
Empirical Software Engineering, 8, 367–395, 2003.

2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Externally Replicated Experiment for

Evaluating the Learning Effectiveness of

Using Simulations in Software Project

Management Education

DIETMAR PFAHL pfahl@iese.fhg.de

Fraunhofer IESE, Germany

OLIVER LAITENBERGER oliver_laitenberger@droege.de

Droege & Comp., Germany

JÖRG DORSCH joerg.dorsch@accenture.com

Accenture, Germany

GÜNTHER RUHE ruhe@ucalgary.ca

University of Calgary, Canada

Editor: Marc I. Kellner

Abstract. The increasing demand for software project managers in industry requires strategies for the

development of the management-related knowledge and skills of the current and future software

workforce. Although several approaches help teach the required skills in a university setting, few empirical

studies are currently available to characterize and compare their effects.

This paper presents results of an externally replicated controlled experiment that evaluates the learning

effectiveness of using a process simulation model for educating computer science students in software

project management. While the experimental group applies a system dynamics (SD) simulation model, the

control group uses the well-known COCOMO model as a predictive tool for project planning.

The results of the empirical study indicate that students using the simulation model gain a better

understanding about typical behavior patterns of software development projects. The combination of the

results from the initial experiment and the replication corroborates this finding. Additional analysis shows

that the observed effect can mainly be attributed to the use of the simulation model in combination with a

web-based role-play scenario. This finding is strongly supported by information gathered from the

debriefing questionnaires of subjects in the experimental group. They consistently rated the simulation-

based role-play scenario as a very useful approach for learning about issues in software project

management.

Keywords: COCOMO, learning effectiveness, replicated experiment, software project management

education, system dynamics simulation.

1. Introduction

Software development is a dynamic and complex process since many interacting
factors throughout the lifecycle impact the costs and schedule of the

development project as well as the quality of the developed software product. To
monitor and control software development projects, management experience and
knowledge on how to balance the various influential factors are required.
However, the growing pervasiveness of software and the increasing number of
software development projects result in a lack of well-trained and experienced
managers.
To address these issues, process simulation techniques have been applied to the

domain of software engineering during the last decade, starting with the pioneering
work of Kellner and Hansen (1989) and Abdel-Hamid and Madnick (1991). But
although the potential of simulation models for the training of managers has long
been recognized (Graham et al., 1992; Milling, 1995; Morecroft, 1988), experience
with process simulation as a means for software project management education and
training has rarely been published (examples are Drappa and Ludewig, 1999;
Madachy and Tarbet 1999).
In fact, only few experimental studies have been conducted involving the use of

models that simulate the typical behavior of software projects (Lin, 1993; Lin et al.,
1997; Smith et al., 1993). The results of these experiments indicate that a natural one-
way causal thinking could be detrimental to the success of software managers. They
must rather adopt a multi-causal or systems thinking. Moreover, they must be aware
of (unexpected) feedback to their management decisions. These findings highlight the
need for new learning and education strategies.
The first strategic step for teaching software project management must already

be included in the curriculum of students. University education must teach
computer science and software-engineering students not only technology-related
skills but also a basic understanding of typical management phenomena
occurring in industrial (and academic) software projects. However, practical
constraints of a course usually limit the exposure of students to realistic, large-
scale industrial software development projects in which they could make their
own experiences. This could be partially compensated by making students use
software process simulation models that reproduce the behavior of realistic (i.e.,
complex) software development projects. The question is whether this approach
is viable.
This paper presents the results of a controlled experiment and its first external

replication to investigate the effectiveness of computer-based training in the field of
software project management using a system dynamics (SD) simulation model.
While the experiment was originally performed at the University of Kaiserslautern,
Germany (Pfahl et al., 2001) its replication took place at the University of Oulu,
Finland. Both empirical studies are viewed as exploratory. The intention is to
identify and refine important hypotheses and to investigate them in further detail.
More replications are planned for the future.
The paper is structured as follows: Section 2 presents the experimental details of

the study. Section 3 summarizes the results of the data analysis. Section 4 discusses
the various threats to the validity of the study. The paper concludes with
improvement suggestions for the experimental design and proposes directions for
future research.

368 PFAHL ET AL.

2. Description of the Experiment

The main objective of developing and applying a simulation-based training module
has been to facilitate effective learning about certain topics of software project
management for computer science students. This was done by providing a scenario-
driven interactive single-learner environment that can be accessed through the
internet by using a standard web-browser. An additional goal was to raise interest in
the topic of software project management among computer science students, and to
make them aware of some of the difficulties associated with controlling the dynamic
complexity of software projects.
The training module used in the study is composed of course material on project

planning and control. The core element of the training module is a set of interrelated
project management (i.e., planning) models, represented by a simulation model that
was created by using the SD simulation modeling method (Forrester, 1971;
Richardson and Pugh, 1981). This model simulates typical behavior of software
development projects.
In order to investigate the effectiveness of computer-based training in the field of

software project management using a SD simulation model, a controlled experiment
applying a pre-test–post-test control group design was conducted. The subjects who
were willing to participate in the experiment had to complete two tests, one before
the training session (pre-test) and one after the training session (post-test). The
effectiveness of the training was then evaluated by comparing within-subject post-
test to pre-test scores, and by comparing the scores between subjects in the
experimental group, i.e., those who used the SD model, and subjects in the control
group, i.e., those who used a conventional project planning model instead of the SD
model. In the study, the well-known COCOMO model (Boehm, 1981) was used by
the control group since this model is quite comprehensive and can be considered as
state-of-the-practice in many industrial software organizations.
The various possibilities of conducting a training session is described in Figure 1 as

a three-layered graph. The first layer defines the learning goal, i.e., software project
management with focus on project planning and control. The second layer defines
the type of project planning model used in the training session, i.e., COCOMO
model versus SD simulation model. Finally, the third layer defines the learning mode
as another dimension to characterize the training session, i.e., inclusion or exclusion
of a web-based interactive role-play. The combination of the distinctions made in
layers two and three yield four different treatments. Our empirical investigations
compare the effectiveness of two of them called TA (SD model-based learning with
web-based interactive role-play scenario) and TB (standard COCOMO-based
learning without web-based interactive role-play).
The following dimensions were used to characterize ‘‘effectiveness’’ of the training

session:

1. Interest in software project management issues.

2. Knowledge about typical behavior patterns of software development projects.

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 369

3. Understanding of ‘‘simple’’ project dynamics.

4. Understanding of ‘‘complex’’ project dynamics.

In the study, these dimensions were represented by dependent variables (Y.1 to Y.4).

2.1. Experimental Hypotheses

The hypotheses of the experiments were stated as follows:

1. There is a positive learning effect in both groups (A ¼ experimental group,
B ¼ control group). Using the notations in Table 1, this expectation can be
formulated as follows:

scorepostðY :i;AÞ > scorepreðY :i;AÞ; for i ¼ 1; . . . ; 4

and

scorepostðY :i;BÞ > scorepreðY :i;BÞ; for i ¼ 1; . . . ; 4

Figure 1. Possibilities for arranging the training session.

Table 1. Notation.

