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Abstract. Software systems undergo constant change causing the architecture of the system to degenerate

over time. Reversing system degeneration takes extra effort and delays the release of the next version.

Improved architecture is intangible and does not translate into visible user features that can be marketed.

Due to a lack of representative metrics, technical staff has problems arguing that stopping degeneration is

indeed necessary and that the effort will result in an improved architecture that will pay off. We believe

that architectural metrics would give technical staff better tools to demonstrate that the architecture has

improved. This paper defines and uses a set of architectural metrics and outlines a process for analyzing

architecture to support such an argument.

The paper reports on a case study from a project where we restructured the architecture of an existing

client-server system written in Java while adding new functionality. The modules of the existing version of

the system were ‘‘library-oriented’’ and had a disorganized communication structure. The new architecture

is based on components and utilizes the mediator design pattern. The goal of the study is to evaluate the

new architecture from a maintainability perspective. The paper describes our evaluation process, the

metrics used, and provides some preliminary results. The architectural evaluation shows that the

components of the system are only loosely coupled to each other and that an architectural improvement

has occurred from a maintenance perspective. The process used to evaluate the architecture is general and

can be reused in other contexts.

Keywords: Architectural evaluation, metrics, empirical study.

1. Introduction

Software systems constantly change. Users relentlessly require more functionality of
a system and a successful system often has to be adapted to a changing environment.
As an effect of the constant change, the structure of the system becomes more and

more complex; often it degenerates. The structure can only be preserved or simplified
through extra effort through which the degeneration of the system is stopped and
hopefully reversed (Lehman and Belady, 1985).
One reason for such increased complexity is the fact that change often is

synonymous with growth. New features are added over time and each such new



feature requires more source code to be written. More source code means more
modules and more modules means more interconnections among new and existing
modules. These additions contribute to the complexity of the system and make it
harder to understand and change.
It is clear that software will change over time, but it is a challenge to achieve

successful software system evolution. The answer to smooth software evolution is
related to the structure of the system. A system without an adaptable architecture
will degenerate sooner than a system based on an architecture that takes change into
account (Eick et al., 2001).
This paper reports on a case study from a project in which we reengineered a

previous version of our experience management system (EMS) (Seaman et al., 1999).
The goal of the project was to develop a new version incorporating a new
architecture needed to handle a set of new requirements. The paper describes our
evaluation process, the metrics used, and provides some preliminary results. The
metrics helped us show that the previous architecture needed to improve and that the
new architecture is indeed an improvement from a maintenance perspective. We
believe the same analysis could be used by others and help them to argue their case
better.

1.1. Background

One of Fraunhofer Center Maryland’s (FC-MD) primary assets is our software
system EMS, which manages experience supporting our ‘‘Experience Factory’’
approach for organizational learning (Basili et al., 1994a). In 1999, we found
ourselves in an impossible situation. Both current and potential users of the system
asked for more functionality, while it was clear that the current architecture of the
system couldn’t withstand additional changes. Each change to the system only made
it harder to change again. The effort of adding any functionality widely exceeded
what the effort ‘‘ought to be’’ to add that functionality and we realized that the
system had decayed (Eick et al., 2001). When we understood that the system had
become un-maintainable, we made the decision to restructure it. The plan was to
design an architecture that would facilitate the addition of features in the future
enabling us to further satisfy users of the system. Part of the development was going
to be outsourced to a partner in Brazil. It was important to identify an architecture
that allowed for geographically distributed development including independent
design, implementation, and testing of modules.
While the overall architecture of EMS was, and still is, Internet-based and client-

server, we converted our ‘‘library-oriented’’ modules (described in Section 2) into
components and based the architecture of the client on components and the
mediator design pattern (Gamma et al., 1994) (also described later in this section).
We expected this planned design to enable independent development and to
accommodate future addition of components. In order to assess whether this was the
case, we defined a process based on the concept of software architecture evaluation.
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1.2. Evaluation of Software Architecture

Software architecture evaluation (SAE) can be conducted at different points in time
during the software life cycle and with different goals in mind. Here we distinguish
between early SAE and late SAE. Early SAE is used to evaluate one or more
software architecture (SA) candidates that are not yet implemented. Late SAE,
which we used in this study, is used to evaluate the SA of an implemented version of
a system compared to the SA of a previous version.
Early SAE, as described by Abowd et al. (1996) and Avritzer and Weyuker (1998),

can be based on the description of the SA and other sources of information, for
example interviews with the creators of the SA. Early SAE facilitates:

. Better understanding of the SA.

. Verification that all requirements are accounted for.

. Indication that the system will have the desired qualities or quality attributes (e.g.
performance, reliability, and maintainability).

. Identification of problems with the architecture.

The methodology proposed by Yacoub and Ammar (2002) is an example of the
third bullet in that it analyzes architectures from a risk perspective early in the life-
cycle. Bengtsson and Bosch’s architecture level prediction of software maintenance is
another example of the same kind of analysis (Bengtsson and Bosch, 1999). The
approach suggested by de Bruijn and van Vliet (2001) is based on the generation of a
basic architecture that is immediately evaluated and problems identified. A new
architecture is generated and again evaluated. This iterative approach continues until
the architecture fulfills the software requirements. The architecture-level modifi-
ability analysis (ALMA) model by Lassing et al. (2002) emphasizes that the goal
should govern how the evaluation will be carried out. ALMA distinguishes between
three different goals:

. Risk assessment; finding types of changes for which the system is inflexible.

. Maintenance cost prediction; estimating the cost of maintenance effort for the
system in a given period.

