
Empirical Software Engineering, 4, 297–316 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Software Metrics Data Analysis—Exploring the
Relative Performance of Some Commonly Used
Modeling Techniques

ANDREW R. GRAY
Software Metrics Research Laboratory, Department of Information Science, University of Otago, Dunedin,
New Zealand

STEPHEN G. MACDONELL
Software Metrics Research Laboratory, Department of Information Science, University of Otago, Dunedin,
New Zealand

Received January 22, 1998; Revised May 11, 1999

Abstract. Whilst some software measurement research has been unquestionably successful, other research has
struggled to enable expected advances in project and process management. Contributing to this lack of advancement
has been the incidence of inappropriate or non-optimal application of various model-building procedures. This
obviously raises questions over the validity and reliability of any results obtained as well as the conclusions that
may have been drawn regarding the appropriateness of the techniques in question. In this paper we investigate
the influence of various data set characteristics and the purpose of analysis on the effectiveness of four model-
building techniques—three statistical methods and one neural network method. In order to illustrate the impact
of data set characteristics, three separate data sets, drawn from the literature, are used in this analysis. In terms
of predictive accuracy, it is shown that no one modeling method is best in every case. Some consideration of the
characteristics of data sets should therefore occurbeforeanalysis begins, so that the most appropriate modeling
method is then used. Moreover, issues other than predictive accuracy may have a significant influence on the
selection of model-building methods. These issues are also addressed here and a series of guidelines for selecting
among and implementing these and other modeling techniques is discussed.

Keywords: Software metrics, analysis, statistical methods, connectionist methods

1. Introduction

The management of software development projects has a relatively poor reputation in terms
of avoiding cost and schedule overruns. In an effort to improve this track record, many
mature organizations (in a software development sense) have invested heavily in the de-
velopment and use of software metrics—measures derived from and applied to software
products or processes.

Such metrics have been collected with the understanding that they may lead to the de-
velopment of models that will enable greater control to be exercised over the increasingly
complex software development process. One of the most widely investigated metric-based
models is the intuitively plausible relationship between software product size and complex-
ity on the one hand and associated development effort on the other. In this way, larger
and more complex systems are assumed to take longer to develop. An extensive array of
predictive models has been generated largely as a result of empirical analyses, COCOMO

298 GRAY AND MACDONELL

(Boehm, 1981), SLIM (Putnam et al., 1984) and Function Point Analysis (FPA) (Albrecht
and Gaffney, 1983) being among the most popular approaches. In essence these and similar
models incorporate one or more product size measures, normally program size in estimated
lines of code or specification size in numbers of screens, files and so on, along with some
measure of complexity, calibrated under linear regression in a model predicting develop-
ment effort and/or duration. Although some standard models are available, the effectiveness
of the predictions is generally improved when organization- or domain-specific data is used
in calibration, especially since many other factors can influence development effort, such as
tools and methodologies used, and these are usually more consistent within organizations
than between organizations.

There is little doubt that such approaches have the potential to substantially improve the
accuracy of effort estimation and consequently the management of development schedules.
This depends on a number of contingent factors, including having effective measures of
size and complexity, the existence of relevant data, and the use of appropriate analysis
methods. It is this third area of research that we are currently investigating. Because of
their relative accessibility (through widely available software packages, including SPSS,
SAS, MINITAB, MATLAB, and S-Plus) standard statistical analyses have been most com-
monly adopted in the determination of predictive models (for example, see recent papers by
Ebrahimi (1999), Stensrud and Myrtveit (1998), Heiat and Heiat (1997) and Dolado (1997)).
While empirical analysis is certainly to be encouraged, particularly over the guesswork that
tended to be prevalent before the promotion of software metrics, its use must be tempered
by an awareness of the relevance, generalisability, and limitations of particular analysis and
modeling techniques.

It is the inherent nature of software metrics data that contributes to the demand for a
greater appreciation of the applicability of various modeling methods. Software engineering
data sets are often skewed to the right (that is to say, they exhibit a distribution with
most values at the lower end and with a few very large observations creating a long tail
extending to the right), and may contain a number of outlier observations. Moreover,
since we are yet to establish (and it would seem likely that we will never establish) an
underlyingtheoreticalmodel of software development, a full awareness of the variables
that contribute to development effort and how they interact may be unattainable. Since
many standard analysis methods assume data sets that conform to a normal distribution
and involve relatively simple, if any, interactions, these ‘standard’ modeling methods may
not be particularly appropriate. This is not to say that such analysis methods should be
discarded entirely, but rather that some exploratory examination of the data should always
occur first and analysis methods chosen as a result of this analysis, with the purpose of the
model—e.g. predictive accuracy, process understanding—also always in mind.

For example, a simple model involving only one predictor variable will generally be best
served by using a regression model rather than a feedforward neural network. This is due to
the greater speed of the regression procedure compared to training the neural network, and
also because of the greater analysis and information obtainable from the regression model.
When dealing with many variables and with complex interactions assumed, a feedforward
neural network could appear to be a better choice since this simplifies the model structure
selection process. If data is likely to be extremely contaminated then outlier resistant

SOFTWARE METRICS DATA ANALYSIS 299

techniques, such as robust regression, may be preferred. In these ways the data suggest
that certain modeling techniques may be more effective than others. These techniques are
explained below, as is their use in software metric modeling.