Term Definition

scorepre ðY.i; XÞ Pre-test scores for dependent variable Y :i ði ¼ 1; . . . ; 4Þ of subjects in
group XðX ¼ A or BÞ.

scorepost ðY.i; XÞ Post-test scores for dependent variable Y :i ði ¼ 1; . . . ; 4Þ of subjects in
group XðX ¼ A or BÞ.

scorediff ðY.i; XÞ Difference scores for dependent variable Y :i ði ¼ 1; . . . ; 4Þ of subjects in
group XðX ¼ A or BÞ. The difference scores are calculated as follows:
scorediff ðY.i; XÞ ¼ scorepost ðY.i; XÞ – scorepre ðY.i; XÞ

370 PFAHL ET AL.

2. The learning effect in group A is higher than in group B, either with regard to the
performance improvement between pre-test and post-test (relative learning
effect), or with regard to post-test performance (absolute learning effect). The
absolute learning effect is of interest because it may indicate an upper bound of
the possible correct answers depending on the type of training (A or B). Using the
notations in Table 1, this expectation can be formulated as follows:

a. ‘‘Relative learning effect’’:
scorediff ðY.i;AÞ > scorediff ðY.i;BÞ, for i ¼ 1, . . . , 4

b. ‘‘Absolute learning effect’’:
scorepost ðY.i;AÞ > scorepost ðY.i;BÞ, for i ¼ 1, . . . , 4

Note that it is not expected that both relative and absolute learning effect will always
occur simultaneously. This reflects on the fact that higher relative learning effects in
group A compared to group B are less likely to occur when pre-test scores of group
A are significantly higher than those of group B. Similarly, higher absolute learning
effects in group A compared to group B are less likely to occur when pre-test scores
of group A are significantly lower than those of group B. Standard significance
testing was used to analyze expectations. The related null hypotheses were stated as
follows:

. H0,1: There is no difference between pre-test scores and post-test scores within
group A and group B, i.e., scorepre ðY.i;AÞ ¼ scorepost ðY.i;AÞ and scorepre ðY.i;
BÞ ¼ scorepost ðY.i;BÞ for all i ¼ 1; . . . ; 4.

. H0,2a: There is no difference in relative learning effectiveness between group A and
group B, i.e., scorediff ðY.i;AÞ ¼ scorediff ðY.i;BÞ for all i ¼ 1; . . . ; 4.

. H0,2b: There is no difference in absolute learning effectiveness between group A
and group B, i.e., scorepost ðY.i;AÞ ¼ scorepost ðY.i;BÞ for all i ¼ 1; . . . ; 4.

2.2. Subjects

The initial experiment was conducted with graduate computer science students at the
University of Kaiserslautern (KL), Germany, who were enrolled in the advanced
software engineering class. Although none of them had concluded his or her Master
degree in computer science or a related field, their skill level was comparable to a
Bachelor degree. Twelve students expressed their interest in participation but
eventually only nine of them completed all steps of the controlled experiment. The
replication of the initial study was conducted during a summer school with twelve
graduate and post-graduate students (one Master degree, one PhD) of the University
of Oulu, Finland, having their major in computer science, information technology,
information engineering, micro electronics or mathematics.

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 371

In both studies, before performing the pre-test, information was captured on the
personal background of the students and their experience with software development
and software project management. In addition, the students answered questions
about personal characteristics (age, gender), university education (number of terms,
major, minor), and preferred learning style on a voluntary basis. The personal
characteristics of the two groups are summarized in Table 2.

2.3. Treatments

The training sessions of both groups, experimental and control, was structured by
training scenarios that consisted of a sequence of scenario blocks. The generic
training scenario structure is composed of the following four scenario blocks:

1. Block 1—PM Introduction: General introduction into the main tasks of software
project managers and the typical problems they have to solve with regard to
project planning and control. This includes a brief discussion of problems caused
by the so-called ‘‘magic triangle’’, i.e., the typical presence of unwanted trade-off
effects between project effort (cost), project duration, and product quality
(functionality).

2. Block 2—PM Role Play: Illustration of common project planning problems on
the basis of an interactive case example in which the trainee takes over the role of
a fictitious project manager.

Table 2. Personal characteristics.

KL students Oulu students

Average age [years] 27.0 31.3

Share of women 11% 50%

Share of subjects majoring in: 100% 67%

. computer science

. information technology

. software engineering

. information engineering

. inf. processing science

Preferred learning style(s):

. reading (with exercise) 89% 33%

. web-based training 11% 8%

. in-class lecture (with exercise) 22% 25%

. working group (with peers) 33% 42%

Opinion about most effective learning style(s): Not asked

. reading (with exercise) 25%

. web-based training 17%

. in-class lecture (with exercise) 33%

. working group (with peers) 67%

372 PFAHL ET AL.

3. Block 3—PM Planning Models: Presentation of basic models that help a project
manager with planning tasks, namely a process map, and a predictive model for
effort, schedule and quality.

4. Block 4—PM Application Examples: Explanation on how to apply the planning
models on the basis of examples that are presented in the form of little exercises.

2.3.1. Treatment of the Experimental Group

The experimental group completed all scenario blocks. The SD model was used as
the predictive model in scenario blocks 3 and 4. In addition, the SD model was
integrated into the interactive role-play offered by scenario block 2.
The SD model used in the training session consists of five interrelated sub-models

(views):

1. Production View: This view represents a typical software development lifecycle
consisting of the following chain of transitions: set of requirements (planned
functionality) ? design documents ? code ? tested code.

2. Quality View: This view models the defect co-flow: defect injection (into design or
code)? defect propagation (from design to code)? defect detection (in the code
during testing) ? defect correction (only in the code). Optionally, additional QA
activities will result in defect detection and rework already during design and
coding.

3. Effort View: In this view, the total effort consumption for design development,
code development, code testing, optional QA activities, and defect correction
(rework) is calculated.

4. Initial Calculations View: In this view, the nominal value of the process
parameter ‘‘productivity’’ is calculated using the basic COCOMO equations for
estimating effort and project duration. The nominal productivity varies with
assumptions about the product development mode (organic, semi-detached,
embedded) and characteristics of the available project resources (e.g., developer
skill).

5. Productivity, Quality and Manpower Adjustment View: In this view, project-
specific process parameters, like (actual) productivity, defect generation,
effectiveness of QA activities, etc., are determined based on (a) planned target
values for manpower, project duration, product quality, etc. and (b) time pressure
induced by unexpected rework or requirement changes.

A detailed description of the SD model used in the experiment can be found in Pfahl
et al. (2001).

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 373

Scenario block 2 (PM Role Play) has been designed to help the trainee understand
the complex implications of a set of empirically derived principles that typically
dominate software projects conducted according to the waterfall process model.
Even though the waterfall process approach is no longer state-of-the art, and in most
industrial organizations not even state-of-the-practice, it is expected that it is still an
interesting object of study for students having little or no experience with real-world
industrial software development. The set of principles used in the block scenario (cf.
Table 3) was distilled from the top 10 list of software metric relationships published
by Barry Boehm (1987).
In order to make the trainee understand the implications of these principles (and

their combinations), a role-play is conducted in which the trainee takes the role of a
project manager who has been assigned to a new development project. Several
constraints are set, i.e., the size of the product and its quality requirements, the
number of software developers available, and the project deadline.
The first thing to do for the project manager (in order to familiarize with the SD

simulation model) is to check whether the project deadline is feasible under the
resource and quality constraints given. Running a simulation does this check. From
the simulation results, the project manager learns that the deadline is much too
short. Now, the scenario provides a set of actions that the project manager can take,
each action associated with one of the principles and linked to one of the model
parameters. Soon the project manager learns that his department head does not
accept all of the proposed actions (e.g., reducing the product size or complexity).
Depending on the action the project manager has chosen, additional options can be
taken. Eventually, the project manager finds a way to meet the planned deadline,
e.g., by introducing code and design inspections (cf. Principle 6 in Table 3).
The role-play is arranged in a way that the project manager can only succeed when

combining actions that relate to at least two of the principles listed in Table 3. At the
end of the role-play, a short discussion of the different possible solutions is provided,
explaining the advantages and disadvantages of each.
It should be noted that the complex impact of actions taken during the role-play

by the fictitious project manager could not have been be calculated using the
COCOMO model. This is mainly due to the fact that the COCOMO model does not

Table 3. List of principles dominating project performance.

No. Principle

1 ‘‘Finding and fixing a software problem after delivery is 100 times more expensive than finding

and fixing it during the requirements and early design phases.’’

2 ‘‘You can compress a software development schedule up to 25% of nominal, but no more.’’