. Software architecture comparison; comparing two or more candidate software
architectures to find the most appropriate one.

Late SAE (e.g. Murphy et al.’s reflexion models (Murphy et al., 1995)) can utilize
data measured on the actual software implementation. These metrics can be used to
reconstruct the actual SA in order to compare it to the planned SA that was used in
the early SAE.
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An analysis of the actual SA of a previous version of a system can be used to
increase understanding of the system in order to improve it. Based on such an
analysis, the late SAE approach can be used to compare and evaluate the new actual
SA with the planned SA and the previous actual SA. The analysis can be used to
evaluate whether the new actual SA fulfills the planned SA and whether it better
fulfills the defined goals and evaluation criteria than does the previous actual SA. An
early example of such an approach is Schwanke’s re-engineering tool (Schwanke,
1991). The tool uses a concept of similarity based on Parnas’ information hiding
principle, but is not specifically designed for object-oriented systems. The tool
supports two services: clustering, which identifies similar procedures that should be
grouped in a module, and a maverick analysis, which identifies procedures that
appear to be in the wrong module. While the tool can provide advice on a system’s
ideal modularization and can be tuned to include the architect’s preferences, the
advice is limited to the similarity concept, and cannot be used to check conformance
to architectures that do not follow the similarity concept as a design rule.
An example of evaluation approaches for object-oriented systems include the

Pattern-Lint tool (Sefika et al., 1996), which analyzes a system’s design and
determines its compliance to its high-level design models. The tool combines static
and dynamic analysis in order to identify deviations from the intended design.
(Fiutem and Antoniol, 1998) use a traceability approach to carry out the design to
code matching process. The approach points out code areas that do not match the
design and helps the user detect inconsistencies between the two. A related, but more
code-oriented approach is Meyer et al.’s CCEL (1993), which defines design,
implementation and stylistic constraints. The constraint checker produces a list of
violations that help the user identify problematic areas of the code.
For both early and late SAE, there are two basic categories of architectural

evaluation: those that generate qualitative questions to ask of a software architecture
and to those that use quantitative measurements to be taken from an architecture
(Abowd et al., 1996).
The different techniques for acquiring data for the qualitative questions are

scenarios, questionnaires, and checklists. Scenarios seem to be the most utilized form
for acquiring data (Kazman et al., 1996). A scenario is ‘‘a specified sequence of steps
involving the use or modification of the system and provides a means to characterize
how well a particular architecture responds to the demands placed on it by those
scenarios’’ (Abowd et al., 1996). Measuring techniques are objective ways of
acquiring information about a SA as metrics can be precisely defined and, many
times, automatically collected. The development of architectural metrics is relatively
new and not yet empirically well established. The work by Shereshevsky et al. (2001)
outlines, for example, a set of metrics for software architectures based on coupling
and cohesion of architectural components that are theoretically sound, but still
untested. Antoniol et al. (1998) is an example of an approach in which metrics are
used to identify design patterns (Gamma et al., 1994). What in general makes metrics
hard is not the collection of the data, but with the selection of metrics and the
interpretation of the data. Interpretation of data from measurements must be
compared to pre-defined criteria that are derived from a goal. Antoniol et al. (1998)
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use, for example, a conservative interpretation of metrics, meaning that if a pattern
exists in the code it will be reported, but false patterns may also be reported. In the
sameway as the goal can vary fromproject to project, the interpretation of the data can
also vary from project to project. One good way of defining a measurement program
is to use the goal-question-metric (GQM) approach (Basili et al., 1994b), which helps
derive metrics from questions based on the goals of the measurement program.

1.3. Design Patterns

Design patterns address the problem of maintainability. They are descriptions of
communication objects and classes that are used to solve an object-oriented problem
or issue. The goal of patterns is to create solutions that can help software developers
resolve recurring problems.
One of the 23 design patterns in Gamma et al. (1994) is the mediator pattern. The

mediator pattern encapsulates how a set of objects interact, providing loose coupling
among the objects as the objects do not reference each other explicitly. The mediator
coordinates the interactions between the objects (colleagues). The control flow logic
is put in the mediator instead of distributing it to the colleagues. When a colleague
needs a service from another colleague, it contacts the mediator instead of contacting
the object directly.
The advantages of using this pattern are Gamma et al. (1994):

. The control flow behavior is localized to the mediator. To change this behavior, it
is necessary to subclass only the mediator. The colleagues can be reused as is.

. There is no coupling between the colleagues, they don’t know about each other.

. All the communication between the colleagues has to pass through the mediator,
which makes it easier to understand, maintain and extend the system.

. Encapsulating the control of the communication in one object makes it possible to
focus on how objects interact apart from their individual behavior. This can help
clarify how the objects interact in a system.

The main drawback of using this pattern is that the mediator object can become
very complex and hard to maintain since all of the interactions among the colleagues
are encapsulated in the mediator.

2. The Evaluation Process

After redevelopment, we suspected that the new system was an improvement, but
how do we evaluate the software architecture? To address this issue, we designed a
quantitative comparative case-study based on the concepts of late SAE and the
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GQM approach. A generalized description of the process we followed for the study
is composed of the following steps:

. Select a perspective for evaluation.

. Define/select metrics and establish guidelines to be used in the evaluation.

. Collect metrics.

. Evaluate/compare the architectures.