2. Model-Building Methods

In the past, software development effort models have been built almost exclusively using
least-squares linear regression techniques. More recently, this approach has been com-
plemented by the application of machine learning methods, especially neural networks, in
reaction to continuing problems with regression-based solutions (Lee et al., 1998; Finnie
et al., 1997; Hakkarainen et al., 1993). Both approaches are considered below. One other
method is also examined—that of robust regression (in two forms).

2.1. Regression Methods

Given a particular set of data points or observations, least-squares (LS) regression attempts to
determine the function that minimizes the sum of squared errors in the relationship between
predicted and actual values, with the predictions being based on the weighted contribution
of one or more variables (Neter et al., 1996). The resulting function is normally expressed
as an equation such as that shown in Equation (1) where development effort is related to the
number of screens (NumScreens) and the number of reports (NumReports) in a system. A
constant term is included which may represent administrative overhead, but could also be
used to allow a linear function to approximate a non-linear one over a particular range.

EFFORT(hours)= 1000+ 50NumScreens+ 75NumReports (1)

The development of a regression function is normally preceded by the examination of
scatter plots and correlation analyses, along with cluster analysis to identify distinct groups
of systems where appropriate. Interaction terms may need to be formed to enable the
predictive model to cope with the effect of combinations of variables, and transformations
can be used to partially compensate for non-linearities. The general form of a least-squares
regression graph is shown in Figure 1. In this graph the number of man-months (MM)
required for development is expressed as a function of the number of screens (SCRN)
with a constant term added. The individual data points used to develop the model (the
line) are shown as squares on the graph. This constant may (as explained above) reflect
the administrative overhead of a project or compensate for a nonlinear relationship over a
small range of SCRN (as in this case where the constant is negative and the data exhibit an
exponential pattern). The Rsq value given to the right of the graph indicates the proportion
of the variation in MM that is explained by SCRN, in this case some 78%.

There are several advantages associated with the use of the least-squares regression
method. It is a method that has sound theoretical foundations from its, comparatively
speaking, long history. Least-squares is easily accessible through most statistical analysis
packages and is widely examined in standard statistical texts (for example, Neter et al.,
1996)—thus the software metrics practitioner is likely to have ready access to the technique

300 GRAY AND MACDONELL

Figure 1. General form of a least-squares regression graph for predicting development effort.

and to the means of gaining expertise in its use. A further significant advantage of least-
squares regression (and of regression in general) is the visibility of the resultant models.
Inherent in the model produced is the expression of those variables of statistical influence
(in terms of predicting the dependent variable) along with the weightings expressed in raw
and standardized forms. This enables the modeler to immediately consider the validity of
the model’s structure in light of her/his own knowledge and experience.

This visible structure can, however, have equally important disadvantages, in that re-
gression may lead to the provision of equations that are difficult to interpret in anopera-
tional sense, particularly when many variables, transformations, and interaction terms are
included. More significantly, least-squares models may be extensively confounded by out-
lier data points (common in software engineering data with the relatively common ‘rogue’
projects) and they may not adequately cope with complex variable interrelationships, partic-
ularly given the availability of only small data sets. Least-squares equations, by attempting
to minimize the sum of the squared residuals from the model, can be dramatically changed
by altering one single point to be suitablyunusual(in fact, the regression line can be changed
to any equation desired by this editing of a single observation). With small data sets there
is even greater risk that unusual data points will exert undue influence over the smaller
number of representative points.

SOFTWARE METRICS DATA ANALYSIS 301

The degree to which data can be arbitrarily contaminated before the regression line can
be changed to any desired equation is called its breakdown point. Least squares has a
breakdown point of 0%. Other, robust, regression techniques are available with higher
breakdown points, as discussed below (Rousseeuw and Leroy, 1987).

Finally, the nature of the model must be formed by the developer, in terms of variables
considered, transformations needed and interaction terms required. As with any technique,
attempting to address these questions without sufficient expertise is likely to lead to anoma-
lous or spurious models. While the software metrician is not required to be an expert in
statistics as well as project management, they do require the knowledge of what they can
do themselves and what should be left for a more qualified statistician.

Least-median-squares (LMS) and least-trimmed-squares (LTS) regression (Rousseeuw
and Leroy, 1987) belong to the family of robust regression methods, so-called because
they produce predictive models that are generally more effective for making predictions
for the main body of observations in data sets containing outlier observations. Although
a number of such models exist, we have adopted the LMS and LTS techniques as they
are easily compared to the LS approach. Rather than using the sum of squared residuals
as the basis for error minimization, LMS regression minimizes the median of the squared
residuals and LTS minimizes a trimmed sum of the residuals. Thus both techniques are
unaffected by a proportion of outlier values in a data set (called resistance to contamination,
or breakdown point, this being 50% in the case of LMS, and a user-definable value for
LTS). This is of benefit for skewed data sets since in these cases any outlier observations
can be systematically identified and then dealt with accordingly (e.g. included, reweighted,
or discarded). The result is a more ‘characteristic’ model in terms of the data set underlying
its development. (See Figure 2 for an illustration of the influence of outlier points on
regression models.)

In terms of disadvantages associated with these methods, they are generally less powerful
than the least-squares approach when data set characteristics are not problematic, and they
are not as widely accessible in terms of software availability. As with the least-squares
method, the analyst must still specify the form of the models.