3 ‘‘Software development and maintenance cost are primarily a function of the number of source

lines of code (SLOC) in the product.’’

4 ‘‘Variations between people account for the biggest differences in software productivity.’’

5 ‘‘Software systems and products typically cost three times as much per SLOC as individual

software programs. Software-system products (i.e., system of systems) cost nine times as much.’’

6 ‘‘Walkthroughs catch 60% of the errors.’’

374 PFAHL ET AL.

(yet) fully cover the impact of effort or size changes on product quality.1 The SD
model used during the role-play has this capability, i.e., constraints on product
quality have an impact on project duration and effort consumption, and vice-versa.

2.3.2. Treatment of the Control Group

The control group performed only scenario blocks 1, 3, and 4. The predictive model
used in scenario blocks 3 and 4 was the intermediate COCOMO model. A detailed
description of the COCOMO model can be found in Boehm (1981).

2.3.3. Differences Between Initial Experiment and Replication.

Since almost all of the participants of the initial study at the University of
Kaiserslautern stated that they did not have enough time for working through
the materials, more time was reserved for the treatment during the replication at
the University of Oulu. Another difference refers to the overall schedule of the
experiments. While the initial experiment at the University of Kaiserslautern was
conducted on two days with one week of time in between, the replication at the
University of Oulu was conducted on one single day.

2.4. Experimental Design

For evaluating the effectiveness of a training session using SD model simulation, a
pre-test-post-test control group design was applied. This design involves random
assignment of subjects to an experimental group (A) and a control group (B). The
subjects of both groups complete a pre-test and a post-test. The pre-test measures
the performance of the two groups before the treatment, and the post-test measures
the performance of the two groups after the treatment. By studying the differences
between the post-test and pre-test scores of the experimental group and the control
group, conclusions can be drawn with respect to the effect of the treatment (i.e., the
independent variable of the experiment) on the dependent variable(s) under study.

2.5. Experimental Variables

During the experiment, data for three types of variables are collected. Table 4 lists all
experimental variables, including one independent variable ðX.1Þ, four dependent
variables ðY.1; . . . ;Y.4Þ, and three variables that represent potentially disturbing
factors ðZ.1; . . . ;Z.3Þ.
The conceptual model underlying the proposed statistical analysis assumes that

there are two separate effects on the dependent variables. On the one hand the effect

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 375

of the independent variable, and on the other the effect of additional potentially
disturbing factors as shown in Figure 2.

2.5.1. Independent Variables

The independent variable X.1 (type of treatment) can have two values, either TA,
which is applied to the experimental group A, or TB, which is applied to the control
group B. The difference between TA and TB is basically determined by two factors.
The first factor is the training scenario according to which the course material is
presented. The second factor is the planning model that is used to support software
project management decision-making. Table 5 briefly summarizes the differences
between the treatment of the experimental group and the treatment of the control
group, indicating the duration of the scenario blocks applied, and providing
information on the nature of the used planning models. The duration is expressed in
minutes, first for the initial experiment, then for the replication.
With regard to the scenario, the main difference consists in the application of

scenario block PM Role Play for treatment TA. As a consequence of performing the

Figure 2. Relations between experimental variables.

Table 4. Experimental variables.

Independent variable

X.1 Type of treatment

Dependent variables

Y.1 Interest in software project management issues (‘‘Interest’’)

Y.2 Knowledge about typical behavior patterns of software development projects (‘‘Knowledge’’)

Y.3 Understanding of ‘‘simple’’ project dynamics (‘‘Understand simple’’)

Y.4 Understanding of ‘‘complex’’ project dynamics (‘‘Understand complex’’)

Disturbing factors

Z.1 Personal background (experience)

Z.2 Time consumption/time need

Z.3 Session evaluation (personal perception)

376 PFAHL ET AL.

scenario block PM Role Play, interaction of the trainee with the training module will
be high whereas treatment TB will only trigger low interaction of the trainee with the
training module. With regard to the model that is used during the training session,
treatment TB exclusively relies on a black-box model providing point estimates, such
as COCOMO. In contrast to this, by using a SD simulation model, treatment TA is
based on a white-box model that in addition to point estimates facilitates insights
into behavioral aspects of software projects.

2.5.2. Dependent Variables

The dependent variables Y.1, Y.2, Y.3, and Y.4 are determined by analyzing data
collected through questionnaires that all subjects have to fill in, the first time during
the pre-test, and the second time during the post-test. Each dependent variable was
represented by 5 to 7 questions where answers have to be provided on a uniform
scale. The value of each dependent variable will then be equal to the average score
derived from the related questionnaire. The contents of the questionnaires are as
follows:

. Y.1 (‘‘Interest’’): Questions about personal interest in learning more about
software project management.

. Y.2 (‘‘Knowledge’’): Questions about typical performance patterns of software
projects. These questions are based on some of the empirical findings and lessons
learned summarized in Barry Boehm’s top 10 list of software metric relations
(Boehm, 1987).

. Y.3 (‘‘Understand simple’’): Questions on project planning problems that require
simple application of the provided PM models, addressing trade-off effects
between no more than two model variables.

. Y.4 (‘‘Understand complex’’): Questions on project planning problems addressing
trade-off effects between more than two variables, and questions on planning
problems that may require re-planning due to alterations of project constraints

Table 5. Differences between treatments.

Treatment TA Treatment TB

Scenario Block 1 – (3min; 5min) Block 1 – (3min; 5min)

Block 2 – (15min; 30min) n/a

Block 3 – (15min; 30min) Block 3 – (30min; 60min)

Block 4 – (12min; 15min) Block 4 – (12min; 15min)

PM model SD model: COCOMO model:

. behavioral (white box) . point estimates (black box)

. point estimates (black box)

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 377

(e.g., reduced manpower availability, shortened schedule, or changed require-
ments) during project performance.

2.5.3. Disturbing Factors

The values of the three potentially disturbing factors Z.1, Z.2, and Z.3 are also
derived from questionnaires that all subjects have to fill in. The questionnaire for Z.1
must be filled in before the pre-test, the questionnaires for Z.2 and Z.3 have to be
filled in after the post-test. The contents of the questionnaires are as follows:

. Z.1: Questions about personal characteristics (age, gender), university education
(number of terms, major, minor), practical software development experience,
software project management literature background, and preferred learning style.

. Z.2: Questions on actual time consumption per scenario block, and on perceived
time need.

. Z.3: Questions on personal judgment of the training session (subjective session
evaluation).

2.6. Experimental Procedure

The initial experiment and its first replication were conducted following the plan
presented in Table 6. After a short introduction during which the purpose of the

Table 6. Schedule of experiment and replication.

Experiment Replication

Introduction to experiment 5min 5min

Background characteristics 5min 5min

Pre-test

Interest 3min 5min

Knowledge about empirical patterns 5min 5min

Understanding of simple project dynamics 10min 10min

Understanding of complex project dynamics 12min 15min

Introduction to treatments 5min 5min

Random assignment of subjects to groups 5min 5min

Treatment 45min 80min

Post-test

Interest 3min 5min

Knowledge about empirical patterns 5min 5min

Understanding of simple project dynamics 10min 10min

Understanding of complex project dynamics 12min 15min

Time need and subjective session evaluation 5min 10min

Total 130min 180min

378 PFAHL ET AL.

experiment and general organizational issues were explained, data on the back-
ground characteristics (variable Z.1) was collected with the help of a questionnaire.
Then the pre-test was conducted and data on all dependent variables (Y.1 through
Y.4) was collected, again using questionnaires. Following the pre-test, a brief
introduction into organizational issues related to the treatments was given. After
that, the subjects were randomly assigned to either the experimental or control
group. Then each group underwent its specific treatment. After having concluded
their treatments, both groups completed the post-test using the same set of
questionnaires as during the pre-test, thus providing data on the dependent variables
for the second time. Finally, the subjects got the chance to evaluate the training
session by filling in another questionnaire, providing data on variables Z.2 and Z.3.
The time frames reserved for completing a certain step of the schedule was identical
for the experimental and control groups. However, more time was reserved during
the replication as compared to the initial experiment (cf. columns Experiment and
Replication of Table 6).
The initial experiment was conducted in two days. On the first day, the steps