Figure 1 illustrates a more detailed view of the measurement/evaluation process used
in this study. In order to evaluate and compare the architecture of two versions of a
system, we reverse engineered the source code from both versions to obtain the
actual architectural designs. We compared the structural differences between the
actual designs of the two versions with respect to our selected perspective,
maintainability. Then, we compared the actual design of the new version of the
system with the design specified in the planned design and our design goals for the
system. In this part of the evaluation, we looked for discrepancies between the two
designs to find problems with the actual implementation. Then, with each
discrepancy, we identified design goal violations.
The next section describes our selected perspective of evaluation and the definition

of the metrics. Section 4 provides the results of the evaluation of the architecture of
the two versions of our system.

Figure 1. The process for measurement and evaluation in the study.
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3. The Study

The study objects are two versions of the EMS, the original version (EMS1) and the
version incorporating the new requirements (EMS2). EMS is a client/server system
with most of the new functionality and redesigning efforts residing in the client. The
general structure of the EMS is shown in Figure 2.
EMS1 is a research prototype developed by two people. There are about 10K lines

of non-commented Java source code (NLOC). Documentation of EMS1 is limited to
the comments in the source code and a workshop paper (Seaman et al., 1999)
describing the functionality of the system. There was no design document. At the
time of the development of EMS1, no data regarding the development of the system
was collected. EMS2 represents a significant change from EMS1. EMS2 contains
over 15K lines of non-commented Java source code developed by four local
developers plus a team of three developers in Brazil. Twenty-two new requirements
were added. There are requirements and design documents for the new system as well
as implementation documentation for each component of the system. The
characteristics of both versions are summarized in Tables 1 and 2.
Our goal for the study formulated according to the GQM template was to:
Analyze the two versions of the system and the planned design for the purpose of

evaluation (by comparing) with respect to maintainability from the point of view of
software development in the context of EMS at FC-MD.

3.1. Selecting a Perspective for Evaluation: Maintainability

A system can be evaluated with different goals in mind and from many different
perspectives. An evaluation can be based on whether the system implements the
specified functional requirements or, more suitable for an architectural evaluation,
whether it fulfills the non-functional requirements, i.e., the system qualities or quality
attributes. The main goal of the restructuring of EMS was to increase the
maintainability, i.e., make the system easier to change. We expected the future
changes to the system to include the addition and modification of features. We also

Figure 2. Structure of EMS2.
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expected future development to be done by different and possibly distributed sets of
programmers. The goal was to make it easier to add and modify functionality to the
system in the future and to support distributed development. By looking at the
maintenance process, one understands better what properties make a system easier
to maintain. The process of maintenance can be broken down into the following sub-
processes:

1. Understanding the change request.

2. Understanding the system and its structure.

3. Localizing where to change the system in order to implement the change request
(primary changes, Lindvall, 1997).

4. Implementing the primary changes.

5. Determining the ripple effects (secondary changes resulting from primary
changes, Lindvall, 1997).

6. Implementing the secondary changes

7. Testing that the system fulfills all previous as well as new requirements

Due to the fact that the maintenance process is iterative, the stated order above
indicates steps to be taken rather than the order they always occur.
Many studies indicate that there is only a vague connection between the

requirements of a system and the structure of the system (Soloway, 1987). This vague
connection makes it hard to conduct steps one to three above because they are
dependent on each other. It is not possible to fully understand a change request
without understanding the system, its structure, and where in the system to make
the change. In the same way, it is hard to determine ripple effects without

Table 1. Characteristics of both versions.

Version Total size (NLOC) Total developers

EMS1 9,831 2

EMS2 15,382 7

Table 2. Size information (NLOC) for both systems.

Size

Version Client Server Common Total

EMS1 8,405 1,175 251 9,831

EMS2 12,957 1,827 598 15,382
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implementing the primary changes, and the implementation of the secondary
changes might cause new ripple effects necessitating another set of secondary
changes and so on.
One way of closing the gap between the requirements and the architecture and

increase maintainability is to use a component-based approach. Each component
implements a specific and related set of requirements making the connection clearer.
To exemplify: In the EMS-project the architecture was previously library-based,
meaning that classes that provided the same kind of functionality were located
together in the same module. For example, all classes related to the user-interface
could be found in one branch of the directory structure in the file system. A
component, in our terms, implements a well-specified user-oriented functionality.
This means that classes that implement a certain feature are located together (in our
case, a package) and that it is easier to trace from a requirement to its
implementation.
Ripple effects cause problems related to coupling between the pieces that make up

the software system, e.g., modules or components (Haney, 1972; Yau and Collofello,
1980). Both Collofello and Haney show that tighter coupling increases the risk of
ripple effects. Thus, reduced coupling between components reduces the risk of ripple
effects, change propagation and the generation of secondary changes as a
consequence of primary changes. The conclusion is that reduced coupling results
in systems that are easier to maintain.
As described earlier, maintainability can be viewed in many ways and depends

on many different factors. Code that is written according to a set of well-defined
design rules and guidelines is easier to understand, and therefore easier to
maintain. Low complexity, low coupling and high cohesion in theory indicate a
higher level of maintainability. A system that is easier to understand, change,
and test is easier to maintain. A system with well-structured, clearly defined,
subsystems that is well documented and uses clear and logical names is easier
to maintain. A smaller system with equivalent functionality is generally easier to
maintain than a bigger system. A system that offers fewer features is easier to
maintain.
While all of these characteristics indicate maintainability, some of them cannot be

assessed until the system has been operational and undergone changes. Since the new
version of EMS has just been implemented, for this study, we focus on those aspects
of maintainability that do not require an operational profile. In particular, we
examine the structure of both systems. Within this context, a maintainable system is
one that has well-structured and clearly defined components. Coupling between
those components should be low. With EMS, we wanted to reduce the amount of
inter-module coupling without increasing internal coupling, or intra-module
coupling.
To summarize, we addressed the problem of the vague connection between

functional requirements and the structure of the system by forming components. We
used the mediator pattern as the basis of our architectural design to reduce the
coupling among the system’s components and to make it clearer where a new
component should be attached to the system in the future.
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3.2. Defining and Selecting Metrics and Establishing Guidelines