2.2. Neural Networks

A neural network can be defined, in a simplistic manner, as a number of interconnected
units, with weighted connections passing signals from unit to unit. In general some of these
units are model inputs and some model outputs. There are a vast number of neural network
architectures, along with learning algorithms for determining the parameters (weights)
of models expressed using these architectures. In this paper, we limit ourselves to the
most common and widely used architecture/learning algorithm combination for prediction
purposes. This is the method of back-propagation applied to a feedforward neural network
architecture (Hertz et al., 1991).

A neural network of this type can be seen as a non-linear modeling technique, that consists
of inputs (the independent variables), processing units (the hidden nodes), and outputs (the
dependent variables). The form of the model is not selected in advance as with regression
models; instead the network is theoretically capable of approximating any given function

302 GRAY AND MACDONELL

Figure 2. Outlier influence on regression models developed using least-squares and least-median of squares.

subject to certain restrictions (Hornik et al., 1989). (It is inappropriate to discuss these
technical restrictions here; in general terms, given a sufficient number of hidden nodes, any
reasonable function can be approximated.)

The use of this type of model requires the same steps as with any statistical technique.
These are to select the model parameters, develop the model using data, test the model on
withheld data to assess its performance, and implement the outcomes of the model in the
development process.

The process of selecting the inputs and outputs is much the same as with any other
technique: select those inputs that provide some predictive power with respect to the outputs.
However, in the case of a neural network the training stage will determine the form of the
model so concerns about transformations and linear relationships can usually be omitted.
Similarly, providing composite measures is generally unnecessary, especially of the simple
types often found in software metrics. Certainly for the purposes of software metrics
data, providing any input variable that relates to the output will in general be satisfactory.
Avoiding unnecessary input variables is the only real restriction, either through a lack of
relationship or extreme correlation (possibly non-linear) with another independent variable
since this will slow training, increase data collection costs, and, most seriously, potentially
introduce spurious relationships into the network’s behavior.

The most important decision to be made by the metrician in a neural network model is
the number of hidden nodes. It is this choice that determines the accuracy with which the
network can fit the data. The greater the number of nodes, the more precisely the network
can learn a given function. While this may imply, and many researchers take it to be so,
that more is better, this only applies where the goal is to learn some deterministic function,

SOFTWARE METRICS DATA ANALYSIS 303

where an exact mapping from inputs to outputs exists. In such a case identical projects
would have identical outputs (such as effort or error density). This is obviously not the case
with software development. For such stochastic data, the goal is instead to develop a model
that generalizes to new data. Too few hidden nodes and the network will be unable to learn
the relationship well; too many and the network willoverlearnand start to fit the training
data too closely. In addition, using more hidden nodes and thus more weights generally
increases the chance that the network will find a solution that is not the best possible (called
a local minimum). In general the best advice is to start with a small number of hidden nodes,
perhaps even with one or two, and after developing the model add more nodes gradually
until performance on validation data stops improving. (Much more sophisticated methods
exist, but they are beyond the scope of this paper.)

This leads to the training process itself. Generally this proceeds by first splitting the
data file into three subsets; these are the training file that is used to adapt the weights, the
validation file that is used to stop training and possibly to select between architectures, and
a testing file that is only used at the very end to assess the network’s performance. Four
data files could be used here (training, validation, selection, and testing), but given the small
data sets used for software metrics this would appear to be extravagant. The ratios for these
data sets depend on the amounts of data available, the distributions and relationships in the
data, the number of variables, and the desired accuracy of the assessment of the model’s
true generalisability. In general a1/2:1/4:1/4split for the training, validation, and testing
data respectively is recommended, although more data may be withheld for testing as is
done in the case studies here. Each data set should be as representative of the entire set
as possible, and stratification (breaking the data into groups of similar observations and
sampling equally from each group) can be used to enhance this. Generally, however, a
random splitting process is used.

Once the data splitting has been performed and a network has been created with the
customary small random weights (often between−0.1 and+0.1), training can start. By
presenting the network with the training data the weights are iteratively adjusted by small
amounts so as to reduce the prediction error in terms of the mean of the squared errors.
Periodically, the network should be used to recall (make predictions) on the validation data
set. When these errors have been minimized (this usually requires saving the weights and
going back once further improvement has ceased) the network can be said to be trained. The
use of this validation data to stop training prevents the network from overlearning on the
training data, since the network cannot explicitly adjust to fit data that it is not presented with
(the validation set). Figure 3 illustrates the behavior of errors over time. Note that while the
testing error is shown, this should not be calculated during training if this information will
have any effect on the model selected (network architecture, training time, and parameter
selection). This is provided here to show that optimizing the validation error approximately
optimizes the testing error.

Finally, as with any software metrics model the performance needs to be assessed. While
some analysts will use the validation data for this purpose, the error rate on this data is
still biased since it was its minimization that stopped training. This is where the testing
data set should be used to make predictions and calculate the error, using the desired error
measure(s). It is this error, assuming that the data was divided randomly or representatively,

304 GRAY AND MACDONELL

Figure 3. Typical behavior of errors over time during neural network training.

that enables us to make an estimate of the degree of confidence we can place in the network.
This is an important aspect of the implementation of the model, as how we manage our
projects will depend on the certainty we can attach to our estimates.

