
Solving the Two-Stage Hybrid Flow Shop Problem by a

Branch-and-bound Algorithm

Mohamed Haouari1 - Lotfi Hidri1 - Anis Gharbi1,2

1 Combinatorial Optimization Research Group - ROI, Ecole Polytechnique de Tunisie, BP 743,

2078 La Marsa, Tunisia.
2 Department of Applied Mathematics, Institut Supérieur d’Informatique, Ariana, Tunisia.

1 Introduction

A set J of n jobs has to be scheduled in a manufacturing system with two stages (machining centers) Z1

and Z2. Each stage Zi (i = 1, 2) has mi identical machines in parallel (with max(m1, m2) ≥ 2). Each job
j (j = 1, ..., n) has to be processed first for aj units of time by one machine of Z1, and then for bj units
of time by one machine of Z2. These operations must be processed without preemption. Moreover, a job
cannot be processed by more than one machine at the same time and each machine processes at most one
job at one time. All processing times are assumed to be deterministic and integer and all machines are ready
from time zero onwards. The objective is to construct a schedule for which the maximum completion time,
or makespan, is minimized. This problem, denoted by F2(P) ||Cmax, is strongly NP-hard.

The theoretical and practical importance of the F2(P) ||Cmax motivated several researchers to investigate
it. In particular, most efforts have been focused on developing and analyzing heuristic algorithms with worst-
case error bounds. On contrast, the literature dealing with the exact solution of F2(P) ||Cmax is surprisingly
scant. Indeed, the only relevant work that we are aware is the branch-and-bound algorithm described by
Gupta et al. [4] who addressed the particular case where the second stage contains a single machine and
presented computational tests with up to 250 jobs. In addition, several authors developed exact procedures
for the multiple-stage hybrid flow shop problem. In particular, Néron and his colleagues [6] describe an exact
approach which outperforms all previous ones and report the optimal solution of small-sized instances with
up to 15 jobs, 5 stages, and 3 machines in each stage.

In this paper, we present an effective branch-and bound algorithm which has been specifically designed for
solving the F2(P) ||Cmax problem with an arbitrary number of machines in each stage. However, although
our approach could be easily modified to handle the particular case where one of the two stages contains a
single machine, we assume, for the sake of simplicity, that each stage contains at least two parallel machines
(i.e. min(m1,m2) ≥ 2). A distinctive feature of our branch-and-bound is that the evaluation of terminal
nodes of the search tree requires the optimal solution of a P |rj |Cmax. However, although this problem is
known to be intractable, we provide evidence that its hardness doesn’t preclude its effectiveness for lower
bound computation. Other features that are peculiar to our procedure include a branching strategy that
is based on a representation of a F2(P) ||Cmax solution as a permutation of jobs, tight lower and upper
bounding procedures, dominance rules, and procedures for adjusting heads and tails. Our algorithm has
produced proved optimal solutions for a number of randomly generated instances with up to 1000 jobs.

1

2 An overview of the branch-and-bound algorithm

2.1 Problem representation

It is instructive to view the F2(P) ||Cmax in another way: as an identical parallel machine scheduling problem
with a complex optimality criterion. To develop this interpretation, let Σ denote the set of feasible schedules
of stage Z1. Obviously, each σ ∈ Σ induces a well-defined completion time C1

j (σ) for each j ∈ J. For a given
σ ∈ Σ, consider the Pm2 |rj |Cmax that is obtained by setting for all j ∈ J a release date rj = C1

j (σ) and a
processing time pj = bj . Let C̃max(σ) denote its optimal makespan. Clearly, the F2(P) ||Cmax amounts to
finding a schedule σ∗ ∈ Σ satisfying C̃max(σ∗) = minσ∈Σ C̃max(σ).

A schedule σ ∈ Σ could be represented as a permutation of the n jobs. This permutation is simply
obtained by ranking the jobs according to the nondecreasing order of their starting times. Conversely, given
a permutation of the n jobs (σ1, σ2, ..., σn), the starting times of the associated schedule are computed in
O(n) time using the list scheduling rule which successively schedules the jobs σ1, σ2, ..., σn, in that order,
whenever a machine becomes idle. It is noteworthy that Carlier and Néron [2] and Néron et al. [6] proposed
a similar schedule representation but as a permutation of operations rather than jobs.