The study is based on the notion of static couplings between modules and classes
detected in the source code. It should be noted that we use the words object and class
interchangeably. We use the word module to denote intentional clusters of classes.
The word module also refers to such clusters of classes in EMS1, while the word
component refers to clusters of classes in EMS2.
Initially, we had intended to use coupling between objects (CBO) as defined in

Chidamber and Kemerer (1994) and implemented in several measurement tools.
Using a standard implementation would automate the measurement process and
significantly reduce our effort. The problem we had with using CBO is that the
common implementation of the metric treats all objects the same and does not
distinguish between objects with different characteristics, such as the module where
they are defined. CBO would, for example, include the coupling among the objects
inside of components. We wanted to exclude this intra-module coupling for part of
our study, as we were interested in examining inter-module coupling separately from
intra-module coupling. To study inter-module and intra-module coupling separately,
we defined a set of new metrics based on the ideas of CBO.

3.2.1. Inter-module Coupling Metrics

To capture inter-module coupling at the module level, we define a metric called
coupling-between-modules (CBM). The CBM metric is the number of non-
directional, distinct, inter-module references. CBM is a coarse measurement that
describes the coupling between modules. With CBM, we ignore the direction of the
arrows because we want to capture the number of modules that are involved in the
coupling. This metric captures inter-module coupling and ignores intra-module
coupling. Importing a class from a module, inheriting from a class in a module, and
declaring or instantiating an object from a module are included as forms of coupling
in the metric. We define CBM(m) as the number of modules coupled with the
module m.
In order to capture the degree of coupling between modules at a finer level, we

define the metric coupling-between-module-classes, CBMC(m). The CBMC metric is
the number of non-directional, distinct, inter-module, class-to-class references for a
module m. This measure captures the number of classes involved in the module
coupling.
To illustrate these metrics, consider the example of an architectural design

depicted in Figure 3. In this example, an arrow indicates a directional relationship
between two classes (e.g. Class A in Module X creates an instance of Class D defined
in Module Y. This coupling leads to the arrow from Class A in Module X to Class D
in Module Y).
In measuring inter-module coupling, the intra-module couplings such as the arrow

from Class A to Class B in Module X in Figure 3 are ignored. Additionally, only
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distinct couplings between the modules are considered. Figure 4 illustrates the
distinct inter-module connections of the architectural design shown in Figure 3.
To calculate the CBM values, the direction of the arrows is ignored. In our

example, CBM(X), CBM(Y) and CBM(Z) all have a value of 2.
When calculating the CBMC metric, the number of inter-module class references

is considered. For each inter-module arrow depicted in Figure 4, the number of class
references is determined. Figure 5 shows the inter-module class references for each
arc. For example, the classes in Module X reference classes C, D and E in Module Y.
Hence, the arrow from Module X to Module Y in Figure 5 is labeled 3. To calculate
CBMC, the directions of the arrows are ignored. In our example, CBMC(X) ¼ 6,
CBMC(Y) ¼ 5 and CBMC(Z) ¼ 3.
We could define coupling metrics at finer levels of detail, e.g., by counting each

reference from one module to another, but for our purposes (architectural
evaluation), the extra level of detail was deemed unnecessary.

Recognizing different kinds of modules. In our study, it was important to recognize
that different kinds of modules need to be treated differently. By definition, library-
based modules are collections of classes intended to be used by many other modules.

Figure 3. An example of architectural design. Arrows indicate coupling between the classes.

Figure 4. Inter-module couplings of example of architectural design.

EMPIRICALLY-BASED PROCESS FOR SOFTWARE ARCHITECTURE EVALUATION 93



Therefore, we would expect other modules to use many classes within a library-based
module. To separate this effect, we define CBMCall and CBMCnolib where CBMCall

represents class coupling between all modules while CBMCnolib shows class coupling
between modules excluding classes from library modules. Since a library is a
group of related functions that will be used possibly by many components, we would
expect a library-oriented module to be highly coupled with the other modules in the
system. That is, we would expect the other modules in the system to use classes and
call methods from a library module. However, a coupling from a library module to
another non-library module of the system would be an example of an undesirable
coupling. Since a component-based module (or non-library module) is a group of
related classes, we would expect the module have a low number of couplings outside
of the component.
In both EMS1 and EMS2, the Common module is the only library-based module.

We handle the couplings to and from the Common module separately since library-
based modules are inherently different from component-based modules.
In summary:

. Coupling to the library-based modules is acceptable.

. Coupling from library-based modules to non-library based modules is undesirable.

A summary of the metrics representing coupling between modules (CBM) and
coupling between module classes (CBMC) is provided in Table 3.
To conduct deeper analyses of findings, we not only measured the coupling, but

also kept lists where the entries represent the couplings and names of classes and
modules are preserved. For example, to capture the relationship between class B in
module X and class E in module Y shown in Figure 3, the information in Table 4 is
stored for later analysis.
The coupling information is stored in database tables for easy search and retrieval.

Once all of the coupling information has been stored in the tables, the actual
architecture of the system can be visualized in diagrams similar to those shown in
Figure 4 and 5.