3. Empirical Analysis

In this paper three published data sets are examined from the perspective of the empirical
results obtained using the various model-building techniques. The data from Miyazaki
et al. (1994) is a set of 48 observations, detailing the development effort and various
functional measures of the systems (Table 1 in that paper). This data set has already
been analyzed by Miyazaki et al., providing us with a baseline against which to assess
the techniques employed in this study in terms of several error measures. The testing set
used here consists of 16 randomly selected observations. The second data set is the QUES
data from Li and Henry (1993). This data provides a number of object-oriented measures
of systems, and the subsequent maintenance changes made to those systems. A total of
71 observations are provided, with 24 of these making up the testing set. While Li and
Henry provide some analysis of models predicting changes from the system measures, their
choice of error measures is somewhat limited for comparative purposes. The final data
set examined here is that of Dolado (1997). This data set consists of 24 observations,
giving function point measures and the development effort expended. Eight of these were
withheld for testing. Dolado provides some analysis of the data, but little that can be used
for comparison with the results here, as no predictive models were actually constructed by
Dolado.

SOFTWARE METRICS DATA ANALYSIS 305

Each of the three data sets was evaluated under regression and neural network prediction
models with development effort or maintenance changes used as the dependent variable and
all available independent variables used initially, as illustrated in the following sections.
Influential independent variables were then selected using stepwise regression techniques.
The performance of the models on the various data sets (development and testing for regres-
sion models, training, validation, and testing sets for neural network models) is given. In
addition some more detailed information about the performance of the alternative regression
techniques is provided.

3.1. Regression Predictions

In all cases the model development data set (roughly two-thirds of the entire set) was
analyzed using correlation analyses, scatter plots and stepwise regression, in order to identify
influential variables with a view to sensible and pragmatic model creation. Models were
developed based on the outcomes of this exploratory analysis under the least-squares,
least-median-squares and least-trimmed-squares methods. The resulting models were then
applied to the testing subset (the remaining third of observations) and were evaluated using
the following error measures.

The magnitude of relative error (MRE) is a normalized measure of the discrepancy be-
tween the actual data values (VA) and the fitted values (VF):

MRE= |VA − VF|
VA

(2)

The mean MRE (MMRE) is therefore the mean value for this indicator over all observations
in the sample. A lower value for MMRE generally indicates a more accurate model from
the perspective of a project manager.

The Pred(l) measure provides an indication of overall fit for a set of data points, based
on the MRE values for each data point:

Pred(l) = i

n
(3)

In equation (3)l is the selected threshold value for MRE (from equation (2)),i is the
number of data points with MRE less than or equal tol , andn is the total number of data
points.

The Balanced MMRE measure (BMMRE) is also used here, as defined in Miyazaki et
al. (1994). The relative error (R) is taken as the lower of the MRE with the actual as the
denominator and the MRE with the predicted as the denominator. The BMMRE is then
the mean value of the absolute values of R. The AR(l) measure refers to the proportion
of BMMRE values less thanl%, similar to the Pred(l) measure above. An absolute error
measure (Average Absolute error—AAR) is also included here since relative errors may not
be the only concern of project managers, although it would appear reasonable that relative
errors are more informative.

306 GRAY AND MACDONELL

3.1.1. Miyazaki, Terakado, Ozaki, and Nozaki Data Set

Results presented in Table 1 illustrate the effectiveness of the best-performing regression
model for this data set, that built under least-squares and incorporating two independent
variables. Least-squares was selected as it had the best MMRE by far and was superior
or equivalent to all but one of the Pred(l) measures. One very simple way in which
such an evaluation can be performed in a quantitative manner is to assign rankings to
the performance of each model according to each error measure and then determine the
average ranking for each approach—this has been used in this investigation for illustrative
purposes. For instance, in Table 2 the performance of the models in terms of minimizing
MMRE would see the LS approach ranked 1, the LMS model ranked 2, and the LTS model
ranked 3. Where a tie is evident, the sum of the rankings can be divided by the number
of tied models and each assigned the same value. For example, in the Pred(10) column
of Table 2 the LMS model is best (maximized) so it receives a ranking value of 1, but the
remaining two models are tied. The ranks to be awarded are 2 and 3 so we can simply total
these two values (5), divide this sum by the number of tied models (2) and award each tied
model this value (2.5). Finally, we can total the ranking values across the error criteria and
then divide it by the number of error measures (in this case 5) to get an average ranking
value. The model with the lowest average ranking value can then be selected as the optimal
model for this data set. (Note: this is a very simple approach—for one thing it assumes that
all the criteria are equally important and that the magnitude of differences between error
values is not important. These may not be realistic assumptions in practice—however this
is simply an illustration, and the specific approach chosen will vary from organization to
organization depending on their measurement goals.) Applying such an approach to this
data set, the LS approach receives an average ranking value of 1.6, the LMS approach 2.1,
and the LTS method 2.3, suggesting that the LS method is optimal in this case.

Under the LS model the relative error measures indicate adequate but unspectacular
performance, but the average absolute error suggests some significant problems are still
evident in the model. Interestingly, we were unable to replicate the superior performance of
the robust regression methods achieved by the original authors (Table 2 shows our results
using robust regression)—this may have been due to the selection of different robust methods
in this case, or an artifact of the data splitting procedure.

