
CHAPTER 12

Scripts and functions

In the previous chapters you have seen a number of examples of data analysis, which
were mainly performed by using dialog boxes of the various ILWIS operations.

Spatial data analysis can also be performed in ILWIS by typing commands,
calculations or expressions on the Command line of the Main window, or by
combining these in a script.

When using a script, a series of commands, calculations and expressions are
predefined in a list. These are consecutively executed when the script is run.
Furthermore, a script may contain variables, so that the script can be used for
different input maps, tables or values. Scripts can save a lot of time when dealing
with frequently occurring analyses.

The script language is similar to the Command line syntax and we will therefore
have a closer look at the Command line in the first part of this chapter. We will then
start creating scripts with and without variables.

In chapter 5 (attribute data handling) and in chapters 7, 8 and 9, you have been
working with the Command line to perform calculations on tables and maps. Instead
of typing long and similar calculations on the Command line for different input
maps one by one, you can store frequently used calculations as functions, which can
then be used for different maps. The use of functions will be treated in the last part of
this chapter.

Before you can start with the exercises, you should start up ILWIS and change the
subdirectory to C:\ILWIS 3.0 Data\Users Guide\Chapter12 or to the directory
where the data files for this chapter are stored.

ILWIS 3.0 User’s Guide 457

• Double-click the ILWIS icon on the desktop.

• Use the Navigator to go the directory: C:\ILWIS 3.0 Data\Users Guide\
Chapter12.

☞

12.1 Creating a script
In this part you will learn how to create a script. With the help of a script, a complete
GIS or Remote Sensing analysis can be performed automatically. A script may
contain all the commands and expressions that are listed in the ILWIS Help topic
Appendices, ILWIS script language (syntax). These include commands and
expressions for the creation and calculation of data objects, for object management
(e.g. copy or delete), and for display of data objects (open and show). Other scripts
and other Windows applications can also be called from within a script.

The script language is similar to the Command line syntax and we will therefore
have a closer look at the Command line first.

12.1.1 Working from the Command line

Most of the activities that are done via menus can also be done via the Command
line of the Main window located at the top of the Main window, just below the
toolbars.

The Command line can be used for the following activities:
- To perform ILWIS commands: To display, edit or create ILWIS objects, and to

obtain dialog boxes to start an ILWIS operation. You can also use some special
script language for data management: copying and deleting objects, and breaking
dependency links of objects;

- To perform calculations with maps and attribute tables. The calculations with
tables were treated in chapter 5, and the Map Calculation statements were discussed
in chapter 8;

- To perform ILWIS expressions allowing you to perform complete ILWIS operations
directly from the Command line;

- To generate script syntaxes, that can be copied to a script.

! The Command line has a history: use the List button or the Arrow up key to
retrieve previously used expressions and commands. The Escape key can be used
to clear the Command line.
You can also copy and paste text back and forth from the Command line to the
Clipboard with the following keystrokes:
Ctrl+C Copy the selected part to the Clipboard.
Ctrl+V Paste the contents from the Clipboard.

To perform an ILWIS command, you just type it on the Command line. Some
examples of commands are listed in Table 12.1. Since the Command line is case
insensitive, it doesn’t matter if you type them in upper or lowercase. A complete
overview of ILWIS commands can be found in the ILWIS Help topic, Appendices
ILWIS script language (syntax).

ILWIS 3.0 User’s Guide

Scripts and functions

458

You will notice that you get an error message when you type: Open
Geomorphology ↵ .
This is due to the fact that ILWIS doesn’t know which object with the name
Geomorphology should be displayed: a raster map, a vector map, a table, a domain,
etc. You have to use the name of the object and its extension.

The extension .mpr is the extension of raster maps. In Table 12.2, the extensions of
some ILWIS objects are listed.

Scripts and functions

ILWIS 3.0 User’s Guide 459

• Open Help, go to the Appendices and browse through the following topics:
ILWIS commands and expressions: ILWIS commands, ILWIS expres-
sions, ILWIS expressions (alphabetic), Construction of expressions,
ILWIS script language (syntax).

☞

• Type the following command on the Command line: Open ↵
• The Open Object dialog box appears from which you can select any object.

• Select raster map Geomorphology and click OK. The Display Options -
Raster Map dialog box is opened. Click OK. The raster map
Geomorphology is displayed.