Figure 5. Inter-module class references for the example of architectural design.
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3.2.2. Intra-module Coupling Metrics

In addition to the metrics defined for inter-module coupling, a set of intra-module
coupling metrics was defined. When modifying the structure of the system, we did
not want to reduce inter-module coupling at the expense of significantly increasing
intra-module coupling. To capture intra-module coupling, we defined a metric called
coupling inside a module, CIM. To calculate CIM(m) for a module m, a coupling
metric for each class within the module must be calculated. CIM(m) is the average of
the coupling metric for the classes within the module m. The coupling metric we use
for each class is calculated in an analogous way to the CBM for modules. This
analogous metric is called coupling between classes, CBC. CBC(c) is the coupling
between classes for Class C.
To illustrate how the intra-module coupling metrics are calculated, consider the

example module shown in Figure 6. Again, an arrow between classes represents a
coupling between the two classes. First, we calculate the coupling between classes
metric for each class within the module; CBC(A) ¼ 2, CBC(B) ¼ 1 and
CBC(C) ¼ 1. To obtain the intra-coupling metric for the module, we take the
average of the CBC values for the classes inside of module X. The CIM(X) ¼ 1.33.
We used the intra-coupling measures in our comparison of the two versions of the

system. In our efforts to redesign the system, our emphasis was on inter-module
coupling. However, we did not want to reduce inter-module coupling by merely
‘‘pushing’’ the coupling into the modules. We thought that the old version of the
system would have more unrelated (and therefore uncoupled) classes within the same
module. While we expected that the intra-module coupling might increase with the
new version, we did not expect it to increase significantly. We expected the new

Table 4. Relationship between classes and modules.

From module From class To module To class

X B Y E

Table 3. Summary of metrics.

Guideline Metric Explanation

Coupling between modules should

be low.

CBM(m) The count of the number of modules coupled

to or from m.

CBMhist A histogram of the CBM number for each

module.

Coupling between module classes

should be low.

CBMCall(m) The count of the number of classes coupled to

or from m.

CBMCnonlib(m) Same as CBMCall, but class couplings in

library modules are ignored.

CBMChist A histogram of the class couplings

(CBMCnolib) for each module.
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version of the system to have nearly the same amount of intra-module coupling as
the old version. To evaluate the intra-module coupling, we used box plot diagrams as
described in the next section.

3.3. Evaluating and Comparing the Architectures

We used the measurement/evaluation process shown in Figure 1 using the two
versions of EMS. We established evaluation criteria for comparing the two versions
of the system and established design goals based on the new design.

3.3.1. Comparing the Actual Designs of the Two Versions

In order to evaluate the two versions of the system, evaluation criteria were
established before we examined the actual data. Using our model of maintainability,
we created measurable evaluation criteria for the actual designs extracted from the
two versions of EMS. Block diagrams of the actual designs of EMS1 and EMS2 are
shown in Figures 7 and 8, respectively. These diagrams show the coupling among the
actual modules of the system. In the design of EMS1, all modules with the exceptions
of the Server and Common modules represent modules of the client (see Figure 2).
The Server module is the only module of the server. The Common module is part of
(used by) both the client and the server.
EMS2 was designed with the mediator design pattern as its base. The Main

Mediator module is responsible for directing all communications on the client side.
The Server Stub module is designed to be the only component communicating with
the server side of the system. The Common module is a library-based module that
holds classes forming the data structures.
For the evaluation of the two actual designs, we are interested in inter and intra-

module coupling. In the context of EMS, we would like to see a design that has few
couplings between the component-based modules of the system while not increasing
intra-module coupling significantly.

Figure 6. An example module used to illustrate intra-module coupling.
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With these criteria and measurements in place, we compared the actual design of
EMS2 against both the planned design for EMS2 and the actual design of EMS1.
When comparing EMS1 and EMS2, we evaluated the module and class coupling
measures. We expected the modules in EMS1 to have high CBM and CBMC
numbers. In EMS2, we expected the couplings to decrease significantly. We expected
the number of modules with high CBM and CBMC to be lower in EMS2. For intra-
module coupling, we expected the CIM numbers for EMS2 to be slightly higher, but
not significantly higher than the CIM numbers for EMS1. We summarize our
expectations in Table 5.

Figure 8. Actual design of EMS2.

Figure 7. Actual design of EMS1.
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3.3.2. Comparing the Actual Design of EMS2 to the Planned Design

The comparison of the actual design of EMS2 against the planned design for EMS2
is based on using the detailed information we kept. When comparing EMS2 against
the planned design, we used the metrics as indicators of potential differences and
used the detailed coupling information to search for violations of our design goals
and for identifying discrepancies between the two designs. Since we were interested
mainly in inter-module coupling for this study, our design goals are related to inter-
module coupling issues.
The first step was to define violation indicators that can be identified based on the

differences in the directed graphs of both designs. There are two general violation
indicators to consider:

. [VI1] A reference in the planned design that does not exist in the actual design.

. [VI2] A reference in the actual design that does not appear in the planned design.

For each of these cases, we examined the code and documentation to determine
why the discrepancy occurred.
The actual design of EMS2 is shown in Figure 8. The planned design for EMS2 is

illustrated in Figure 9.
The design of EMS2 is based on the mediator design pattern. Hence, we have

certain design goals that are expected to be preserved in our implementation of the
pattern:

. [DG1] The ServerStub of the Client should contain all of the references to the
Server (since the ServerStub component is the means of communication with the
server).

Table 5. Summary of expectations for evaluation of the two actual designs.