3.1.2. Li and Henry Data Set

Of particular note in relation to the effectiveness of the optimal regression model chosen
here (the LMS method) are the Pred(l) thresholds and average absolute error (Table 3). The
LMS method was chosen on the basis of the average ranking value comparison described
above, in this case resulting in values of 1.9 for LS, 1.8 for LMS and 2.3 for LTS. Given
the closeness of the results it is clear that LMS is not unambiguously the best model, but
it seems sensible to treat it as best on the basis of the average ranking value comparison.
Whilst the MMRE indicates some modeling problems over the data set as a whole, the
Pred(l) and AR indicators suggest that performance for specific observations is reasonably

SOFTWARE METRICS DATA ANALYSIS 307

Table 1.Selected model and results for Miyazaki, Terakado,
Ozaki, and Nozaki data set—LS regression (Actual model:
Effort = −18.754+ 1.753FORM+ 1.457FILE).

Development Testing All
Data Data Data

MMRE 1.01 0.76 0.92

Pred(10) 0.16 0.13 0.15
Pred(25) 0.34 0.25 0.31
Pred(35) 0.41 0.38 0.40
Pred(50) 0.50 0.44 0.48

BMMRE 0.47 0.46 0.46

AR(10) 0.16 0.13 0.15
AR(25) 0.38 0.31 0.35
AR(35) 0.44 0.44 0.44
AR(50) 0.59 0.56 0.58

Average Absolute Error 29.2 78.3 45.5

Table 2. Performance of regression models on testing data for
Miyazaki et al.

MMRE Pred Pred Pred Pred
(10) (25) (35) (50)

Least Squares 0.76 0.13 0.25 0.38 0.44
Least Median Squares 1.03 0.19 0.19 0.25 0.44
Least Trimmed Squares 1.24 0.13 0.19 0.38 0.44

sound. The gains from robust regression are fairly small, but nonetheless robust regression
could be seen as slightly better performing (Table 4) in terms of accuracy.

3.1.3. Dolado Data Set

Analysis of the Dolado data resulted in the selection of the least trimmed squares model,
based on average ranking values of 2.3 for LS, 2.5 for LMS and 1.2 for LTS. Both the
MMRE and Pred(l) indicators suggest that the LTS model fits the data reasonably well,
and it is unambiguously superior in terms of accuracy to the two other models presented
here. A need for caution is borne out, however, by the high value for average absolute
error, suggesting significant problems with the model. The use of the robust LTS regression
seems to assist with some of the problems in this data set (Table 6).

308 GRAY AND MACDONELL

Table 3. Selected model and results for Li and Henry data
set—LMS regression (Actual model: Changes= 8.075+
0.259SIZE1− 1.560SIZE2).

Development Testing All
Data Data Data

MMRE 0.31 0.37 0.33

Pred(10) 0.26 0.21 0.24
Pred(25) 0.49 0.25 0.41
Pred(35) 0.64 0.46 0.58
Pred(50) 0.85 0.67 0.79

BMMRE 0.25 0.34 0.28

AR(10) 0.26 0.25 0.25
AR(25) 0.53 0.29 0.45
AR(35) 0.70 0.46 0.62
AR(50) 0.94 0.75 0.87

Average Absolute Error 15.7 29.9 20.5

Table 4.Performance of regression models on testing data for Li and
Henry.

MMRE Pred Pred Pred Pred
(10) (25) (35) (50)

Least Squares 0.42 0.21 0.38 0.42 0.79
Least Median Squares 0.37 0.21 0.25 0.46 0.67
Least Trimmed Squares 0.37 0.13 0.38 0.42 0.63

Table 5. Selected model and results for Dolado data set—LTS re-
gression (Actual model: Effort= 149.4+ 1.39INDE).

Development Testing All
Data Data Data

MMRE 0.36 0.31 0.34

Pred(10) 0.31 0.25 0.29
Pred(25) 0.50 0.63 0.54
Pred(35) 0.56 0.63 0.58
Pred(50) 0.81 0.75 0.79

BMMRE 0.25 0.30 0.27

AR(10) 0.38 0.25 0.33
AR(25) 0.50 0.63 0.54
AR(35) 0.63 0.63 0.63
AR(50) 0.94 0.75 0.88

Average Absolute Error 71.5 158.2 100.4

SOFTWARE METRICS DATA ANALYSIS 309

Table 6.Performance of regression models on testing data for Dolado.

MMRE Pred Pred Pred Pred
(10) (25) (35) (50)

Least Squares 0.34 0.13 0.50 0.50 0.75
Least Median Squares 0.36 0.13 0.50 0.63 0.63
Least Trimmed Squares 0.31 0.25 0.63 0.63 0.75

3.2. Neural Network Predictions

All of the neural network models were developed in the same manner, by following these
steps:

1. The data set for model development was split into the training and validation sets
(roughly two-thirds and one-third respectively). The data sets are exactly the same as
those used in the regression cases above, with the regression development set equal to
the training and validation sets here. The test data sets are identical in all cases and this
enables comparisons between models in terms of using available information.

2. A simulation was prepared that created networks with a variety of architectures (the
number of hidden units was varied from one to ten in each case) and different training
parameters.