• Close the map window.

• Type the following command on the Command line:
Open Geomorphology ↵

☞

Table 12.1: Some commands that can be used on the Command line.

Command Example Description

Open object.ext Open Geomorphology.mpr Opens the Display Options dialog
box for the object or shows the
object immediately (e.g. tables)

Edit object.ext Edit Geomorphology.mpa Opens polygon map
Geomorphology in the Polygon
editor

Copy object.ext objname Copy Cityblocks.mpa Cocha Copies polygon map cityblocks
to a new name

Del object.ext Del temp.mpr Deletes raster map Temp

Md directory Md temp Creates a new directory Temp

Help Help Opens the ILWIS Help

• Type the following command on the Command line:
Open Geomorphology.mpr ↵

• Click OK in the Display Options – Raster Map dialog box.

• Close the map window.

☞

To practice with some commands, expressions and script language, we will now
calculate a landslide risk map. When a unit in the Geomorphology map is classified
as active landslide (AL) or old landslide (OL), we will classify it as landslide in the
new map. The new map Slide will contain 2 classes, Landslide and No
Landslide. We will therefore start with the creation of a new domain containing
these 2 classes.

In the next part of this chapter we will create the same landslide map, but then using
a script.

ILWIS 3.0 User’s Guide

Scripts and functions

460

Table 12.2: File extensions of different ILWIS objects.

Extension Example Description

.mpr Geomorphology.mpr File extension of raster maps.

.mpa Cityblock.mpa File extension of polygon maps.

.mps Contour.mps File extension of segment maps.

.mpp Rainfall.mpp File extension of point maps.

.tbt Cityblock.tbt File extension of tables.

.mpv Cochabamba.mpv File extension of map view.

.mpl Tms.mpl File extension of a map list.

.ioc Bolivia.ioc File extension of an object collection.

.ilo Cochabamba.ilo File extension of a layout.

.his Slope.his File extension of a raster histogram.

.hsa Landuse.hsa File extension of a polygon histogram.

.hss Drainage.hss File extension of a segment histogram.

.hsp Wells.hsp File extension of a point histogram.

.rpr Landuse.rpr File extension of a representation.

• Type the following command on the Command line: Crdom Slide ↵
• The class domain Slide is created, but it still doesn’t contain any items.

• Type the following command on the Command line:
Additemtodomain Slide “Landslide” ↵
Additemtodomain Slide “No Landslide” ↵

• The domain Slide now has two items. Check this by opening the domain.

• Enter the following MapCalc statement:
Slide{dom=Slide}=IFF((Geomorphology=”AL”)OR

(Geomorphology =”OL”),”Landslide”,”No Landslide”) ↵
• Click Show in the Raster Map Definition dialog box and OK in the

Display Options dialog box.

• Inspect the results and close the map window.

☞

12.1.2 Creating and running a script

The exact syntax for the script statements is something you know by heart only after
working a considerable time with ILWIS. There are however several methods that you
can use to create correct expressions for scripts:
- Use the menu and the dialog boxes for a certain operation. Fill in all required

parameters in the dialog box, and click Define. At that moment the expression for
that specific operation is displayed on the Command line. You can then copy the
expression from the Command line into the script. Within the script editor and the
Command line, you can use the following key strokes:

CTRL+C Copy the selected part to the Clipboard.
CTRL+V Paste the contents from the Clipboard.

- The ILWIS log file. ILWIS keeps track of everything you are doing in a so-called
log file. The ILWIS log file is called Ilwis.log and can be found in the Log file
directory that is specified in the Directories part of the Preferences dialog box
(File menu in the Main window). The log file is an ASCII file that you can open
with a text editor. You can copy (part of) the expressions that are stated in the log
file to a script.

In the next exercise we will create a script that when executed creates the same
landslide map as created from the Command line in the previous exercise.

The script that is needed to calculate the landslide map is shown below and as you
can see that language is fairly similar to the Command line syntax. Instead of
typing, you can also copy part of the statements from the Command line or from the
log file into the script. Note that the filenames have changed so that we do not
overwrite the objects of the previous exercise.

Scripts and functions

ILWIS 3.0 User’s Guide 461

• Select Create Script from the File menu of the Main window. The Script
editor (Figure 12.1) is opened.