2.2 Branching scheme

Since each feasible schedule could be represented as a permutation of n jobs, we adopted the following
branching scheme. Each node Nl of level l of the search tree corresponds to a partial permutation (i.e.
schedule) σ(Nl) = (σ1, σ2, ..., σl) of l jobs. Therefore, the corresponding set of unscheduled jobs is J̄(Nl) =
J \ {σ1, σ2, ..., σl}. Obviously, the root node N0 corresponds to the empty permutation. Each node Nl has
n−l =

∣∣J̄(Nl)
∣∣ descendants. Each of these descendants corresponds to a partial permutation (σ1, σ2, ..., σl, j0)

where j0 ∈ J̄(Nl). In this way, a node at level n− 1 corresponds to a well defined schedule of the first stage.
In our branch-and-bound algorithm, we adopted the depth-first strategy.

2.3 Upper bounds

Two heuristics were implemented for delivering an upper bound on the optimal makespan. The first one is
only used at the root node for generating an initial upper bound. It has been designed in the same vein as the
celebrated Shifting Bottleneck Procedure [1]. Basically, it consists in alternatively solving a parallel machine
problem on stage Z1 and on stage Z2 until a termination condition holds. In our implementation, the parallel
machine problems are solved using the branch-and-bound algorithm described in [3]. By interchanging the
roles of stages Z1 and Z2, a second upper bound is computed in a similar way. We take the best of the two
derived solutions. The second heuristic, which is a very fast priority-rule based heuristic, is called at each
node of the search tree.

2.4 Lower bounds

2.4.1 Lower bounds that are computed at the root node

• Let Ci
max (i = 1, 2) denote the optimal makespan of the parallel machine problem obtained by relaxing

the constraint that each machine of stage i can process at most one job at a time. Hence, a valid lower
bound on the optimal makespan of the F2(P) ||Cmax is LB1 = max(C1

max, C
2
max). The computation of

LB1 requires the optimal solution of two NP-hard problems : a Pm1|qj |Cmax and a Pm2|rj |Cmax. In
our implementation, LB1 is obtained as a by-product of the heuristic that is used in the root node.

• Following Haouari and M’Hallah [5], the total idle time in stage Z2 for scheduling a subset S of
jobs is at least equal to I2(S) which corresponds to the minimum sum of completion times, on

2

stage Z1, of the m2 jobs of S whose processing times are the shortest. Clearly, I2(S) can be ob-
tained by applying the Shortest Processing Time-rule. Hence, a valid lower bound is LB2

SPT =

maxS⊆J

{⌈
(I2(S) +

∑
j∈S bj)/m2

⌉}
. By using the symmetry of the hybrid flow shop problem, we

get the lower bound LB1
SPT = maxS⊆J

{⌈
(I1(S) +

∑
j∈S aj)/m1

⌉}
. It is shown that the computation

of LB2 = max(LB1
SPT , LB2

SPT) amounts to solving a longest path problem in a digraph. Therefore,
LB2 can be computed in O(n2 max(m1,m2)) time.

2.4.2 Lower bounds that are computed at non-root nodes

Assume that at a given node N 6= N0 of the search tree, a set JS of jobs have been already scheduled and
define J̄ = J \ JS . Each job j ∈ JS has a well defined completion time on stage Z1 which is denoted by C1j .
Also, each machine Mi (i = 1, ..., m1) of the first stage has an availability time τi on which it becomes ready
for processing jobs from J̄ . We assume that τ1 ≤ τ2 ≤ ... ≤ τm1 .

• Clearly, a valid relaxation is a P |rj |Cmax which is defined on the second stage and where each job j has
a release date rj such that rj = C1j if j ∈ JS and rj = aj+τ1 otherwise. For a given subset S ⊆ J, define

r̄k(S) as the kth smallest release date of S. The value LB3 = maxS⊆J

{⌈
(
∑m2

k=1 r̄k(S) +
∑

j∈S bj)/m2

⌉}

is a valid lower bound on the subproblem corresponding to node N. LB3 can be computed in O(n log m2)
time.