3. The networks were then trained using the training data set, until the lowest error on
the validation data set was achieved. It should be noted that because a number of
simulations were performed (as mentioned in step 2), the chance of the validation data
set fitting better than the training is greater than normal.

4. The best network, in terms of having the lowest validation data set error, was used to
recall (make predictions) for the testing data.

5. A number of error measures were then calculated on the network’s performance for the
three splits of each data set.

3.2.1. Miyazaki, Terakado, Ozaki, and Nozaki Data Set

With this data set the best architecture was a one-hidden node network. All inputs were
used, and the training continued for 9540 epochs (in steps of 10 epochs). The network
achieved a low average absolute error, although the relative errors are significantly higher
than would be desired (Table 7). This is reflected by poor predictions for the very small
systems, where small absolute errors lead to large relative ones.

These results compare favorably to those presented in Miyazaki et al. (1994) where the
BMMREs were 0.663 and 2.032 for robust and least-squares regression respectively. It
should be noted that these figures from Miyazaki et al. were based on the entire data set,
and that the neural network model performs significantly better than their regression models,
even on new, unseen, data.

310 GRAY AND MACDONELL

Table 7. Results for Miyazaki, Terakado, Ozaki, and Nozaki data set
neural network performance.

Training Validating Testing All
Data Data Data Data

MMRE 0.75 1.10 1.32 1.02

Pred(10) 0.24 0.55 0.25 0.31
Pred(25) 0.33 0.55 0.50 0.44
Pred(35) 0.52 0.55 0.50 0.52
Pred(50) 0.62 0.73 0.56 0.63

BMMRE 0.36 0.21 0.36 0.33

AR(10) 0.24 0.55 0.31 0.33
AR(25) 0.43 0.55 0.50 0.48
AR(35) 0.57 0.64 0.50 0.56
AR(50) 0.76 0.82 0.69 0.75

Average Absolute Error 22.4 16.4 27.0 22.5

3.2.2. Li and Henry Data Set

The best network found for this data set used five hidden nodes, and was trained for 260
epochs (in steps of 10 epochs) (Table 8). There is some evidence that the network found was
over-fitted to the validation data (recall that a large number of simulations were performed),
and perhaps performs less effectively on the training and testing data than would be desirable.
This illustrates the dangers of running a large number of simulations, where even selecting
on the basis of withheld data performance does not always ensure generalisability. As was
mentioned above, a selection data set could have been used here to attempt to overcome
this problem but with such small data sets this is impractical.

3.2.3. Dolado Data Set

The best performing network for this small data set used one hidden node, trained for 990
epochs (in steps of 10 epochs) (Table 9) and using four main inputs. This network shows
definite signs of overfitting to the validation data, partly due to the small size of the data
set.

3.3. Comparing the Predictions

The above results suggest that no single modeling technique outperforms the others on all
data sets, at least in regard to measures of predictive error. The results are summarized in
Table 10, showing the optimum MMRE and Pred(l)error measures achieved under the ‘best’
regression method and neural network architecture. For the Miyazaki et al. (1994) data the

SOFTWARE METRICS DATA ANALYSIS 311

Table 8.Results for Li and Henry data set neural network performance.

Training Validating Testing All
Data Data Data Data

MMRE 0.49 0.39 0.51 0.47

Pred(10) 0.19 0.19 0.08 0.15
Pred(25) 0.45 0.44 0.29 0.39
Pred(35) 0.55 0.56 0.42 0.51
Pred(50) 0.84 0.69 0.58 0.72

BMMRE 0.29 0.27 0.37 0.31

AR(10) 0.19 0.19 0.08 0.15
AR(25) 0.45 0.50 0.38 0.44
AR(35) 0.65 0.69 0.46 0.59
AR(50) 0.87 0.94 0.63 0.80

Average Absolute Error 21.0 19.4 32.9 24.7

Table 9.Results for Dolado data set neural network performance.

Training Validating Testing All
Data Data Data Data

MMRE 0.46 0.21 0.35 0.36

Pred(10) 0.10 0.17 0.25 0.17
Pred(25) 0.50 0.67 0.38 0.50
Pred(35) 0.70 0.83 0.50 0.67
Pred(50) 0.80 1.00 0.63 0.79

BMMRE 0.29 0.21 0.32 0.28

AR(10) 0.10 0.17 0.25 0.17
AR(25) 0.50 0.67 0.50 0.54
AR(35) 0.70 0.83 0.63 0.71
AR(50) 0.80 1.00 0.63 0.79

Average Absolute Error 82.0 64.7 163.8 104.9

neural network performs better on the testing data in terms of the prediction threshold error
measures, while for the Li and Henry (1993) data the LMS regression model performs
slightly better on these criteria. On the Dolado (1997) data set the regression technique,
LTS this time, is superior based on the prediction threshold error measures. In all cases the
regression models perform better according to the MMRE measure. This may suggest that
where MMRE is more important than Pred(l) performance, regression should be used over
neural network models and vice versa.

312 GRAY AND MACDONELL

Table 10.Summary of results on testing sets (accuracy only).