‘‘Introduction to experiment’’, ‘‘Background characteristics’’, and ‘‘Pre-test’’ were
conducted, consuming a total of 40min. On the second day, the steps ‘‘Introduction
to treatments’’, ‘‘Random assignment of students to groups’’, ‘‘Treatment’’, ‘‘Post-
test’’, and ‘‘Time need and subjective session evaluation’’ were conducted,
consuming a total of 90min.
The replication was conducted in two parts on one day. The first part, including

the steps ‘‘Introduction to experiment’’, ‘‘Background characteristics’’, and ‘‘Pre-
test’’ were conducted, consumed a total of 45min. The second part, including the
steps ‘‘Introduction to treatments’’, ‘‘Random assignment of students to groups’’,
‘‘Treatment’’, ‘‘Post-test’’, and ‘‘Time need and subjective session evaluation’’,
consumed a total of 135min. There was a break of 30min between the first and the
second part.
Of the 12 students that agreed to participate in the initial experiment, nine

students participated in both pre-test and post-test. Five students were assigned
randomly to the experimental group (A), and four students to the control group (B).
Of the twelve students participating in the first replication, six were assigned
randomly to the experimental group (A), and six to the control group (B).

2.7. Data Collection Procedure

The raw data for dependent variables Y.1 to Y.4 were collected during pre-test and
post-test with the help of questionnaires (the full set of questionnaires used in the
experiments can be found in Pfahl (2001). The values for variable Y.1 (‘‘Interest’’)
are average scores derived from five questions on the student’s opinion about the
importance of software project management issues (i) during university education

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 379

and (ii) during performance of industrial software development projects, applying a
five-point Likert-type scale (Likert, 1932). Each answer in the questionnaire is
mapped to the value range R ¼ [0; 1] assuming equidistant distances between
possible answers,2 i.e., ‘‘fully disagree’’ is encoded as 0, ‘‘disagree’’ as 0.25,
‘‘undecided’’ as 0.5, ‘‘agree’’ as 0.75, and ‘‘fully agree’’ as 1.
The values for variables Y.2 (‘‘Knowledge’’), Y.3 (‘‘Understand simple’’), and Y.4

(‘‘Understand complex’’) are average scores derived from five (for Y.2), seven (for
Y.3), and six (for Y.4) questions in multiple-choice style. The answers to these
questions were evaluated according to their correctness, thus having a binary scale
with correct answers encoded as 1, and incorrect answers encoded as 0. Missing
answers were encoded like incorrect answers.
The raw data for disturbing factors were collected before pre-test (Z.1) and after

post-test (Z.2 and Z.3). In order to determine the values of factor Z.1 (‘‘Personal
background’’) information on gender, age, number of terms studied, subjects
studied (major and minor), personal experience with software development, and
number of books read about software project management was collected. In order
to simplify the analysis, the actual values for factor Z.1 eventually used for the
statistical analysis were exclusively based on the normalized average scores derived
from the questions on the student’s personal experience with software development.
Each of these questions could be answered with ‘‘yes’’ (encoded as 1) or ‘‘no’’
(encoded as 0). ‘‘Yes’’ indicated that a certain type of experience was present, and
‘‘no’’, that it was not present. Therefore, simple adding of the scores per answer
gives a measure of experience with a maximal score of 6 and a minimal score of 0.
Dividing by the number of questions provides a normalized value range, i.e., range
R ¼ ½0; 1�.
The values for factor Z.2 are normalized average scores reflecting the ‘‘time need’’

for reading and understanding of the scenario blocks 1, 3, and 4, for familiarization
with the supporting tools, and for filling in the post-test questionnaire. For group A,
the variable Z.2’ includes also scores related to scenario block 2. If a subject wants to
express that more than the available time was needed related to a certain task, then
‘‘yes’’ (encoded as 1) should be marked, otherwise ‘‘no’’ (encoded as 0). Adding the
scores and dividing them by the number of tasks once again provides a normalized
value range R ¼ ½0; 1�, with 1 indicating time need for all tasks and 0 indicating the
absence of time need.
The values for factor Z.3 (‘‘Session evaluation’’) are based on subjective measures

reflecting the quality of the treatment. Again, for group A, the variable Z.3’ includes
scores related to scenario block 2. The subjective perception of the treatment quality
was evaluated with regard to four dimensions (‘‘useful’’ versus ‘‘useless’’,
‘‘absorbing’’ versus ‘‘boring’’, ‘‘easy’’ versus ‘‘difficult’’, and ‘‘clear’’ versus
‘‘confusing’’) using five-point Likert-type scales, e.g. ‘‘extremely boring’’, ‘‘boring’’,
‘‘undecided’’, ‘‘absorbing’’, ‘‘extremely absorbing’’. Similar to variable Y.1, possible
answers were encoded as 0, 0.25, 0.5, 0.75, and 1 depending on whether the
subjective judgment was very negative, negative, undecided, positive, or very
positive. By taking the average of the values for all four questions the values for
disturbing factors could be mapped to range R ¼ ½0; 1�.

380 PFAHL ET AL.

2.8. Data Analysis Procedure

The conceptual model underlying the proposed statistical analysis is inspired by the
work of Jac Vennix who conducted a similar experiment (Vennin, 1990). He assumes
that there are two separate effects on the dependent variables: On the one hand the
effect of the independent variable, and on the other the effect of additional
potentially disturbing factors (cf. Figure 2).
In a first step of the statistical analysis a t-test was used to investigate the effect of the

independent variableX.1 on the dependent variablesY.1 toY.4. For testing hypothesis
H0,1, a one-way paired t-test was used, because the data collected for this hypothesis is
within-subjects, i.e., post-test scores are compared to pre-test scores of subjects within
the same group (Sheskin, 1997). For testing hypotheses H0,2a and H0,2b, the
appropriate test was a one-sided t-test for independent samples (Sheskin, 1997).
In addition, analysis of covariance (ANCOVA) was applied for testing hypotheses

H0,2a and H0,2b, to improve the precision of the statistical analysis by removing
potential bias due to disturbing factors (Wildt and Ahtola, 1978). Since these
additional analyzes did not alter any of the results from the t-tests, the ANCOVA
results are not presented in this paper. The ANCOVA results for the initial
experiment can be found in Pfahl et al. (2001).
A prerequisite for applying the t-test is the assumption of normal distribution of

the variables in the test samples. Therefore, a test to check this assumption was
conducted. While the results of the t-test are often robust against violation of the
normality assumption it is strongly influenced by outliers in the data sets. Hence, an
analysis to detect the presence of outliers was performed. Checking for the normality
assumption showed that no normal distribution of the variables in the test samples
could be assumed. On the other hand, the outlier analysis showed that all data points
lie within the range of +2 standard deviations around the samples’ means, and in
most cases even within the range of +1.5 standard deviations around the samples’
means. Although no outliers were detected, additional non-parametric tests were
conducted to re-confirm the findings of the t-tests. Since the additional tests
(Wilcoxon matched pair test for hypothesis H0,1 and Mann-Whitney U test for
hypotheses H0,2a and H0,2b) did not yield any differences to the results of the t-tests,
these test results are not presented in the paper.
Ideally, researchers should perform a power analysis (Cohen, 1988) before

conducting a study to ensure the experimental design will find a statistically
significant effect if one exists. The power of a statistical test is dependent on three
different components: significance level a, the size of the effect being investigated,
and the number of subjects. Low power will have to be considered when interpreting
non-significant results.
Usually, the commonly accepted practice is to set a ¼ 0.05. However, controlling

a Type I error ðaÞ and Type II error ðbÞ requires either a large effect size or large
sample sizes. This represents a dilemma in a software-engineering context since much
research in this area involves relatively modest effects sizes, and in general, small
sample sizes. As pointed out in Lipsey (1990), if neither effect size nor sample size
can be increased to maintain a low risk of error, the only remaining strategy—other

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 381

than abandoning the research altogether—is to permit higher risk of error. Since
sample sizes were rather small in the initial experiment and its first replication, and
no sufficiently stable effect sizes from previous empirical studies were known, it was
decided to set a ¼ 0.1.
Effect size is expressed as the difference between the means of the two samples

divided by the root mean square of the variances of the two samples (Sheskin, 1997).
For this exploratory study, effects where g> 0.5 are considered to be of practical
significance. This decision was made on the basis of the effect size indices proposed
by Cohen (1988).

