison, Buffalo 2.9 32.4 5.3 Kumar et al. (2003)

2.9 27.8 6.9 Sharma et al. (2003)

When more than one value is listed, they represent multiple doses in the citation.
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half-life (Fig. 1a), clearance (Fig. 1b) and volume of distribution

(Fig. 1c) were related to body weight in mammals with P-values

of 0.029, 0.0001 and 0.0001, respectively.

The results of the regression analysis conducted for enrofl-

oxacin t1/2, Vd(ss) and Cl are listed in Table 4. The enrofloxacin

allometric analysis was similar to that of ciprofloxacin. There

was not an association between t1/2 and body weights among all

species for enrofloxacin. Clearance (P ¼ 0.0001) and Vd(ss)

(P ¼ 0.0001) were significantly related to body weight in the

analysis. Enrofloxacin t1/2 (Fig. 2a) was not significantly asso-

ciated with body weight when mammals were analyzed.

However, the analysis of Vd(ss) (Fig. 2b) or Cl (Fig. 2c) and body

weight in mammals produced a significant relationship

(P ¼ 0.0001).

DISCUSSION AND CONCLUSIONS

There is uniform agreement that for most parameters related to

physiological processes the allometric exponent b ranges from

0.67 to 1.0; however when the parameter being modeled is an

inverse function of a physiological process (t1/2) then the

exponent will be 1–b (Riviere et al., 1997). If b ¼ 1 there is a

direct correlation between body weight and the parameter of

interest.

Most drugs are primarily cleared by either the kidney or liver.

Overall renal and hepatic function will be determined by blood

flow which is dependent on cardiac output and observations

suggest that cardiac output scales to b ¼ 0.75 (Boxenbaum,

1982). Thus for drugs cleared primarily by the kidneys, Cl scales

to b ¼ 0.75 and t1/2 (an inverse function of Cl) should scale to

0.25 (1–0.75). This is even true of drugs excreted by active

tubular transport, unless transport is saturated.

If one is looking at Vd, which is a function of vascular,

extracellular and total body fluid, b should be between 0.67 and

1.0 and if we assume that total body water directly correlates to

body weight, b ¼ 1.0. The Vd(ss) is the preferred volume of

distribution estimate for studies about disposition across species

because it is considered the most robust estimate of Vd as it

is mathematically and physiologically independent of the

elimination process (Riviere, 1999). Our estimates for Cl and

Vd(ss) for both drugs are consistent with this theory. Clearance

scales between b ¼ 0.76 and 1.1 and Vd(ss) b ¼ 0.65 and 0.94

for both drugs. Our estimates for enrofloxacin in mammals

[Cl, b ¼ 0.74; Vd(ss), b ¼ 0.81] are consistent with previously

reported values (Bregante et al., 1999). The estimate for

ciprofloxacin clearance in mammals (b ¼ 0.81) is consistent

with previously reported values (Mahmood, 1999). Mahmood

(1999) also analyzed volume of distribution in the central

compartment and found and exponent of 0.5 with a correlation

of 0.931. Since volume of distribution determines dose for

Table 3. Ciprofloxacin half-life, clearance and volume of distribution

values for allometric equations

Group n a b r2 P-value

Half-life

All species 38 5.1 )0.123 0.210 0.0038

Mammals 32 2.2 0.091 0.149 0.029

Clearance

All species 38 5.8 1.13 0.915 0.0001

Mammals 32 20.6 0.815 0.906 0.0001

Volume of distribution

All species 38 2.2 1.07 0.943 0.0001

Mammals 32 3.5 0.947 0.871 0.0001

n, sample size; a, intercept; b, slope; r2, coefficient of determination.
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Fig. 1. Allometric association (double logarithmic) for ciprofloxacin

between half-life (a), clearance (b) and volume of distribution (c) and

body weight of mammals.
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concentration dependent drugs, this is clinically relevant. As

reported previously (Papich & Riviere, 2001) excluding inter-

species differences in oral bioavailability doses of enrofloxacin are

similar.

We found that body weight is proportional to t1/2 by and

exponent of 0.1 or less for both ciprofloxacin and enrofloxacin. A

slope of zero for t1/2 would be expected if there were a perfect

correlation between weight and Cl and weight and Vd(ss).

Therefore given the high level of correlation observed in the

study, it is not surprising that b tends toward zero. Half-life is a

hybrid scaling to Vd/Cl therefore either of these variables could

cause the small allometric exponent of t1/2 we found. Looking at

the range of values used in the regression analysis for ciprofloxacin

clearance (5–800 mL/min; 125-fold range), Vd(ss) (0.92–800 L;

870-fold range) vs. t1/2 (1–4; fourfold range) it is easy to see how

deviations from linearity that would appear relatively small within

the primary parameters could have a substantial impact on t1/2.

This could explain the observation of a poor correlation for t1/2

while correlations for Cl and Vd(ss) were good.

There were some large discrepancies reported within species

for some of the parameters. These could be due to the various

conditions (lactating, pregnant, sex, breed, age, fasted or fed) of

the animals used in the various studies. Nouws et al. (1988a)

suggested that the age of the animal (maturity of renal function

and metabolic capacity of liver) as well as breed difference may

have affected the ciprofloxacin plasma concentrations and thus

its pharmacokinetic parameters. The enrofloxacin t1/2 values for

the foal and the young camel were much higher than the horse

or mature camel in our study. Aramayona et al. (1996)

indicated that lactation and associated factors in rabbits could

affect the binding of ciprofloxacin to plasma proteins. Lactation

may be associated with different hormone levels that affect

plasma protein binding. Siefert et al. (1986) noted that possible

differences in ciprofloxacin metabolism exist between male and

female rats. This could also be true in other species and could

influence pharmacokinetic parameters of interest.

We did not try to correct for plasma protein binding in our

analysis since data was not available for all species that were

studied. Protein binding can be significant for fluoroquinolones

but it is also difficult to compare results of studies in which

protein binding was measured because of differences among

laboratories and variations in methods used (Zlotos et al.,

1998b). Bregante et al. (1999) corrected for plasma protein

binding in their study by using the plasma free fraction after

finding significant differences in protein binding of the species

they studied. Never the less, our results support an allometric

relationship for clearance and volume of distribution without

such a correction.

We concluded that clearance and volume of distribution are

proportional to body weight for both drugs, while the elimin-

ation half-life for ciprofloxacin and enrofloxacin is independent of

body weight. The results from this study suggest that it could be

possible to extrapolate the kinetic parameters of enrofloxacin and

Table 4. Enrofloxacin half-life, clearance and volume of distribution

values for allometric equations

Group n a b r2 P-value

Half-life

All species 39 6.8 )0.062 0.036 0.241 NS

Mammals 32 4.0 0.062 0.022 0.415 NS

Clearance

All species 39 7.2 0.939 0.797 0.0001

Mammals 32 15.9 0.764 0.594 0.0001

Volume of distribution

All species 39 4.11 0.803 0.818 0.0001

Mammals 32 6.0 0.724 0.650 0.0001

n, sample size; a, intercept; b, slope; r2, coefficient of determination; NS,

not significant.
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between half-life (a), volume of distribution (b) and clearance (c) and

body weight of mammals.
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ciprofloxacin across species using allometric equations which

could be a useful tool to predict their disposition in species that

have not been studied yet.
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