Miyazaki et al. (1994) Li and Henry (1993) Dolado (1997)
Regression NN—1 Regression NN—5 Regression NN—1
—LS hidden —LMS hidden —LTS hidden

MMRE 0.76 1.32 0.37 0.51 0.31 0.35

Pred(10) 0.13 0.25 0.21 0.08 0.25 0.25
Pred(25) 0.25 0.50 0.25 0.29 0.63 0.38
Pred(35) 0.38 0.50 0.46 0.42 0.63 0.50
Pred(50) 0.44 0.56 0.67 0.58 0.75 0.63

4. Selecting the Optimal Technique

In this paper a number of different data analysis and modeling techniques have been de-
scribed and tested on case study data sets. It has been suggested that use of the most
appropriate technique can lead to moreaccuratemodels; however, this should not be the
only criterion used for selecting a technique. This section discusses a subset of the issues
that need to be considered when making such a decision. These include the quantities of
data available, the nature of the relationships in that data, the accuracy required from the
model, the available expertise, and the necessity to communicate and learn from the models
produced. Many of these are qualitative and difficult to measure, but must still be kept in
mind by the metrician.

4.1. Quantities of Data

It is well known that building more complex statistical models requires greater amounts
of data, because more parameters need to be determined. This is often a motivation for
software metricians to develop simple models for predicting the development process. The
same principle applies to neural network modeling. Since there are many more parameters
(a network with 6 inputs, four hidden units, and one output generally contains some 33
adjustable weights), it is important that reasonable amounts of data are available (although
techniques such as bootstrapping can be used to overcome some deficiencies in data quan-
tity). In relation to the empirical evaluations shown above, for example, use of the neural
network method with the Dolado data set was ineffective, partially because of the small
number of observations available.

4.2. Nature of Relationships

The choice of technique also depends on what type of relationship (if any) the metrician
anticipates finding. For many systems a simple linear model may largely reflect the un-
derlying phenomenon (for example, the effort required to check test cases where each case
takes the same length of time). In such situations, the use of a non-linear model such as

SOFTWARE METRICS DATA ANALYSIS 313

a neural network would represent unnecessary complexity. In a similar manner, the use
of robust regression techniques can really only be justified if the data may contain some
outliers. While software metricians may well be faced with such contaminated data sets,
there are situations where least-squares regression will perform more effectively. In our
empirical evaluation above, for instance, this was the case for the Miyazaki et al. data.

4.3. Accuracy Required from the Model

As a general rule the accuracy of a model increases as the complexity of the modeling
technique rises (although as stated previously overfitting can be a problem). It is vitally
important to distinguish between accuracy in learning the relationships contained in the
training/development data, and in learning the relationships inherent in the actual realization
of the process.

The case studies above illustrate that more complex techniques such as neural networks
are potentially capable of fitting more accurate models to the training data by virtue of their
non-linearities and interactions. In the same way, using transformations, more independent
variables, and interaction terms in a regression model can have the same effect. However
this opens up the risk of over-fitting, even with all due care taken, when using small data
sets such as are common for software metrics research. It should also be recalled that it is
only in potentialthat such increases in accuracy exist. They will not necessarily be realized
in all cases.

In some cases, however, the accuracy requirements for a model may be low when com-
pared to other goals, and these other motivations may be overriding, especially where the
improvements in accuracy are small. Gaining anunderstandingof what it is that makes
a system more error-prone, for instance, may be much more important to a manager than
a 5% increase in predictive accuracy that may be gained from a much more complex and
costly model. It is also important to specify pre-analysis what is meant by accuracy for
a particular modeling task. In some cases absolute errors are of concern, while in others
relative errors are more important. Also, a choice must be made between the relative impor-
tance of threshold-based errors (like Pred(l)) and average errors. These issues are certainly
not trivial ones, to be faced with the same solution for all projects.

4.4. Available Expertise

The availability of sufficient modeling expertise may be seen as perhaps one of the most
restrictive requirements for the technique selection process. While there has been enthusi-
astic adoption of neural network models in many fields, including software metrics, there
is often an under-appreciation of the expertise required for their use. This is not assisted by
the all-too-common perception of such models as automatic, universal approximators that
overcome all of the problems with traditional statistical methods. In fact, the effective use
of neural network models requires at least as much expertise as nonlinear regression, and
in some ways may require even more as their flexibility opens up new pitfalls.

314 GRAY AND MACDONELL

4.5. Communicating and Learning from Models

Finally, there is the issue of interpretability of the models in their final form. Regression
equations (both least-squares and robust) have the advantage of being presented in a manner
that most managers can understand. It is relatively easy to see the influence of a single
independent variable on the model’s output. However, by using a black box technique such
as a neural network, the opportunities to view the form of the model are limited. While the
weights are available, it is difficult to then interpret these in a meaningful manner.

Some options for extracting rules from neural networks do exist (Kasabov, 1996; Wang
and Mendel, 1992). However, these techniques then require even more expertise and the
software is much less accessible, still being an area of research rather than widespread
practice. A simpler approach is sensitivity analysis where the network’s outputs for a
variety of inputs are plotted, holding all but one input variable (or perhaps two variables)
constant. This can be useful for confirming relationships in the model (as with examining
the slopes in regression models).

4.6. The Actual Selection of the Technique

The factors that have been briefly mentioned above all need to be considered in conjunction.
For a particular project, the relative importance of each should be assessed, along with the
advantages/disadvantages of each technique when compared to the others. In many cases
the best solution is to not select any one technique, but rather to develop models using
two or more methods. This may have the consequent advantage of discouraging absolute
reliance on a single number that is produced as model output—it is only anestimate, after
all. If more than one technique is used, arangeof estimates will result.