3. Experimental Results

In the following sub-sections the descriptive statistics of the dependent variables and
disturbing factors are summarized. Then, for each experimental hypothesis the
results of the statistical analyzes are presented and briefly discussed.

3.1. Descriptive Statistics

The column ‘‘Pre-test scores’’ of Table 7 shows the calculated values for mean,
median, and standard deviation of the raw data collected during the pre-test of the
initial experiment (E) and the first replication (R).

Table 7. Scores of dependent variables ðE and RÞ.

E: Initial experiment KL

Pre-test scores Post-test scores Difference scores

Group A (5 subj.) Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4

Mean 0.69 0.56 0.31 0.37 0.79 0.84 0.66 0.43 0.10 0.28 0.34 0.07

Median 0.75 0.60 0.29 0.33 0.85 0.80 0.71 0.33 0.10 0.40 0.43 0.00

Stdev 0.18 0.30 0.26 0.25 0.19 0.17 0.13 0.32 0.09 0.36 0.28 0.19

Group B (4 subj.) Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4

Mean 0.81 0.50 0.43 0.33 0.79 0.60 0.82 0.46 � 0.03 0.10 0.39 0.13

Median 0.78 0.50 0.36 0.25 0.80 0.60 0.86 0.50 0.00 0.10 0.50 0.17

Stdev 0.13 0.26 0.31 0.24 0.19 0.16 0.07 0.37 0.09 0.35 0.38 0.34

R: First replication – Oulu

Pre-test scores Post-test scores Difference scores

Group A (6 subj.) Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4

Mean 0.83 0.57 0.41 0.44 0.85 0.97 0.67 0.44 0.03 0.40 0.26 0.00

Median 0.88 0.60 0.43 0.42 0.85 1.00 0.57 0.50 0.03 0.40 0.14 0.00

Stdev 0.14 0.23 0.11 0.23 0.15 0.08 0.27 0.09 0.07 0.28 0.25 0.24

Group B (6 subj.) Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4 Y.1 Y.2 Y.3 Y.4

Mean 0.70 0.47 0.33 0.33 0.78 0.43 0.74 0.33 0.08 � 0.03 0.41 0.00

Median 0.73 0.40 0.36 0.25 0.83 0.40 0.79 0.33 0.08 0.00 0.43 0.08

Stdev 0.18 0.21 0.17 0.30 0.21 0.15 0.17 0.24 0.13 0.32 0.19 0.45

382 PFAHL ET AL.

The column ‘‘Post-test scores’’ of Table 7 shows the calculated values for mean,
median, and standard deviation of the raw data collected during the post-test of the
initial experiment (E) and the first replication (R).
The column ‘‘Difference scores’’ of Table 7 shows the calculated values for mean,

median, and standard deviation of the differences between post-test and pre-test
scores of the initial experiment (E) and the first replication (R). The italicized entries
in the table indicate that the difference between average post-test scores and average
pre-test scores is zero or even negative, i.e., based on average data no (or even
negative) relative learning effect was observed. This phenomenon occurred two times
during the initial experiment (variables Y.4 (A) and Y.1 (B)) and three times during
the first replication (variables Y.4 (A and B) and Y.2 (B)). Possible reasons for these
unexpected outcomes are discussed in Section 3.6.
Table 8 shows the calculated values for mean, median, and standard deviation of

the raw data collected for the disturbing factors during the initial experiment (E) and
the first replication (R).
In the initial experiment, there could be observed a difference between students in

the experimental group A and the control group B regarding experience with
software development (Z.1). This difference could not be observed in the first
replication.

Table 8. Scores of disturbing factors (E and R).

E: Initial experiment – KL

Group A—experimental Z.1 Z.2 Z.2B2 Z.3 Z.3B2

Mean 0.48 0.44 0.2 0.41 0.68

Median 0.4 0.4 0 0.38 0.69

Stdev 0.23 0.46 0.45 0.09 0.26

Group B—control Z.1 Z.2 Z.3

Mean 0.6 0.35 0.66

Median 0.6 0.3 0.69

Stdev 0.23 0.19 0.06

R: First replication – Oulu

Group A—experimental Z.1 Z.2 Z.2B2 Z.3 Z.3B2

Mean 0.61 0.17 0 0.35 0.82

Median 0.8 0.2 0 0.38 0.82

Stdev 0.43 0.15 0 0.20 0.17

Group B—control Z.1 Z.2 Z.3

Mean 0.62 0.25 0.71

Median 0.57 0.25 0.75

Stdev 0.28 0.19 0.18

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 383

In the initial experiment, students in the control group (B) expressed less need of
additional time (Z.2) for conducting the treatment and completing the tests than did
students in the experimental group (A). In the first replication, both groups (A and
B) expressed less need of additional time to conduct scenario blocks 1, 3, and 4 than
the students in control group (B) of the initial experiment. This is also true when
looking at the time need expressed by students of the experimental group (A) with
regards to conducting scenario block 2 (Role Play/Z.2B2).
Finally, in both initial experiment and first replication, students in the control

group (B) on average perceived their treatment easier, clearer, more absorbing, and
more useful (Z.3) than the students in the experimental group (A). This evaluation,
however, relates only to those scenario blocks that are conducted by both groups,
i.e., blocks 1, 3, 4. When looking at the evaluation of scenario block 2 (Role Play/
Z.3B2) separately, high scores can be observed for the initial experiment, and even
higher scores for the first replication (cf. Table 9 for detailed evaluation results).

Table 9. Subjective evaluation of Scenario Block 2 (E and R).

Group A—experimental (E) Useful Absorbing Easy Clear

MeanZ.2/B2 0.75 0.6 0.65 0.7

MedianZ.2/B2 0.75 0.5 0.75 0.75

StdevZ.2/B2 0.31 0.29 0.22 0.27

Group A—experimental (R) Useful Absorbing Easy Clear

MeanZ.2/B2 0.88 0.85 0.79 0.75

MedianZ.2/B2 0.88 1.00 0.75 0.75

StdevZ.2/B2 0.14 0.22 0.19 0.27

Table 10. Results for ‘‘post-test’’ vs. ‘‘pre-test’’ (E).