☞

Figure 12.1: ILWIS Script editor with an example of an ILWIS script.

1
2
3
4
5
6

The line numbers in Figure 12.1 are not forming part of the script. They are only used
here to comment on the various expressions. The script contains the following expres-
sions:
- In line 1, a class domain is created with the name Landslide.
- In lines 2 and 3, two items are added to this domain.
- In line 4, the raster map Landslide is defined which will have one of the two

items, defined in line 2 and 3. The Map Calculation formula uses as input the geo-
morphologic map Geomorphology. The codes “AL” and “OL” stand for “Active
Landslide” and “Old Landslide”.

- In line 5, the map Landslide is calculated. The Calc statement is a typical script
language statement meaning that an object has to be calculated before proceeding
to the next line of the script. This statement is used when the outcome of a calcula-
tion or a statement is needed as input for the next.

- In line 6, the map Landslide is displayed.

The script Landslide is created. Note that the first line starts with Rem. This
indicates that this line contains a remark and will not be executed by ILWIS. To run
the script:

The results of running this script are the map Landslide and the domain
Landslide.

ILWIS 3.0 User’s Guide

Scripts and functions

462

• Type the following lines in the text box of the Script tab:

Rem ILWIS script for calculating a landslide map

Crdom Landslide

Additemtodomain Landslide “Landslide”

Additemtodomain Landslide “No Landslide”

Landslide{dom=Landslide} = IFF ((Geomorphology=“AL”)
OR(Geomorphology=”OL”),”Landslide”,”No Landslide”)

Calc Landslide.mpr

Open Landslide.mpr

• Click the Save button in the Toolbar of the Script editor and save the script
as Landslide.

☞

• Click the Run Script button in the Toolbar of the Script editor. When
you already closed the Script editor, you can select the script in the
Catalog, click it with the right mouse button and select Run… from the con-
text-sensitive menu. You can also type Run Landslide on the Command
line of the Main window.

☞

• Check the contents of the raster map Landslide and the domain
Landslide and close the map window, the domain and the Script editor
afterwards.

☞

12.2 Creating a script with calculations and expressions
When using MapCalc expressions in a script, no special syntax is required: you can
simply type the MapCalc expression as you would type it on the Command line of
the Main window.

The general syntax for MapCalc expressions in scripts is:
Outmap = Expression
Where,
Outmap is the name of the output object.
= is a definition symbol to indicate that a dependent output object is to

be created, when the assignment symbol := is used, an independent
output object is created.

Expression is an expression consisting of an operation name followed by the
parameters required by this operation (between brackets, and separated
by commas), or a MapCalc expression.

For example, to sum maps Map1 and Map2 to create Map3, type in the script:
Map3 = Map1 + Map2

When using TabCalc expressions in a script, it is required that the word TabCalc
and the table name used for the expression are added to the syntax.

The general syntax for TabCalc expressions in scripts is:
TabCalc Tablename Expression
Where,
Tabcalc is to indicate that the following is a table calculation syntax.
Tablename is the name of the table used for the expression.
Expression is the Command line syntax that you would use on the Command

line of a table window to perform table calculations.

For example, to sum columns Col1 and Col2 in table MyTable and to store the
results in column Col3, you can type in a script:

TabCalc MyTable Col3 = Col1 + Col2

You can also perform table calculations on other objects that can be opened as a
table, e.g. histograms, point maps, class representations. Then, specify the extension
(see Table 12.2) of the object after the object name:

TabCalc Objectname.ext Col3 = Col1 + Col2

! When you use long object names for maps or tables, and when the names of
objects start with a digit, or start with or contain a space, or a special character,
then these names must be enclosed in single quotes. The extension should be left
outside the quotes. For more information, see the ILWIS Help topic, How to use
long object names.

Scripts and functions

ILWIS 3.0 User’s Guide 463

12.2.1 Example of a script for Map Calculation
In chapter 8 you have been working with Map Calculation formulas in the analysis of
a simple, hypothetical problem dealing with the calculation of the price of the land in
the Cochabamba region.

Now you will do the same analysis, using a script.

The average land prices per hectare are given in an attribute table linked to the land
use map. However, these average values will either be higher or lower, depending on
a set of criteria:
- 1. The price of the land will be 100% of the average value when located on slopes

of less than 20°, and 70% when located on slopes of more than 20°. Slope informa-
tion is stored in the map Slope.