More information on these techniques from a software metrics perspective, and other
techniques such as fuzzy logic and case-based reasoning, is available in Gray and MacDonell
(1997) and MacDonell and Gray (1997). It is only by using these techniques on a wide
range of data sets that any useful guidelines to their general use can be formulated. The
dangers of relying on another’s (or even your own) success with a technique on a single
data set are obvious.

5. Conclusions

In this paper we have investigated a number of issues that need to be considered as part
of the model building process for software metrics. While the overriding consideration is
generally the accuracy of the model, in particular for predictions on new data, other issues
such as data characteristics, expertise, and interpretability should also be taken into account.
While many of these issues are difficult to quantify, some consideration must still be made.
In order to make these decisions the software metrician needs to be aware of the techniques,
both in terms of strengths/weaknesses and in terms of correct usage.

We have demonstrated that empirically the techniques can perform quite differently on
various data sets, thus leading to the conclusion that no one technique can be used as a

SOFTWARE METRICS DATA ANALYSIS 315

panacea for software metrics’ analysis problems. Our intention is to continue with this area
of research and formulate a more rigorous examination of the data set characteristics of
software metrics, and the effects of these on the modeling process.

References

Albrecht, A. J. and Gaffney, J. E., Jr. 1983. Software function, source lines of code, and development effort
prediction: a software science validation.IEEE Transactions on Software Engineering9(6): 639–648

Boehm, B. W. 1981.Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.
Dolado, J. J. 1997. A study of the relationships among Albrecht and Mark II function points, lines of code 4GL

and effort.Journal of Systems and Software37: 161–173.
Ebrahimi, N. B. 1999. How to improve the calibration of cost models.IEEE Transactions on Software Engineering

25(1): 136–140.
Finnie, G. R., Wittig, G. E. and Desharnais, J.-M. 1997. A comparision of software effort estimation techniques:

using function points with neural networks, case-based reasoning and regression models.Journal of Systems
and Software39: 281–289.

Gray, A. R., and MacDonell, S. G. 1997. A comparison of techniques for developing predictive models of software
metrics.Information and Software Technology39: 425–437.

Hakkarainen, J., Laamanen, P. and Rask, R. 1993. Neural networks in specification level software size estimation.
Proceedings of the 26th Hawaii International Conference on System Sciences. Hawaii, USA, IEEE Computer
Society Press, 626–634.

Heiat, A. and Heiat, N. 1997. A model for estimating efforts required for developing small-scale business
applications.Journal of Systems and Software39: 7–14.

Hertz, J., Krogh, A., and Palmer, R. G. 1991.Introduction to the Theory of Neural Computation. Redwood City,
CA: Addison-Wesley.

Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators.
Neural Networks2: 359–366.

Kasabov, N. K. 1996.Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. Cambridge,
MA: MIT Press.

Lanubile, F. and Visaggio, G. 1997. Evaluating predictive quality models derived from software measures: lessons
learned.Journal of Systems and Software38: 225–234.

Lee, A., Cheng, C. H. and Balakrishnan, J. 1998. Software development cost estimation: integrating neural
network with cluster analysis.Information & Management34: 1–9.

Li, W., and Henry, S. 1993. Object-oriented metrics that predict maintainability.Journal of Systems and Software
23: 111–122.

MacDonell, S. G., and Gray, A. R. A comparison of modeling techniques for software development effort pre-
diction. Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent
Information Systems, Dunedin, New Zealand, 869–872.

Miyazaki, Y., Terakado, M., Ozaki, K., and Nozaki, H. 1994. Robust regression for developing software estimation
models.Journal of Systems and Software27: 3–16.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. 1996.Applied Linear Statistical Models. Chicago:
Irwin.

Putnam, L. H., Putnam, D. T. and Thayer, L. P. 1984. A tool for planning software projects.Journal of Systems
and Software5: 147–154

Rousseeuw, P. J., and Leroy, A. M. 1987.Robust Regression and Outlier Detection. New York NY, USA: John
Wiley & Sons.

Stensrud, E. and Myrtveit, I. 1998. Human performance estimating with analogy and regression models: an
empirical validation.Proceedings of the Fifth International Software Metrics Symposium (Metrics’98). Los
Alamitos, California, IEEE Computer Society Press, 205–213.

Wang, L.-X., and Mendel, J. M. 1992. Generating fuzzy rules by learning from examples.IEEE Transactions on
Systems, Man, and Cybernetics22: 1414–1427.

316 GRAY AND MACDONELL

Andrew Gray has been working as a research assistant in the Department of Information Science at the University
of Otago since 1995. He is currently completing his Ph.D. in empirical modelling techniques to support software
development project management and has published several papers in the areas of project management and model
building. He is a member of the NZCS (Associate) and NAFIPS.

Stephen MacDonellis a Senior Lecturer in the Department of Information Science at the University of Otago,
Dunedin, New Zealand. He obtained a Master’s degree from the University of Otago and a PhD from Cambridge
University. His current research interests are in the areas of software metrics, software quality, project management,
and data analysis methods. He is a member of the ACM, the NZCS (Associate) and NAFIPS.