Group A—experimental (five subjects)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 1.07 4 2.39 1.53 0.04

Y.2—knowledge 0.77 4 1.72 1.53 0.08

Y.3—understand ‘‘simple’’ 1.23 4 2.75 1.53 0.03

Y.4—understand ‘‘complex’’ 0.35 4 0.78 1.53 0.24

Group B—control (four subjects)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest ** 3 � 0.58 1.64 **

Y.2—knowledge 0.29 3 0.58 1.64 0.30

Y.3—understand ‘‘simple’’ 1.05 3 2.09 1.64 0.06

Y.4—understand ‘‘complex’’ 0.37 3 0.73 1.64 0.26

384 PFAHL ET AL.

3.2. Hypothesis H0,1

Table 10 shows for each group (A and B) separately the initial experiment’s (E)
results of testing hypothesis H0,1 using a one-tailed t-test for dependent samples.
Column one represents the dependent variable, column two the size of the effect
detected, column three the degrees of freedom, column four the t-value of the study,
column five the critical value for a ¼ 0.10 (as discussed in Section 2.8) which the t-
value has to exceed to be statistically significant, and column six provides the
associated p value.
By examining columns four and five of Table 10, one can see that group A

achieved significant results for dependent variables Y.1, Y.2, and Y.3, and group B
for dependent variable Y.3. It is worth noting though that the values for dependent
variable Y.4 support the direction of the expected positive learning effect in both
groups, however without showing an effect size of practical significance. In addition,
for group B, values for dependent variable Y.2 also support the direction of the
expected positive learning effect, but again without showing an effect size of practical
significance. The values for variable Y.1 do not even support the direction of the
expected learning effect in group B.
Table 11 shows for each group (A and B) separately the first replication’s (R) results

of testing hypothesis H0,1 again using a one-tailed t-test for dependent samples. One
can see that that group A achieved significant results for dependent variables Y.2, and
Y.3, and group B for dependent variables Y.1 and Y.3. It is worth noting though that
the values for dependent variable Y.1 support the direction of the expected positive
learning effect in group A, however, without showing an effect size of practical
significance. The value for variable Y.2 do not even support the direction of the
expected learning effect in group B, and the values for variableY.4 do not even support
the direction of the expected learning effects in both groups. As a consequence, in the
replication, no further testing of hypothesis H0,2 was done for this variable.

Table 11. Results for ‘‘post-test’’ vs. ‘‘pre-test’’ (R).

Group A—experimental (six subjects)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 0.36 5 0.89 1.48 0.21

Y.2—knowledge 1.41 5 3.46 1.48 0.01

Y.3—understand ‘‘simple’’ 1.06 5 2.61 1.48 0.02

Y.4—understand ‘‘complex’’ ** 5 � 0.00017 1.48 **

Group B—control (six subjects)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 0.65 5 1.58 1.48 0.09

Y.2—knowledge ** 5 � 0.25 1.48 **

Y.3—understand ‘‘simple’’ 2.13 5 5.22 1.48 0.0017

Y.4—understand ‘‘complex’’ 0.00 5 0.00 1.48 0.50

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 385

3.3. Hypothesis H0,2a

Table 12 shows the initial experiment’s (E) results of testing hypothesis H0,2a using a
one-tailed t-test for independent samples.
For significance level a ¼ 0.1, the score difference between post-test and pre-test

for variable Y.1 is significantly larger in group A as compared to group B, and thus
hypothesis H0,2a can be rejected. It can also be noted that the values of variable Y.2
support the direction of the expected relative learning effect, showing a medium to
large effect size. The values for variables Y.3 and Y.4 do not even support the
direction of the expected relative learning effect.
Table 13 shows the first replication’s (R) results of testing hypothesis H0,2a. As can

be seen, only the score difference of variable Y.2 is significantly larger in group A as
compared to group B, and thus hypothesis H0,2a can be rejected for this variable. For
variables Y.1 and Y.3 the values do not even support the direction of the expected
relative learning effect. No useful analysis could be conducted for variable Y.4,
because no difference between post-test and pre-test groups could be observed
neither in group A nor in group B.

3.4. Hypothesis H0,2b

Table 14 shows the initial experiment’s (E) results of testing hypothesis H0,2b using a
one-tailed t-test for independent samples.
For significance level a ¼ 0.1, the post-test scores of variable Y.2 are significantly

larger for the experimental group (A) as compared to the control group (B), and thus
hypothesis H0,2b can be rejected. It can also be noted that the values of variable Y.1

Table 12. Results for ‘‘performance improvement’’ (E).

Group A (experimental) vs. B (control)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 1.38 7 2.06 1.42 0.04

Y.2—knowledge 0.51 7 0.75 1.42 0.24

Y.3—understand ‘‘simple’’ ** 7 � 0.23 1.42 **

Y.4—understand ‘‘complex’’ ** 7 � 0.33 1.42 **

Table 13. Results for ‘‘performance improvement’’ (R).

Group A (experimental) vs. B (control)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest ** 10 � 0.98 1.37 **

Y.2—knowledge 1.43 10 2.48 1.37 0.02

Y.3—understand ‘‘simple’’ ** 10 � 1.13 1.37 **

386 PFAHL ET AL.

support the direction of the expected absolute learning effect, however, only with a
very small effect size. The values for variables Y.3 and Y.4 do not even support the
direction of the expected absolute learning effect.
Table 15 shows the first replication’s (R) results of testing hypothesis H0,2b using a

one-tailed t-test for independent samples.
As in the initial experiment, the post-test scores of variable Y.2 are significantly

larger for the experimental group (A) as compared to the control group (B), and thus
alternative hypothesis H0,2b can be rejected. It can also be noted that the values of
variable Y.1 support the direction of the expected absolute learning effect, again
without showing an effect size of practical significance. The values for variable Y.3 do
not even support the direction of the expected absolute learning effect. No useful
analysis could be conducted for variable Y.4, because no difference between post-test
and pre-test groups could be observed neither in group A nor in group B, and thus
differences in post-test scores are irrelevant for evaluating the absolute learning effect.

3.5. Qualitative Results

In addition to filling in the pre-test and post-test questionnaires and the
questionnaires about potential disturbing factors, the participants of the case studies
had the chance make comments or improvement suggestions, and could raise issues
or problems that they encountered during the treatments. Apart from some
improvement suggestions related to technical aspects of the role-play and tool usage,
comments and problem statements mainly supported the findings of the quantitative
analyzes. Positive comments mainly correlated with the high scores for scenario
block 2 in the subjective evaluation of the experimental group. In addition, positive

Table 14. Results for ‘‘post-test performance’’ (E).

Group A (experimental) vs. B (control)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 0.01 7 0.02 1.42 0.49

Y.2—knowledge 1.45 7 2.16 1.42 0.03

Y.3—understand ‘‘simple’’ ** 7 � 2.28 1.42 **

Y.4—understand ‘‘complex’’ ** 7 � 0.11 1.42 **

Table 15. Results for ‘‘post-test performance’’ (R).

Group A (experimental) vs. B (control)

Variable � df t-value Crit. t0.90 p-value

Y.1—interest 0.36 10 0.63 1.37 0.27

Y.2—knowledge 4.40 10 7.63 1.37 0.000009

Y.3—understand ‘‘simple’’ ** 10 � 0.56 1.37 **

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 387

statements were made about the clarity of the presentation of the COCOMO model
and its usefulness. Negative comments or problem statements mainly addressed the
difficulty of understanding the structure of the SD model, and the lack of time for
getting acquainted with the tools, for working through the treatments, and for
answering the questions in the pre-test and post-test questionnaires. The time issue,
however, was less prominent during the replication.

3.6. Analysis Summary and Discussion

Table 16 shows the main results of the initial experiment and its first replication.
Only the results for comparing relative and absolute learning effects between the
experimental and control groups are shown for each dependent variable (testing of
null hypotheses H0,2a and H0,2b, respectively). Since there was no positive difference
between post-test and pre-test scores within both groups in the replication, no results
of the comparison between groups are shown for variable Y.4.
In behavioral research, meta-analysis techniques are used for comparing and

combining results from different studies. The benefit of meta-analytic procedures is
that by combining the results of a number of studies, one can increase the power of
the statistical analysis. This enables one to identify effects that could escape the
scrutiny in a single study with much lower statistical power. Meta-analytic
techniques are based either on p-values or effect sizes. To make a step in this
direction and include both, p-values as well as effect sizes, in the discussion, the
hypothesis testing results of each study were classified as follows:

. Statistical significance (sta. sig.): null hypothesis could be rejected at significance
level a ¼ 0.1.

. Practical significance (pract. sig.): null hypothesis could not be rejected but effect
size g� 0.5.

. Positive effect (þ): no practical significance could be observed but effect size g> 0.
The number in parentheses indicates how many subjects would have been needed
to achieve statistical significance with the given effect size.