- 2. The price of the land will be 40% of the average value when it is located on an
active landslide or on an area with high erosion, and 60% when located on an old
landslide. For this criterion we need the geomorphologic map Geomorphology.

When evaluating the combination of criteria we only look at which of the criteria will
lead to the lowest land price.

Please keep in mind that the objective of this exercise is not that you learn about an
application - for that the problem is too hypothetical - but that you learn how to use
Map Calculation formulas in a script. The script looks as follows:

The line numbers in the table do not form part of the script. They are only used here
to comment on the various expressions.

For a better understanding of the script statements it is recommended to repeat the
exercise in section 8.1. Below, only a brief explanation on the script lines is given.

- In lines 1 and 2, the maps Geomorphology and Landuse are rasterized, using the
georeference Cochabamba.

- In line 3, the map Landuse is renumbered, with the values from the column
Landvalue in the attribute table linked to the map Landuse. The land use map is
linked to an attribute table, in which the average land value (per hectare) is stored
for each land use type. Since the average land values are given per hectare, and you

ILWIS 3.0 User’s Guide

Scripts and functions

464

Rem ILWIS Script

1 Geomorphology = MapRasterizePolygon(Geomorphology,Cochabamba.grf)

2 Landuse = MapRasterizePolygon(Landuse,Cochabamba.grf)

3 Landvalue = (Landuse.Landvalue) / 25

4 Landvalue1 = IFF(Slope > 20 , Landvalue * 0.7 , Landvalue)

5 Landvalue2 = IFF(Geomorphology = “OL”, Landvalue * 0.6, IFF
((Geomorphology = “AL”) OR (Geomorphology = “HE”), Landvalue * 0.4,
Landvalue))

6 Landval_combined = MIN(Landvalue1, Landvalue2)

7 Landval_final = IFUNDEF(Geomorphology, Landvalue2, Landval_combined)

are working on maps with a pixel size of 20 meters, you need to divide the land
value by 25 in order to obtain the average value per pixel.

- In line 4, the first criterion is applied: If the slope is more than 20°, then the price
of the land will only be 70% of the average value.

- In line 5, the second criterion is applied: If the pixel is an old landslide, then the
value is only 60% of the average value. If the pixel is on an active landslide or on
an active erosion area, the value is only 40% of the average. The information on
landslides and erosion is stored in the map Geomorphology. Codes are used
instead of the names of the geomorphologic units. The unit “Old Landslide” in
the domain Geomorphology has the code “OL”. If you use codes, the formulas
can be much shorter.

- Now you have generated two maps that contain land values based on one criterion
(Landvalue1 and Landvalue2). What should you do for pixels where more than
one of these criteria occurs? For example for pixels with a slope less than 20°
which are located on an active landslide. The best approach is to take for each pixel
the minimum of the same pixel in one of the two maps. This is done in line 6.

- Since the map Landval_combined occupies a smaller area than the map
Landvalue the formulas will result in undefined values, for those places where
one of the input maps is undefined. This is corrected in line 7.

Since all the expressions in script Landvalue are written with the definition symbol
(=) only the definitions of the maps are stored. The maps are not calculated until you
open them. When you open the last map (Landval_final) all previous maps are
also calculated.

12.2.2 Example of a script for Table Calculation

In section 5.7 you have been practicing with table joining for an urban problem, using
two tables: Cityblock (table linked to the map Cityblock, with information on
the 717 city blocks in the central part of Cochabamba), and District (a table with

Scripts and functions

ILWIS 3.0 User’s Guide 465

• Double-click the script Landvalue in the Catalog. The Script editor is
opened, in which you will see the script statements.

• Run the script by clicking the Run Script button in the Toolbar of the
Script editor.

☞

• Open the map Landval_final. The calculation starts with the first map
that was defined in the script. Have a look at the result and close the map
window and the Script editor.

☞

information on the cadastral districts of the city). In the last part of the exercise you
solved the following problem:

Calculate the total area and the total population for each district. Apart from that,
calculate the percentage cover of residential, commercial and institutional buildings
in each district. Find the relation between the number of schools and the number of
schoolchildren (under 18 years old) for the districts of Cochabamba city. In order to
solve this problem, we needed to know the land use types, the area, the population,
the number of school children, and the number of schools in each district.