Expectation Explanation

CBMhist(EMS2) better In EMS1, most modules will be highly coupled.

than CBMhist(EMS1) In EMS2, most modules will have low CBM, less than or equal to two. The

only exceptions will be the Mediator and Common modules.

CBMChist(EMS2) better In EMS1, most modules will have high CBMC.

than CBMChist(EMS1) In EMS2, most modules will have low CBMC, less than or equal to 10. The

only exceptions will be the Mediator and Common modules.

CIM(EMS2) is nearly

the same as CIM(EMS1)

In EMS1, modules will contain unrelated classes leading to lower CIM

numbers.

In EMS2, modules will contain related classes leading to higher, but not

significantly higher CIM numbers.
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. [DG2] The Server should contain no references to the Client (since the server does
not initiate communication with the clients).

. [DG3] Ideally, any non-mediator component should only reference the Common
and the Mediator components. Since the ServerStub is the link to the Server, it will
be the only exception to this rule. It will communicate with the Mediator and the
Server.

. [DG4] The Mediator should be coupled with all the components in the client.

. [DG5] No Client component, with the exception of the Mediator, should contact
the ServerStub directly.

. [DG6] The Mediator should be coupled with exactly one class per component and
vice versa.

We expect that the number of discrepancies between the actual and planned designs
will be small, since the developers of EMS2 were working from a document describing
the planned design. The results from the analysis are discussed in the next section.

4. Results

In this section, we present and discuss the results of the two evaluations: the
comparison between the actual designs of EMS1 and EMS2; and the comparison of
the actual design of EMS2 against the planned design for EMS2.

4.1. Comparison Between the Two Actual Designs

The coupling measures for the modules of EMS1 and EMS2 are given in Tables 6
and 7, respectively. The violations to general rules are highlighted in bold and the
specific violations to EMS2 are highlighted in italic. For the CBMC of both versions,

Figure 9. The planned design for EMS2.
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we give the class coupling measures with and without the Common module. Since
the Common module is a library-based module, it is expected that other modules will
access many classes in the Common module resulting in high but desirable CBMCall

numbers for those non-library modules that use the Common module. Therefore we
do not use the metric CBMCall in our comparison. The CBM numbers presented
include module couplings to the Common module. If we exclude the couplings to the
Common module, the CBM(m) values of each module would be decreased by one. In
our analysis, however we use the CBM(m) numbers that include the module
couplings to the Common module.
We now compare expectations to results.

Expectation: CBMhist(EMS2) better than CBMhist(EMS1). We expected the
number of components with high coupling between modules to be much lower in
EMS2 than in EMS1. The histogram of the CBM for EMS1 and EMS2 is included in
Figure 10. Figure 11 shows the structure of couplings in EMS2. Looking at the
histogram we can see that EMS1 has more classes with higher CBM than EMS2.
However, EMS2 contains two modules that have CBM of 8. Those two modules are
the Common and Main Mediator modules. We expected those modules to have high
coupling. It is clear that we have reduced the number of highly coupled modules with
EMS2, even though the system grew considerably and the number of modules
increased from seven to 10. To further visualize the coupling, we use the box plot

Table 6. Coupling measures for EMS1.

Module CBM CIM CBMCall CBMCnolib

Client 5 1 10 9

Common 6 1 31 N/A

Communications 5 1.7 30 22

Dialog 4 1.3 18 16

DQI 5 4.5 39 26

Main Objects 5 1.6 41 39

Server 2 2 7 2

Table 7. Coupling measures for EMS2.

Module CBM CIM CBMCall CBMCnolib

Cache 2 0 9 3

Common 8 2 85

EMS Logger 2 1 4 3

Main Frame 3 3.9 14 7

Main Mediator 8 1 37 25

Package Entry 3 1 13 6

Package Viewer 2 4.3 27 4

Server 1 2.25 12 0

Server Stub 2 0 4 3

VQI 4 2.9 23 7
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technique; see Figures 12 and 13. The median CBM value is 5 for EMS1 and 2.5 for
EMS2. The box plot of CBM values for the planned design for EMS2 shows an
expected median of 2 (see Figure 14) which is considerably lower than EMS1 and
slightly lower than EMS2. This difference is not statistically significant, however,
because of the outliers represented by theMainMediator and the Commonmodules.

Expectation: CBMChist(EMS2) better than CBMChist(EMS1). The histogram of
the CBMCnolib for EMS1 and EMS2 is included in Figure 10. Looking at the
histogram we can observe that most modules from EMS2 have CBMCnolib lower

Figure 10. Histograms of CBM, CBMCnolib and CIM.

Figure 11. Structure of the couplings in EMS2.
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than 10. Eight of the ten modules in EMS2 have CBMCnolib less than 10. The other
two modules are the Main Mediator and the Common modules. Common is not
included in the histogram since we are not considering couplings with the common
modules. In EMS1, only two out of the six modules have CBMCnolib less than 10. In
EMS1, the communication among the modules is scattered, not localized. The low
CBMCnolib numbers with EMS2 demonstrate that we have localized the
communications among modules in EMS2.

Expectation: CIM(EMS2) is nearly the same as CIM(EMS1). The histogram of the
CIM for EMS1 and EMS2 is included in Figure 10. With the new architecture, since
modules are component-based, we expected to have slightly more coupling of classes
inside the modules. The classes were grouped in modules based on their
functionality. When we grouped the classes in modules, we expected to be moving
some of the couplings between the modules to couplings inside the modules. The
histogram shows that EMS1 has indeed more modules with fewer class couplings
than EMS2, but the median value is actually slightly higher for EMS1 (1.6) than for
EMS2 (1.5). Figures 15 and 16 show respectively the box plots with CIM values for
EMS1 and EMS2. The box plots show that the difference is not significantly large;
i.e., despite the fact that the intra-module coupling decreased for EMS2, it did not
decrease significantly. The difference between the medians is not statistically
significant. One reason for the decrease could be the addition of new components
with only one class.