. No effect or negative effect ð7Þ: t-value	 0.

Table 16. Results for H0,2.

Variable Experiment Replication

H0,2a H0,2b H0,2a H0,2b

Y.1—interest stat. sig. þ (1000) — þ (56)
Y.2—knowledge pract. sig. stat. sig. stat. sig. stat. sig.

Y.3—understand ‘‘simple’’ — — — —

Y.4—understand ‘‘complex’’ — —

388 PFAHL ET AL.

The italicized entries indicate for each study which learning effect was stronger, the
relative learning effect (hypothesis H0,2a) or the absolute learning effect (hypothesis
H0,2b). When discussing the results of both studies in combination, two main trends
can be observed. First, there is no indication that the experimental group performs
better than the control group with regard to understanding of simple and complex
project dynamics (variables Y.3 and Y.4). Second, there is strong support for the
expectation that subjects in the experimental group perform better than subjects in
the control group with regard to knowledge about empirical patterns in software
projects (variable Y.2), and there is weak support for the expectation that subjects in
the experimental group show higher interest in software project management than
subjects in the control group (variable Y.1).
The findings of the analyses showed several interesting trends. First, both

treatments involving the SD model (i.e., experimental group A) had a positive
impact on the change of scores from pre-test to post-test for dependent variables Y.1
to Y.3. The effect was statistically significant for Y.2 and Y.3 (cf. Tables 10 and 11).
For Y.1, in the replication, the power of the test seemed to be too low to be able to
detect the effect at the selected significance level a ¼ 0.1.
Second, the outcomes of hypothesis testing of learning effectiveness indicate that

treatment involving the SD model is significantly better regarding variable Y.2.
Regarding variable Y.1 the positive results of the initial treatment could not be
observed in the replication.
Though positive, the second result might be related to the inclusion of the role-

play (scenario block 2) exclusively for the experimental group A. Inclusion of the
role-play, on the other hand, imposed additional time pressure on the subjects in the
experimental group, which might have resulted in low scores for questions related to
dependent variables Y.3 and—particularly—Y.4. Although more time was allowed
during replication, and the values for time need were lower than in the initial
experiment, qualitative results from the replication still support this subjective
feeling of time pressure. Hence, a further replication should allow even more time for
executing scenario blocks 2 (PM Role Play) and 3 (PM Planning Models), and for
the familiarization with the simulation tool. Moreover, the experimental treatment,
as it is now, does not yet fully exploit all potentially available features that learning
through SD model usage and SD model building could offer. This relates to the fact
that SD models not only make causal relationships explicit and allow for variation of
the strength of the relationships, but also offer means to change the structure of these
relationships and make the effects of such changes on project performance visible
through simulation.
A closer look at the nature of the applied treatments also proposes an improved

experimental design for future replications. The inclusion of a role-play (scenario
block 2) in the experimental treatment had two consequences. As mentioned before,
the role-play in scenario block 2 provided information on typical patterns of
software project behavior to subjects in group A, which was not given in such an
explicit form to group B subjects. This might explain why group A subjects had
clearly better scores for variable Y.2 than group B subjects. On the other hand,
group B subjects had more time than group A subjects to read and understand the

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 389

information provided in scenario block 3 (PM Planning Models) because they did
not have to perform a role-play. This might explain why group A subjects did not
have better scores for variables Y.3 and Y.4. Another reason for difficulties of the
experimental group with variables Y.3 and Y.4 might be that the presentation of the
SD model in scenario block 3 was too hard to grasp, due to the high complexity of
the model structure. Some subjects mentioned this issue in the debriefing
questionnaires.

4. Threats to Validity

This section discusses the various threats to validity of the study.

4.1. Construct Validity

Construct validity is the degree to which the variables used in the study accurately
measure the concepts they purport to measure. The following issues associated with
construct validity have been identified:

1. The mere application of a SD model might not adequately capture the specific
advantages of SD models over conventional planning models, since it has often
been claimed that model building—and not the application of an existing
model—is the main benefit of SD simulation modeling (Lane, 1995).

2. Interest in a topic and evaluation of a training session are difficult concepts that
have to be captured with subjective measurement instruments. To counteract this
threat to validity in the studies, the instruments for measuring variables Y.1 and
Z.3 were derived from measurement instruments that had been successfully
applied in a similar study (Vennix, 1990).

3. There are indications that the distinction between ‘‘simple dynamics’’ and
‘‘complex dynamics’’, as it was made for measuring variables Y.3 and Y.4 (cf.
Section 2.5.2.), was too simplistic.

4. It is difficult to avoid ‘‘unfair’’ comparison between SD models and COCOMO,
because SD models offer features that per definition are not available for
COCOMO (e.g., simulation of parameter changes over time/on-the-fly modifica-
tion of model assumptions, etc.). In addition, only scenario block 2 explicitly
provides information about typical behavior patterns of software projects,
because this is an important prerequisite for conducting the role-play. Since
exclusively subjects of the experimental group perform scenario block 2, subjects
of the control group might be disadvantaged.

390 PFAHL ET AL.

4.2. Internal Validity

Internal validity is the degree to which conclusions can be drawn about the causal
effect of the independent variable on the dependent variables. Potential threats
include selection effects, non-random subject loss, instrumentation effect, and
maturation effect.

1. A selection effect was avoided by random assignment of subjects. In addition,
existing differences in ability between groups were captured by collecting pre-test
scores and by measuring the level of experience of subjects through variable Z.1.
Any potential bias induced by differences in pre-test scores and experience were
tried to be neutralized by using ANCOVA.

2. Non-random drop-out of subjects has been avoided by the experimental design,
i.e., assignment of groups only on the second day of the experiment, i.e., directly
before the treatment, and not before the pre-test already on the first day of the
experiment.

3. The fact that the treatments of group A and B were different in the number of
scenario blocks involved and, as a consequence, in the time available to perform
each scenario block, may have induced an instrumentation effect. The post-
mortem evaluation of the experiment with regard to time requirements indicated
in the initial experiment that most subjects of group A did not have enough time
to execute both scenario blocks 2 and 3. Due to more relaxed schedules, this effect
could be reduced. In addition,—even though this was addressed by careful
design—the planning models used in both treatments might slightly differ in
scope and handling.

4. A maturation effect could have been caused if subjects had been informed before
or during pre-test that at the end of the experiment they will complete a post-test
with exactly the same questions. Since this information was not given to the
subjects, and all materials were re-collected after the pre-test, it can be assumed
that a maturation effect did not occur.

4.3. External Validity

External validity is the degree to which the results of the research can be generalized
to the population under study and other research settings. Two possible threats have
been identified: subject representativeness and materials:

1. The subjects participating in the experiment were all students in computer science
or related fields at an advanced level. It can be expected that the results of the
study are to some degree representative for this class of subjects. Any

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 391

generalization of the results with regard to education of novice students, or even
with regard to training of software professionals should be done with caution.

2. Even when the training sessions are applied to students, adequate size and
complexity of the applied materials might vary depending on previous knowledge
about SD modeling and COCOMO.

In any case, the point should be emphasized that the presented research at its current
stage is exploratory of nature and just the first step of a series of experiments,
which—after modification of the treatments and stepwise inclusion of subjects with
different backgrounds—might yield more generalisable results in the future.