The information on areas, land use types and population is available for each city
block in table Cityblock. The information on the number of schools and the
percentage of schoolchildren of the population is known per district and is stored in
table District. Since you know for each city block in which district it is located,
you can use the information from the table Cityblock and bring it into the table
District. However, the table Cityblock contains 717 records and the table
District only 13. So you will have to do an aggregation.

The script for calculating this problem is shown below:

The line numbers in the table are not part of the script. They are only used here to
comment on the various expressions.

ILWIS 3.0 User’s Guide

Scripts and functions

466

Rem ILWIS Script

1 Opentbl Cityblock.tbt

2 Tabcalc Cityblock Areadistrict = ColumnAggregateSum(Area, District, 1)

3 Tabcalc Cityblock Distrlanduse = District + Landuse
4 Tabcalc Cityblock Areadistrlu = ColumnAggregateSum(Area,

Distrlanduse, 1)

5 Tabcalc Cityblock Residential {dom = perc;::1} = IFF(Landuse =
“Residential”, 100 * Areadistrlu / Areadistrict, 0)

6 Tabcalc Cityblock Commercial {dom = perc;::1} = IFF(Landuse =
“Commercial”, 100 * Areadistrlu / Areadistrict, 0)

7 Tabcalc Cityblock Institutional {dom = perc;::1} = IFF(Landuse =
“Institutional”, 100 * Areadistrlu / Areadistrict, 0)

8 Closetbl Cityblock.tbt

9 Rem Open the table District

10 Opentbl District.tbt

11 Tabcalc District Residential = ColumnJoinMax(Cityblocks.tbt,
Residential, District, 1)

12 Tabcalc District Rommercial = ColumnJoinMax(Cityblocks.tbt,
Commercial, District, 1)

13 Tabcalc District Institutional = ColumnJoinMax(Cityblocks.tbt,
Institutional, District, 1)

14 Tabcalc District Population = ColumnJoinSum(Cityblocks.tbt,
Population, District, 1)

15 Tabcalc District Children = Population * Pchildren / 100

16 Tabcalc District Childpschool = Children / Schools

17 Closetbl District.tbt

18 Open District.tbt

- In line 1, table Cityblock will be kept open in memory.

- In line 2, the aggregate function Sum is used to sum up the area per district. The
result is stored in the column Areadistrict of the table Cityblock.

- In line 3, (Distrlanduse = District + Landuse) the two columns Landuse
and District are combined (concatenated) into a new column.

- In line 4, the aggregate function Sum is used to sum the areas of the land use types
per district.

- In lines 5, 6 and 7, the percentage coverage of residential, commercial and institu-
tional areas within each district is calculated. Note that the domain of the output
column is specified: Perc, which is the percentage domain and that the precision
for the values in the output column is set to 1.

- In line 8, the Cityblock table in memory is closed, and in line 10 the District
table will be kept open in memory.

- In lines 11, 12 and 13, the percentage cover values for residential, commercial and
institutional areas within each district as stored in table Cityblock are joined into
table District. The aggregate function is needed, since 1 record of a district from
table District, is linked to many records of the same District in table
Cityblock.

- In line 14, another join operation is performed to join the population data from
table Cityblock, summed up for each district, into table District.

- In line 15, the total population per district is used in combination with the percent-
age of schoolchildren per district to find the number of schoolchildren per district.

- In line 16, the number of children per school is calculated for each district.

- In line 17, table District is closed.

- In line 18, the output table District is displayed.

Scripts and functions

ILWIS 3.0 User’s Guide 467

• Click the ILWIS button in the Toolbar of the Main window to make sure
that all object types are selected.

• Double-click the script Urban in the Catalog. The Script editor is opened,
in which you will see the script language.

• Run the script by clicking the Run Script button in the Toolbar of the
Script editor.

• Have a look at the result and close the table District afterwards.

☞

12.3 Using parameters in a script
In the previous examples you have only looked at scripts that are made for specific
maps or tables. You can also make scripts that are more widely applicable, by
introducing parameters. Any ILWIS object can be represented by parameters in a
script as well as values and strings. Parameters in a script must be written as %1, %2,
%3, …, %9 (see ILWIS Help, How to use parameters in scripts).

