Software Engineering

Chapter 2:
Computer-based System Engineering
Objectives

- To define what is system engineering
- To introduce the concept of emergent system properties such as reliability and security
- To explain why the systems environment must be considered in the system design process
- To explain system engineering processes
- To explain system procurement processes
What is Systems Engineering

• A system may include:
 • Hardware
 • Software
 • People
 • Examples: Banking system, Air Traffic control system, Aircrafts, Trains, Vehicles

• Systems Engineering:
 • Designing, implementing, deploying and operating systems
Software Engineering

- Software Engineering: concerned **only** with S/W

- **Embedded** S/W:
 - Special purpose S/W to operate a H/W
 - Could be replaced by H/W
 - For **flexibility reasons**, S/W solution is adopted instead of H/W solution
What is a system?

- A collection of
 - inter-related components
 - working together
 - to achieve a predefined common objective.
System and Sub-systems

- A system may include sub-systems
- Example: A car system includes many subsystems:
 - Engine sub-system (fuel burning)
 - Transmission sub-system (gear)
 - Braking sub-system
 - Sound sub-system
 - Electrical sub-system (lights, electrical windows)
 - Security sub-system (alarm, center lock)
 - Safety sub-system (air bags)

- *Divide and conquer* strategy
Example: HMS “Health Management System” & Sub-systems

- Example of a system including sub-systems at many levels (hierarchy)
- HMS “Health Management System”
- HIS “Health Information System”

- HMS sub-systems include:
 - **In-patient sub-system:**
 - Admission (sub-sub-system)
 - Care services
 - Medical treatment
 - Medical record
 - Operation Theatre
 - Accounting…
Example: HMS “Health Management System” & Subsystems (cont.)

- **Out-patient**
 - Patient appointment
 - Staff scheduling
- **Drug store**
- **Maintenance of equipment**
- **Laboratories**
- **etc...**
Emergent properties

- Properties of the system as a whole rather than properties that can be derived from the properties of each component

- Emergent properties are a consequence of the relationships between system components

- They can therefore only be assessed and measured once the components have been integrated into a system
Non-functional properties

- You impose a constraint on non-functional properties:
 - Speed/performance
 - Reliability
 - Safety
 - Security
System reliability engineering

- Reliability is to be considered at the **system level** rather than at individual component level
System overall reliability

System overall reliability is function of:

- **Hardware reliability**
 - What is the probability of a hardware component failing and how long does it take to repair that component?

- **Software reliability**
 - How likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out (but hardware does)

- **Operator reliability**
 - How likely is it that the operator of a system will make an error? (stress conditions)
The ‘shall-not’ list

- Properties that the system shall **NOT** exhibit

- Examples:
 - Safety issues - the system shall **NOT** behave in an unsafe way
 - Security issues - the system shall **NOT** permit unauthorised use

- The ‘shall-not’ properties must also be defined in the system requirements
System architecture modelling

- An architectural model presents an abstract view of the sub-systems making up a system.
- May include major information flows between sub-systems ‘interface’.
- Usually presented as a block diagram.
Example: Intruder alarm system

System Architecture Block Diagram

- Movement sensors
- Door sensors
- Alarm controller
- Siren
- Voice synthesizer
- Telephone caller

External control centre
Component types in alarm system

- **Sensor**
 - Movement sensor, door sensor
- **Actuator**
 - Siren
- **Communication**
 - Telephone caller
- **Co-ordination**
 - Alarm controller
- **Interface**
 - Voice synthesizer
System architecture

H/W or S/W sub-systems

- System architecture should be designed in terms of functional sub-systems (whether H/W or S/W subsystems)

- Deciding on H/W or S/W sub-system for providing a function?

- Decision is governed by non-technical factors e.g.
 - Availability of COTS components
 - Time constraint
 - Cost
ATC system architecture
The system engineering process

- Requirements definition
- System design
- Sub-system development
- System integration
- System installation
- System evolution
- System decommissioning
System Architecture

System Decomposition into subsystems

- Many possible alternative decomposition solutions
System requirements definition

“WHAT”

- Types of requirement
 1. Abstract **functional** requirements.
 - System functions are defined in an abstract way
 - **Details at sub system level**
 2. **Non-functional** requirements:
 - Are defined for the system in general
 - **EX: Performance, safety, etc … that affect the requirements of the integrated sys**
 3. ‘**Shall-not**’ characteristics: Unacceptable system behaviour is specified
 4. **Domain** requirements: Specific and highly technical for a particular domain of application eg protocol Z39.50 for Library Info Sys

- Should also define
 - System environment (Physical, Organisational and Human)
 - **Business requirements:** Organizational objectives for the system
System requirements problems

requirements \textbf{Change} !!!!!
as the system is being specified
The system design process “HOW”

