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1 Introduction

Given a set J of n items where each item j (1 ≤ j ≤ n) has a positive integer weight wj ,
and a set of identical bins of capacity C, the Bin Packing Problem (BPP) is to assign each
item to exactly one bin in such a way that the cumulated item weight in each bin does not
exceed C and the number of loaded bins is minimal. This problem is NP-hard in the strong
sense. During the last decade, much efforts have been devoted to the development of effective
local search methods, as well as more or less sophisticated polynomial-time approximation
algorithms. However, there might be several practical situations in which one is interested in
getting an accurate and practical estimate of the empirical performance of BPP heuristics by
resorting to computational experiments. Therefore, there is a need for computing fast and tight
lower bounds. Moreover, a second important motivation for the investigation of tight bounding
strategies is the well-known fact that the quality of the lower bound is of primary importance
for the design of an efficient exact branch-and-bound algorithm.

In this paper, we present an effective procedure which aims at strengthening previously
developed lower bounds. We restrict our attention to lower bounds L(.) that can be computed
in linear time and that are said to be regular (i.e. L(S ∪ {i}) ≤ L(S ∪ {j}) for all S ⊆ J and
i, j ∈ J\S such that wi ≤ wj). Preliminary computational results provide empirical evidence of
the effectiveness of our procedure and show that it yields new fast lower bounds that outperform
lower bounds from the literature.

2 The bounding procedure

Haouari and Gharbi [3] proved (in a slightly different form within the context of multiprocessor
scheduling) that if a feasible solution of a BPP with n items fills up exactly b bins, then there
is at least a set of k bins (1 ≤ k ≤ b) which must contain at least k en/bf+min(k, n− en/bf b)
items. This result offers a practical alternative for improving a given lower bound L(.) in the
following way. Given a BPP instance defined on a set J of n items, let m = L(J) and define for
each k = 1, ...,m − 1, λ(k,m, n) = k en/mf +min(k, n − en/mfm). Let Sm,kn ⊆ J denote the
set of the λ(k,m, n) lightest items in J . If L(Sm,kn ) > k for some k = 1, ...,m− 1, then m+ 1

∗anis.gharbi@ept.rnu.tn. Departement of Applied Mathematics, High Institute of Computer Science, 2
Rue Abou Raihane Bayrouni, 2080 Ariana, Tunisia.

†mohamed.haouari@ept.rnu.tn. Combinatorial Optimization Research Group - ROI, Ecole Polytechnique de
Tunisie, BP 743, 2078 La Marsa, Tunisia.

1



is a valid lower bound for J . It is worth noting that a further improvement can be obtained if
all the subsets of J are considered. However, by virtue of the regularity property, the subset of
the l heaviest items clearly dominates any subset of J of cardinality l. Let Sm,kl denote the set
of the λ(k,m, l) lightest items chosen among the l heaviest ones of J (1 ≤ l ≤ n). Clearly, if
L(Sm,kl ) > k for some k = 1, ...,m− 1 and l = 1, ..., n then m+ 1 is a valid lower bound for J.

Based upon these results, an improved lower bound L̄(.) is equal to the minimal value of

m satisfying L(J) ≤ m and L(Sm,kl ) ≤ k for k = 1, ...,m− 1; l = 1, ..., n. A straightforward
computation of L̄(J) (which requiresO(n3) computations of L(.)) consists in computing L(Sm,kl )
for all (k,m, l). However, we prove that the only values of l that have to be considered in the
computation of L̄(.) are those such that l = αm+k, where 1 ≤ α ≤ e(n− k)/mf. Also, we show
that if for given k, m and α, we have L(Sm,kαm+k) ≤ k, then α has not to be considered for larger
values ofm. Similarly, if for given k andm, we have L(Sm,kαm+k) ≤ k for all 1 ≤ α ≤ e(n− k)/mf ,
then k has not to be considered for larger values ofm. The above results yield onlyO(n) required
computations of L(.).

3 Preliminary computational results

Two classes of instances were randomly generated in a similar way as the hardest instances
described in [2] and [1], respectively. We compared lower bounds from the literature (namely

the trivial lower bound L1 = ( j∈J wj)/C , the lower bound L2 of Martello and Toth [4], and

the lower bound L
(20)
∗ of Fekete and Schepers [2]) to their improved versions. We observed that

the improved bounds often strictly dominate the original ones. More interestingly, although the
bounding procedure of Fekete and Schepers is known to perform remarkably well, the proposed
procedure was able to yield even tighter bounds in 28 out of 700 instances of Class 1, and 173
out of 400 instances of Class 2. Also, even when the original bound is rather poor, the improved
one often equals the best one. For instance, we observed that the trivial lower bound L1 yields
a remarkably tight improved lower bound which was found equal to the best one for about 94%
of the generated instances. Finally, the improved lower bounds require very short computing
times. For n = 1000, the largest average computation time was only 0.04 sec. on a Pentium IV
2.8 GHz personal computer.
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