In this exercise you will calculate a slope map in percentages and degrees. The script
looks like:

The line numbers in the table are not part of the script. They are only used here to
comment on the various expressions. The script contains the following expressions:

- In line 1, a contour vector map, indicated with parameter %1, is interpolated using
georeference %2 to create a Digital Elevation Model Dem.

- In line 2, the digital elevation model is filtered using a DFDX filter, creating a new
map Dem_dx containing the first derivative in x-direction (df/dx) per pixel.

- In line 3, the digital elevation model is filtered using a DFDY filter, creating a new
map Dem_dy containing the first derivative in y-direction (df/dy) per pixel.

- In line 4, a slope map in percentages %3 is calculated.

- In line 5, a slope map in degrees %4 is calculated.

- In line 6, output map %4 is calculated and therefore all maps created by the script
are calculated.

Note that this script contains four parameters: %1 till %4.

When you run a script with parameters these parameters should be defined either
before or when the script is run. The parameters can be defined in the following
ways:
- In the Script editor you can fill out the Parameters tab. Parameter Name and

Type can be entered here and will later on appear in a Run Script dialog box when
a user runs the script. The user can then select object names for input parameters
and/or type object names for output parameters.

ILWIS 3.0 User’s Guide

Scripts and functions

468

Rem ILWIS Script: for creating a slope map
1 Dem = MapInterpolContour(%1, %2)

2 Dem_dx = MapFilter(Dem, DFDX)

3 Dem_dy = MapFilter(Dem, DFDY)

4 %3.mpr = 100 * HYP(Dem_dx, Dem_dy) / Pixsize(Dem)

5 %4.mpr = RADDEG(ATAN(%3.mpr / 100))

6 Calc %4.mpr

- When the Parameters tab is used, also default values for the input and output
parameters can be filled out in the Default Values tab. This tab is very useful
when you want to test your script or when you directly want to run your script.

- When no parameters are defined on the Parameters tab, you can run the script
from the Command line and specify the input and output objects that should be
used for the parameters after the script name:

Run Scriptname Parameter1 Parameter2 … Parameter9

ILWIS will replace every parameter definition (%1….%9) by the specified parame-
ter.

For this exercise the parameters of Table 12.3 are used.

When run, the script will be interpreted as follows:

We will first run the script from the Command line of the Main window.

We will now enter the parameters in the Parameters tab and run the script from the
Script editor.

Scripts and functions

ILWIS 3.0 User’s Guide 469

Table 12.3: Script parameters.

Parameters for the Slope script

Parameter Name for Run Script dialog box Type Optional default object

%1 Input Contour map Segment Map Contour.mps

%2 Georeference to be used Georeference Cochabamba.grf

%3 Output Slope map in Percentages Filename Slopepct.mpr

%4 Output Slope map in Degrees Filename Slopedgr.mpr

Rem ILWIS Script: for creating a slope map
1 Dem = MapInterpolContour(Contour.mps, Cochabamba.grf)

2 Dem_dx = MapFilter(Dem, DFDX)

3 Dem_dy = MapFilter(Dem, DFDY)

4 Slopepct.mpr = 100 * HYP(Dem_dx, Dem_dy) / Pixsize(Dem)

5 Slopedgr.mpr = RADDEG(ATAN(Slopepct.mpr / 100))

6 Calc Slopedgr.mpr

• Open the script Slope and look at its contents.

• Close the Script editor.

• You can run the script by typing the following expression on the Command
line of the Main window:
Run Slope Contour Cochabamba Slopepct Slopedgr ↵

• Have a look at the resulting maps Slopepct and Slopedgr. Note that the
calculations start when you open the maps.

☞

ILWIS 3.0 User’s Guide

Scripts and functions

470

• Open script Slope and click the Parameters tab. Set the number of param-
eters to 4.

• Enter the parameter Names and Types according to Table 12.3.

• Enter Run Slope Script on the Description line.

• Save the script.

• Run the script by clicking the Run Script button in the Toolbar of the
Script editor.

• The Run Slope Script dialog box now opens. Select the correct input map
and georeference and type for the Output Slope map in Percentage
Slopepct2 and for the Output Slope map in Degrees Slopedgr2.

• Click OK.

• Have a look at the resulting maps Slopepct2 and Slopedgr2.