Figure 12. CBM for EMS1. Median ¼ 5.

Figure 13. CBM for EMS2 (actual). Median ¼ 2.5.

Figure 14. CBM for EMS2 (planned). Median ¼ 2.
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4.2. Comparison of the Actual Design of EMS2 against the Planned Design for EMS2

Using the evaluation technique, we found that the actual design nearly matched the
planned design, but there were a few problems. The evaluation quickly highlighted
the problems and allowed us to determine how to fix those problems. The CBM and
CBMC measurements give indications of the problems with the actual design.
According to our design goals, only two components, the Common and
MainMediator components should have a CBM higher than 2. However, there are
three components that have a higher CBM than expected. Using the database tables
that store the detailed coupling information we were able to find the actual design
violations quickly. The design goals DG2, DG4 and DG5 were not violated. We
found three violations that are explained in the following paragraphs (see Figure 8).
These violations are highlighted in italic in Table 7.
There is one coupling from the Server Stub to the Server in the planned design that

does not exist in the actual design of EMS2 (VI1, DG1 and DG3). Recall that the
Server Stub module is the means of communication between the client and the server
of EMS. In the actual design, there is no coupling between the Server Stub and the
Server. This communication is handled through an RMI interface. Upon
examination of the code, we found that the RMI interface was mistakenly placed
in the Common module. It should have been placed in the Server module and
implemented by the Server Stub module. By placing the RMI interface in the Server
module, one of the couplings from the Server to the Common module would be
eliminated and the coupling from the Server Stub to the Common module would
move to the Server module, as designed.
The actual design of EMS2 contains two couplings that do not exist in the planned

design. The first coupling is from the VQI module to the Main Frame module. The
second coupling is from the Package Entry module to the VQI. Both of these
couplings are considered undesirable (VI2). When we examined the code for these
couplings, we found that the coupling between the VQI and Main Frame was not a

Figure 15. CIM for EMS1. Median ¼ 1.6.

Figure 16. CIM for EMS2 (actual). Median ¼ 1.5.
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true coupling. The VQI module imports the classes from the Main Frame module,
but does not use them. This coupling is an artifact from the previous version of EMS
and should be removed. The coupling between the VQI and the Package Entry is a
true coupling: the classes of the Package Entry use exception definitions defined by
the VQI. Thus, it is a violation of our planned design (DG3).
There is an extra coupling from each module to the Mediator module that is not in

the planned design (VI2). In the implementation of the mediator pattern in EMS2,
each class that communicates with the Mediator module extends a class called
MediatorObject that implements the MediatorObjectInterface. These class and
interface definitions (MediatorObject and MediatorObjectInterface) are part of the
Mediator module, and explain the second coupling from the components to the
Mediator. This is a violation of the planned design (DG6). These extra couplings
could be eliminated moving the classes MediatorObject and MediatorObjectInter-
face to the Common module. However, we felt that it was best to leave them in the
Mediator module and modify our design goal.

5. Summary and Conclusions

In 1999 we identified maintainability problems with the architecture of one of our
main assets: the experience management system (EMS) written in Java. In an effort
to increase maintainability and to facilitate distributed development, we based the
new architecture on components and the mediator design pattern. During this
restructuring we also implemented a set of new requirements. It was obvious from
looking at the system that it had changed structure and grew considerably as an
effect of the restructuring and the implementation of new requirements. We were
however interested in measuring this change in order to evaluate in architectural
terms whether we were better off or not. One reason was to be able to show
management that the new architecture had improved.
We defined two metrics based on inter-module couplings (CBM(m) and

CBMC(m)). The metrics were used in order to measure the level of interrelationship
between the modules in the two versions of the system. More fine-granular coupling
metrics are available in the literature, but we decided that for architectural
evaluation, these two metrics were the correct granular level to use. The metrics can
be used to demonstrate to management that an existing system has architectural
problems and is in need of restructuring. Once the restructuring is complete, the
metrics can be used to verify the design goals and to show that the structure of the
architecture has improved. We used the metrics as indicators of potential problems
with the revised system. Then, we investigated further using more detailed
information.
We also defined a third metric to measure intra-module coupling (CIM(m)). When

we modified the structure of the system we did not want to reduce the inter-module
couplings at the expense of significantly increasing intra-module coupling. CIM was
used to show that there was actually some decrease in the intra-module coupling but
the decrease was not significantly higher. We expected the intra-module coupling to
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increase slightly since the new system was based on functional components. Thus, we
expected classes within the modules of the new system to be more coupled than those
of the old system. With the slight decrease, we believe the system is more
maintainable since the classes are grouped into modules based on their functionality.
When new developers join the team, they can start working on one piece of
functionality without having to understand all of the code upfront.
The study was based on two different kinds of comparisons. We compared the

architectural design of the new version with the architecture for the old version of the
system and with the planned architecture for the new version. The former
comparison used mainly the metrics, while the latter was mainly based on evaluation
according to our design goals.
The comparison and evaluation show that we now have an architectural design

with independent components that are only loosely coupled to each other. The first
observation is that while the structure of the old version of the system indicates that
almost every module interacts with every other module, the new structure indicates
that all components, except for the mediator and the common library, are very
loosely coupled (high vs. low CBM). The second observation is that while the
structure of the old version indicates that communication between classes in different
modules is relatively scattered, the new structure indicates that communication now
is localized to a few classes (high vs. low CBMC).
The modules of the new version are components, which easily map to the