• A relaxation of the hybrid flow shop problem is derived by setting for each job j ∈ J̄ a tail qj = bj .
In this way, we define on stage Z1 a parallel machine problem with machine availability times and
tails (P, NCinc |qj |Cmax). It is worth noting that due to availability times, some machines may not
process any job in any optimal solution. Let UB denote an upper bound on the optimal makespan of the
P, NCinc |qj |Cmax. Gharbi and Haouari [3] prove that the number of machines m that are processing in

an optimal schedule satisfies ml(J̄) ≤ m ≤ mu(J̄), where ml(J̄) =
⌈∑

j∈J̄ aj/(UB − τ1 −minj∈J̄ qj)
⌉

and mu(J̄) is the smallest k (k = 1, ..., m1 − 1) satisfying τk+1 + minj∈J̄(aj + qj) > UB. Assume that
the jobs of J̄ are assigned to exactly m machines of stage Z1, then a valid lower bound is LB4(m) =
maxS⊆J̄

{⌈
(
∑m

i=1 τi +
∑

j∈S aj +
∑m

k=1 q̄k(S))/m
⌉}

where q̄k(S) is defined as the kth smallest tail
of S. Provided that the jobs are sorted according to non decreasing tails, the lower bound LB4 =
minml(J̄)≤m≤mu(J̄) LB4(m) can be computed in O(m1n log m1) time.

2.5 Further enhancements

We extended the dominance rules as well as the so-called Feasibility and Adjustment Procedure (which were
successfully used for the parallel machine problem [3]) to deal with the F2(P) ||Cmax. The latter procedure
aims at adjusting the heads and tails, and checking the feasibility of a nonpreemptive schedule. Also, in
order to take advantage of the symmetry of the F2(P) ||Cmax, we propose a cyclic implementation of our
branch-and-bound algorithm. It consists in iteratively solving the original problem and its symmetric. The
process continues until a solution is proved optimal or there is no improvement of neither the lower nor the
upper bound.

3 Preliminary computational results

We evaluated the performance of our branch-and-bound algorithm on 3 sets of instances. The first set
contains a diversified mix of shop and size configurations. For the second set, the workloads at the two
stages tend to be well balanced while for the third set, the workloads are mostly unbalanced. The number

3

of jobs n is taken equal to 10, 20, 30, 40, 50, 100, 150, 200, 500, 750, and 1000. The algorithm was coded in
C on a Pentium IV 2.8 GHz Personal Computer with 1 GB RAM. A CPU time limit was set equal to 600
seconds.

We found that the proposed algorithm can solve large scale instances within moderate CPU time. Indeed,
it produced proven optimal solutions for 94% of the instances (3290 out of 3500). Most of the unsolved
instances are of very large scale (48% are the 1000-job ones). For n ≤ 500, the average computation time
was no larger than 5 minutes. Furthermore, the average gap of the unsolved instances is strictly less than
0.28% for n ≥ 200.

We observed that the hardest instances are those where the workloads in the two stages are balanced.
Also, the problems get harder as the number of machines increases. On contrary, when the workloads are
unbalanced, the problems are much easier to solve. For this problem class, branching was only required for
very large instances (n ≥ 500). Surprisingly, we found that solving a medium-sized balanced instances (n =
20 or 30) could be more challenging than solving large-sized ones.

References

[1] Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling. Manage-
ment Science 34:391-401.

[2] Carlier J, Néron E (2000) An exact method for solving the multiprocessor flowshop. RAIRO-Operations
Research 34:1-25.

[3] Gharbi A, Haouari M (2005) Optimal Parallel Machines Scheduling with Availability Constraints. Dis-
crete Applied Mathematics, in press.

[4] Gupta JND, Hariri AMA, Potts CN (1997) Scheduling a two-stage hybrid flow shop with parallel machines
at the first stage. Annals of Operations Research 69:171-191.

[5] Haouari M, M’Hallah R (1997) Heuristic algorithms for the two-stage hybrid flowshop problem. Opera-
tions Research Letters 21:43-53.

[6] Néron E, Baptiste Ph, Gupta JND (2001) Solving hybrid flow shop problem using the energetic reasoning
and global operations. Omega 29:501-511.

4