• Click the Default Values tab. Select the Input Contour map and the
Georeference to be used according to Table 12.3. Type for the Output
Slope map in Percentage Slopepct3 and for the Output Slope map in
Degrees Slopedgr3.

• Save the script.

• Run the script by clicking the Run Script button in the Toolbar of the
Script editor.

• Have a look at the resulting maps Slopepct3 and Slopedgr3. Close the
map windows and the Script editor.

☞

12.4 Running a script from another script
In this example, we will make a new script DensIn which will run the existing script
Density three times, each time using a different map as input.

Script Density calculates the density of landslides within certain units. It reads:

As before, the line numbers are only used to explain the script. In short:
- A cross table is calculated from a variable input map (%1) and raster map Slide.
- In the cross table, the total area of each class is calculated and written into the attribute

table of the variable input map (AreaClass).
- Then, if landslides occur, the total area with landslides is calculated per class, and

written into the attribute table of the variable input map (AreaSlide).
- In the attribute table, the density of landslides is calculated by dividing AreaSlide by

AreaClass.

With script DensIn we can now call script Density and use various input maps:

- In line 1, script Density is executed using map Geology as parameter %1.
- In line 2, script Density is executed using map Slope_classes.
- In line 3, script Density is executed using map Catchment.

Scripts and functions

ILWIS 3.0 User’s Guide 471

Rem Script Density to calculate landslide density
1 s%1 = TableCross(%1,Slide)

2 calc s%1.tbt

3 tabcalc %1 AreaClass = ColumnJoinSum(s%1.tbt,Area,%1)

4 tabcalc s%1 AreaSl = iff(Slide="landslide",Area,0)

5 tabcalc %1 AreaSlide = ColumnJoinSum (s%1.tbt,AreaSl,%1)

6 tabcalc %1 Density {dom=perc} = 100 * AreaSlide/AreaClass

7 calc %1.tbt

• Create a script DensIn and enter the lines as given in the example.

• Save the script and exit the editor.

• In the Catalog, click script DensIn with the right mouse button and choose
Run.

• Have a look at the resulting attribute tables Geology, Slope_classes and
Catchment.

• Close the tables after you have seen the result.

☞

Rem Script DensIn that serves as input for the Density script
1 Run Density Geology

2 Run Density Slope_classes

3 Run Density Catchment

12.5 Special script language
Even though the script language is not intended to be a programming language, but
merely a tool to help you process data, it does have special features that makes it
easier to work with and to give it some extra capabilities. Some examples of the
special script language is given in Table 12.4, a complete overview is given in the
ILWIS Help topic, Appendices ILWIS script language (syntax).

Summary: Scripts

- Scripts are used to automate the operations in ILWIS.

- A script is a list of commands, calculations and expressions.

- With the help of a script, a complete GIS or Remote Sensing analysis can be per-
formed automatically.

- A script may contain all the commands and expressions as listed in the
Appendices, ILWIS commands and expressions section of the ILWIS Help:
opening dialog boxes, MapCalc, TabCalc, performing operations and some other
actions.

- A script consists of an object definition file with extension .isl (ILWIS Script
Language) and a data file with extension .isf (ILWIS Script File).

- A script can be made by copying an expression from the Command line after you
have filled in all required parameters in the dialog box of a certain operation, and
clicked Define. At that moment the expression for that operation is shown on the
Command line. You can copy this expression from the Command line into your
script.

ILWIS 3.0 User’s Guide

Scripts and functions

472

Table 12.4: Some commands that can be used on the Command line.

Command Example Description

Begincomment begincomment All lines of text between the com-

Endcomment
Open Geomorphology.mpr mands begincomment and endcom
endcomment ment are ignored by the script.

Pause seconds Pause 20 Stop the script for a certain amount
of time (seconds).

Message text Message Click to continue Obtain a message box on the screen
with any text; the text can be as long
as you like. After pressing the
OK button in the message box, the
script will continue.

Open -noask object.ext Open -noask Cityblock.mpa Opens the object object.ext with its
default display options

Closeall Closeall Close all ILWIS windows except the
ILWIS Main window.

- A script can also be made by copying parts from the ILWIS log file after you have
executed some operations via dialog boxes. ILWIS keeps track of everything you
are doing in a so-called log file. The ILWIS log file is called Ilwis.log, and you can
find its directory from the Preferences. The .log file can be opened with any text
editor.