functional requirements of the system. This mapping makes it easier to find where
end-user functionality is implemented in the code. The evaluation of the new
architecture as compared to the planned architectural design shows that there are
still a few problems. Even though the problems are minor, they clearly violate our
design goals. They are potential threats to the maintainability of the system and
should be fixed in the next release of the system. The fact that we were able to detect
these architectural problems illustrates that our method is good for identifying
undesirable interactions between modules in a system.
In order to implement the new architecture, we turned our library-oriented

modules into components with specific functions. We created a mediator module to
manage and coordinate the interactions of the components. The definition of how
the communication among the components and the mediator was to be implemented
took some time for developers to understand, and was not easily accepted by the
developers at first. But, eventually the mediator pattern was very useful. Due to the
fact that the modules were component-oriented and that the architecture was based
on the mediator design pattern, geographically distributed development was enabled.
The components were assigned to developers that could implement and test them
independently, even before the other components were ready. Developers did not
need to know about the interface of the other objects or what the other objects were.
The integrator implemented the mediator module that provided the communication
among the components.
From our evaluation, it appears that the current architectural design is well

structured and the components only loosely coupled and therefore should be more
maintainable than the previous version. The mediator design pattern helped to
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enable distributed development. Future studies of further evolution of this system
are needed to determine the maintainability of this design in practice. The process
used to evaluate the architectural structure was helpful in highlighting the progress
of the system and identifying areas for improvement. This evaluation helped us
convince management that the architecture had improved and that we had been able
to stop architectural degeneration. The evaluation process is general and can be used
in different, object-oriented contexts. We believe that using this and similar
approaches gives technical staff the tools needed to convince upper management that
stopping architectural degeneration is worthwhile.
The study object is a relatively small system and in order to scale up and apply this

process and metrics to a larger system, some tailoring would be necessary. Examples
are automatic generation of reports and diagrams pointing out differences and
problems in the architecture would make the approach applicable to larger systems.
Applying this process and metrics to larger systems would be a good idea in order to
validate the ideas and results presented in this paper.
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evolution. PhD thesis No. 480, Linköping Studies in Science and Technology.

Meyer, S., Duby, C. K., and Reiss, S. P. 1993. Constraining the structure and style of object-oriented

programs. Brown University Computer Science Technical Report CS-93–12. First workshop on principles

and practice of constraint programming.

Murphy, G., Notkin, D., and Sullivan, K. 1995. Software reflexion models: bridging the gap between

source and high-level models. Proceedings of SIGSOFT’95 Third ACM SIGSOFT Symposium on the

Foundations of Software Engineering, 18–28.

Schwanke, R. W. 1991. An intelligent tool for reengineering software modularity. Proceedings of the 13th

International Conference on Software Engineering, 83–92.

Seaman, C., de Mendonca Neto, M. G., Basili, V. R., and Kim, Y.-M. 1999. An experience management

system for a software consulting organization. 24th NASA SEL Software Engineering Workshop

(SEW’24).

Sefika, M., Sane, A., and Campbell, R. H. 1996. Monitoring compliance of a software system with its high

level design models. In 18th International Conference on Software Engineering (ICSE) 387–397. Los

Alamitos, CA: IEEE Computer Society Press.

Shereshevsky, M., Ammari, H., Gradetsky, N., Mili, A., and Ammar, H. H. 2001. Information theoretic

metrics for software architectures. International Computer Software and Applications Conference

(COMPSAC 20001), IEEE Computer Society.

Soloway, E. 1987. I can’t tell what in the code implements what in the specs. In The Second International

Conference on Human-Computer Interaction, 317–328.

Yacoub, S. M., and Ammar, H. 2002. A methodology for architectural-level reliability risk analysis. IEEE

Transactions on Software Engineering 28: 529–547.

Yau, S., and Collofello, J. 1980. Some stability measurements for software maintenance. IEEE

Transactions on Software Engineering 6.

Mikael Lindvall is a scientist at Fraunhofer Center for Experimental Software Engineering, Maryland. He

specializes in work on software architecture and impact analysis as well as experience and knowledge

management in software engineering. He is currently working on defining cost-efficient approaches to

evaluate software architectures. He received his PhD in computer science from Link—pings University,

EMPIRICALLY-BASED PROCESS FOR SOFTWARE ARCHITECTURE EVALUATION 107



Sweden. His PhD work was based on a commercial development project at Ericsson Radio and focused on

the evolution of object-oriented systems.

Roseanne Tesoriero Tvedt is an Assistant Professor in the Department of Mathematics and Computer

Science at Washington College in Chestertown, Maryland and a Scientist at the Fraunhofer Center for

Experimental Software Engineering in College Park, Maryland. She received a PhD in Computer Science

from the University of Maryland. Her research interests include software architecture evaluation, agile

methods, and computer science education.

Patricia Costa is a scientist at the Fraunhofer Center for Experimental Software Engineering, Maryland.

She has a BSc (1996) and a MSc (1999) in Computer Science from the Federal University of Minas Gerais,

Brazil and a MSc (2001) in Telecommunications Management from University of Maryland University

College. She has experience in software development and in the areas of knowledge management and

evaluation of software architectures. She is currently interested in using evaluation of software

architectures as a tool to assess/assure quality attributes like security and maintainability of software

systems.

108 LINDVALL, TVEDT AND COSTA