5. Conclusion

The empirical studies presented in this paper investigated the effect of using a SD
simulation model to assist software project management education of computer
science students. The treatment focused on problems of project planning and
control. The performance of the students was analyzed with regard to four
dimensions, i.e., interest in the topic of software project management (Y.1),
knowledge of typical project behavior patterns (Y.2), understanding of simple
project dynamics (Y.3), and understanding of complex project dynamics (Y.4). This
was done by comparing the test results of students who performed a training session
using the SD model (with web-based role-play) to the test results of students who
performed a training session using the COCOMO model (without web-based role-
play). Although the two studies seem to be heterogeneous, the findings of the initial
experiment were corroborated by the first replication. SD models increase the
interest of the subject in software project management and also improve a subject’s
knowledge of typical behavior patterns. Hence, SD models represent a viable path
for learning multi-causal thinking in software project management. This was
supported by the subjective evaluation of the role-play scenario involving simulation
with the SD model, which received very high scores.
Although the results of the two studies are promising, further replication is

required for two reasons. First, a single study even if replicated only provides a
starting point for investigation. In this case, the studies were exploratory in nature.
Based on the presented results, a further replication should consider the examination
of cause/effect relationships. And second, each empirical study exhibits specific
threats to validity, which can only be ruled out by replication. Additional
replications of this study are currently planned.

Acknowledgment

Part of this work was funded by the European Union under grant IST-1999-11634.

392 PFAHL ET AL.

Notes

1. This shortcoming might be resolved soon. In Boehm et al. (2000) Ray Madachy and Barry Boehm

announce the integration of System Dynamics into COCOMO.

2. This is a common assumption in experimental software engineering and social science.

References

Abdel-Hamid, T. K., and Madnick, S. E. 1991. Software Project Dynamics—an Integrated Approach.

Prentice-Hall.

Boehm, B. W. 1981. Software Engineering Economics. Englewood Cliffs: Prentice-Hall.

Boehm, B. W. September 1987. Industrial software metrics top 10 list. IEEE Software: 84–85.

Boehm, B. W., Abts, C., Brown, W. A., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R., Reifer, D.

J., and Steece, B. 2000. Software Cost Estimation with COCOMO II. Upper Saddle River: Prentice Hall

PTR.

Briand, L. C., Bunse, C., Daly, J. W., and Differding, C. 1997. An experimental comparison of the

maintainability of object-oriented and structured design documents. Empirical Software Engineering

2(3): 291–312.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Academic Press.

Drappa, A., and Ludewig, J. 1999. Quantitative modeling for the interactive simulation of software

projects. Journal of Systems and Software 46: 113–122.

Forrester, J. W. 1971. Principles of Systems. Cambridge: Productivity Press.

Graham, A. K., Morecroft, J. D. W., Senge, P. M., and Sterman, J. D. 1992. Model-supported case studies

for management education. European Journal of Operational Research. 59: 151–166.

Kellner, M. I., and Hansen, G. A. January 1989. Software process modeling: A case study. Proc. 22nd

Annual Hawaii Int’l Conf. System Sciences.

Lane, D. C. 1995. On a resurgence of management simulation games. Journal of the Operational Research

Society. 46: 604–625.

Likert, R. 1932. A technique for the measurement of attitude. Archives of Psychology 22(140).

Lin, C. Y. May 1993. Walking on battlefields: Tools for strategic software management. American

programmer: 33–40.

Lin, C. Y., Abdel-Hamid, T., and Sherif, J. S. 1997. Software-engineering process simulation model

(SEPS). Journal of Systems and Software 38: 263–277.

Lipsey, M. 1990. Design Sensitivity. Sage Publications.

Madachy, R., and Tarbet, D. June 1999. Case studies in software process modeling with system dynamics.

Proc. 2nd Software Process Simulation Modeling Workshop (ProSim’99). Silver Falls, Oregon.

Milling, P. March 1995. Managementsimulation im Prozeß des organizationalen Lernens [organizational

Learning and its Support by Management Simulators]. Zeitschrift für Betriebswirtschaft, Ergänzung-

sheft (supplement) 3/95: Lernende Unternehmen. 93–112. (Also available at URL http://iswww.bwl.uni-

mannheim.de).

Morecroft, J. D. W. 1988. System dynamics and microworlds for policymakers. European Journal of

Operational Research 35: 301–320.

Pfahl, D. 2001. An Integrated Approach to Simulation-Based Learning in Support of Strategic and Project

Management in Software Organisations. PhD Theses in Experimental Software Engineering, Vol. 8.

Stuttgart: Fraunhofer IRB Press.

Pfahl, D., Klemm, M., and Ruhe, G. 2001. A CBT module with integrated simulation component for

software project management education and training. Journal of Software and Systems 59: 283–298.

Pfahl, D., Koval, N., and Ruhe, G. April 2001. An experiment for evaluating the effectiveness of using a

system dynamics simulation model in software project management education. Proceedings of 7th

International Software Metrics Symposium. London, United Kingdom, 97–109.

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 393

Richardson, G. P., and Pugh, A. L. 1981. Introduction to System Dynamics Modeling with DYNAMO.

Cambridge: Productivity Press.

Sheskin, D. J. 1997. Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton: CRC

Press.

Smith, B. J., Nguyen, N., and Vidale, R. F. May 1993. Death of a software manager: How to avoid career

suicide through dynamic software process modeling. American programmer 10–17.

Vennix, J. A. M. 1990. Mental Models and Computer Models – design and evaluation of a computer-

based learning environment for policy-making. PhD Thesis, University of Nijmegen.

Wildt, A. R., and Ahtola, O. T. 1978. Analysis of Covariance. Newbury Park: Sage Publications. Sage

University Paper Series on Quantitative Applications in the Social Sciences, series no. 07–012.

Dietmar Pfahl received his MSc degree in applied mathematics and economics (Diplom-Wirtschafts-

mathematik) from Ulm University, Germany, and a PhD in computer science from Kaiserslautern

University, Germany. Between 1987 and 1996 he was a research staff member with the German Aerospace

Research Establishment (DLR), and a software engineering consultant with Siemens Corporate Research.

Since 1996, he has been with the Fraunhofer Institute for Experimental Software Engineering where he

manages several national and international research and transfer projects with software industry. His

current research interest includes quantitative software project management, software process analysis and

improvement, and simulation-based learning. He is a member of the IEEE Computer Society, the ACM,

The Institute of Mathematics and its Application (IMA), and the German Computer Society.

Oliver Laitenberger received his MSc and a PhD degree in computer science from Kaiserslautern

University, Germany, in 1996 and 2000 respectively. After his affiliation with the Fraunhofer Institute for

Experimental Software Engineering, he is currently working for Droege & Comp. GmbH, an international

consultancy. His main interest includes project and quality management techniques, methods and tools in

large-scale software development organizations. (Oliver_Laitenberger@droege.de; http://www.droege.de)

394 PFAHL ET AL.

Günther Ruhe received a doctorate rer. nat degree in mathematics with emphasis on operations research

from Freiberg University, Germany, and a doctorate habil. nat. degree from both the Technical University

of Leipzig and University of Kaiserslautern, Germany. He had a visiting professorship at University of

Bayreuth in 1991/92 and received an Alexander von Humboldt research fellowship at University of

Kaiserslautern in 1992. Dr. Ruhe was visiting scientist at the IBM Research Center in Heidelberg in 1993.

From 1996 until 2001 he was deputy director of the Fraunhofer Institute for Experimental Software

Engineering. In July 2001 he joined the University of Calgary, Canada, where he holds the position of an

Industrial Research Chair (iCORE; www.icore.ca), a joint position between the department of computer

science and the department of electrical and computer engineering. Dr. Ruhe’s laboratory for Software

Engineering Decision Support (www.seng-decisionsupport.ucalgary.ca) currently includes 15 graduate

students, post-doctoral students and research associates. In addition to his academic merits, Dr. Ruhe has

comprehensive experience in collaborations with companies like Allianz life insurance, Bosch,

DaimlerChrysler, Schlumberger and Siemens.

Joerg Dorsch received his MSc degree in computer science from Kaiserslautern University, Germany, in

2003, his primary interest being focused on software engineering and computer networks. During his study

period, he worked several years as research assistant at Fraunhofer IESE on various projects. In May

2003, he joined Accenture where he now works as a consultant for IT Projects in Europe.

EXTERNALLY REPLICATED EXPERIMENT IN SOFTWARE PROJECT EDUCATION 395