5 Design Activities

1. Partition requirements
2. Identify sub-systems
3. Assign requirements to sub-systems
4. Specify sub-system functionality
5. Define sub-system interfaces
The system design process “HOW”

5 Design Activities:

1) Partition requirements
 • Organise requirements into related groups

2) Identify sub-systems
 • Identify a set of sub-systems which collectively can meet the system requirements

3) Assign requirements to sub-systems
 • Problems with externally purchased subsystems - COTS (Commercial Of The Shelf)
 • May impose modifications on the requirements because of non 100% compliance with requirements
 • Integration problems
4) Specify sub-system functionality & inter-relationships
 • May be seen as part of sys Design phase for general sub-sys (H/W+S/W+Human/W)
 • OR as part of Analysis phase if the sub-sys is a S/W sub-sys

5) Define sub-system interfaces
 • Critical activity for parallel sub-system development

Design comments
 • Many possible design alternatives of H/W, S/W , Human operations
 • The selected solution need not be the most appropriate technical solution: organizational and political issues may influence the choice of the solution (e.g. National supplier for a government sys)
System Design:
Assignment of requirements to sub-systems

Set of Requirements: \{R1, R2, R3, \ldots , R10\}

Partitions

P1: \{R3, R5\}
P2: \{R1, R2, R4\}
P3: \{R6, R8, R9\}
P4: \{R7, R10\}

Sub-systems

Sub1: \{R3, R5\}
Sub2: \{R1, R2, R4, R6, R8, R9\}
Sub3: \{R7, R10\}
Sub-system development

- If the sub-sys is a S/W

- Then S/W process is started ‘RDIV’

- RDIV
 - Requirements,
 - Design,
 - Implementation,
 - Validation
Sub-system development

- Make/Buy decision

- Make → Develop (RDIV)

- **Buy: Get** COTS sub-sys and integrate into the sys
 - Cheaper
 - Faster
 - Tested
 - If COTS does not meet the requirements exactly, rethink the design for adaptation in order to use COTS
System integration

- **Interface problems** between sub-systems are usually found at this stage
- **Integration approaches:**
 - Bing Bang integration
 - Incremental integration

- Bing Bang integration: all sub-systems are integrated at the **same time**
- Incremental integration: sub-systems are integrated one at a time
System installation

- System is put in its environment

Problems:
- Different environment from that assumed by sys developers (e.g. Operating System version)
- Human resistance to the introduction of the new system
- System may have to coexist in parallel with alternative systems or sub-system components for some time
- Physical installation problems (e.g. network cabling problems)
- Operator training has to be identified
System operation

- Will bring unforeseen requirements to light

- Problems:
 - Incompatibility if coexisting with old systems

- May require
 - Users training
 - Data conversion
System evolution

- **A system has a long lifetime span**
 - Embedded errors correction
 - Dynamic business environment yields new requirements
- **Evolution is inherently costly**
 - Changes must be analysed and approved
 - Changes to one sub-system may affect other sub-systems, these in turn need to be fixed
 - Cost of maintaining a sys increases with time - System structure becomes corrupted because of continuous maintenance changes
- **Legacy systems:**
 - Existing old systems that the organisation must continue to use because they are critical for the business operations.
 - Must be maintained and present a challenge to S/W Engineers aiming at reducing cost of maintenance
System decommissioning

- Taking the system **out of service** after its useful lifetime
- Physical H/W decommissioning problems
 - May require removal of materials (e.g. dangerous chemicals) which pollute the environment
 - Should be planned for in the system design by encapsulation
- May require data to be restructured and converted to be used in some other system
- S/W has **no physical** decommissioning issues
Computer-based System Procurement

- Acquiring a system for an organization to meet predefined need

- Deciding about:
 - The best approach to acquire a system
 - The best supplier

- A system may be:
 - Bought as a whole
 - Bought as separate parts and then integrated
 - Especially designed and developed
System procurement (cont.)

- Some system specification and architectural design must be done before procurement decision
 - Provide the supplier or contractor with specification about the required system
 - The specification/ architectural design will help identify commercial off-the-shelf (COTS) sub-systems that might be bought.
 - Large systems consist of a mix of:
 - COTS
 - Especially developed components
System procurement (cont.)

Glue ware

- Use of S/W allows more use of H/W components
- The **S/W act as a glue ware between the different components of H/W**
- Cost of developing glue ware may counter balance savings from using COTS
- COTS is usually cheaper than developing a component from scratch
The system procurement process

- system specification and architectural design
- Choose supplier
- Issue request for bids
- Select tender
- Negotiate contract
- Let contract for development
- COTS

Off-the-shelf system available
Survey market for existing systems
Bespoke system required

Adapt requirements
Choose system
Issue request to tender