- A script can be started from the Script editor, by choosing the Run … command
on the script’s context-sensitive menu in the Catalog or from the Command line
of the Main window by typing: Run Scriptname ↵

- Any ILWIS object can be represented by parameters in a script as well as values
and strings. Parameters in a script must be written as %1, %2, %3, etc. Parameters
have a Name and Type that are entered on the Parameters tab so that a user can
select objects for the parameters in a dialog box when running the script.

- You can also specify default objects for parameters on the Default Values tab.

- Other scripts and other Windows applications can be called from within a script.

- A range of special script language is available to give a script more possibilities.

Scripts and functions

ILWIS 3.0 User’s Guide 473

12.6 Functions
In Chapter 5 you have seen the use of calculation formulas to work with tables, and
in chapters 7 and 8 those to work with maps. As you have seen, there are many
different operators and functions that can be applied on value maps and on class or
ID maps. A complete overview of the operators and functions available in Table
Calculation and in Map Calculation can be found in the ILWIS Help, together with a
series of examples.

In this exercise you will first have a look at some examples of functions that are
already present in the system (pre-programmed functions), before you will practice
with the creation of your own functions (user-defined functions).

System-defined functions

A number of these functions where already treated in chapters 5, 7 and 8. Here, only
some examples of system-defined functions are given. One of the most important
functions is the Conditional IF function.

It means: If a pixel in map Dem (Digital Elevation Model) has a value greater than
4000, then assign the value 10 to this pixel in output map Result1, or else assign a
0.

Random functions

For statistical purposes you might need a map with random values.

For example, if you want to subdivide your map randomly into two groups of pixels,

ILWIS 3.0 User’s Guide

Scripts and functions

474

IFF(a,b,c) If condition a is true, then return the outcome of expression b, or
else (when condition a is not true) return the outcome of expression
c. Mind the double ff in IFF (standing for IF Function).

RND(long) Returns random long integer values in the range [1; 2 billion
(2*109)]; To simulate a die, use this function in the form of:
RND(6).

RND(0) Returns a 0 or 1 at random.

RND() Returns random real values in the range [0;1> , i.e. between 0 and 1,
including 0 but excluding 1.

• Type the following expression on the Command line of the Main window:
Result1 = IFF(Dem > 4000, 10, 0) ↵

• Click Show, evaluate the result and close the map window.

☞

use the following formula:

in which Map1 is a georeferenced value map with value 1 for every pixel. Map1 can
be calculated from any map using the appropriate georeference. Random uses the
same georeference as Map1. The pixels in the output map will randomly get the value
0 or 1. Random functions are very useful for all kinds of statistical testing.

MinMax functions

Using these functions, you can for instance calculate for each pixel the minimum or
maximum value of 2 or 3 input maps; substitute a, b, c with the map names.

User-defined functions

Besides many internal pre-programmed functions, ILWIS gives the user an
opportunity to create new functions. They may be used in all four calculators in

Scripts and functions

ILWIS 3.0 User’s Guide 475

• Type the following expression on the Command line:
Map1 = IFF (Dem = 1, 1, 1) ↵

• The Raster Map Definition dialog box is opened. Select system Domain
Value, and set the Value Range from 0 to 1, and the Precision to 1.0.
Click Show.

• Type the following expression on the Command line of the Main window:
Random = RND(0) * Map1 ↵

☞

• The Raster Map Definition dialog box is opened. Select system Domain
Value, and set the Value Range from 0 to 1, and the Precision to 1.0.
Click Show.

• Examine the results, and then close the map window.

☞

• Type the following expression on the Command line:
Min3 = MIN(Tmb2, Tmb3)↵

• The Raster Map Definition dialog box is opened. Select system Domain
Image and click Show.

• Examine the results, and then close the map window.

☞

MIN(a,b) Calculates the minimum of two expressions a and b.

MIN(a,b,c) Calculates the minimum of three expressions a, b and c.

MAX(a,b) Calculates the maximum of two expressions a and b.

MAX(a,b,c) Calculates the maximum of three expressions a, b and c.

ILWIS: MapCalc, TabCalc, Scripts and the pocket line calculator. Especially when
you need to execute calculations that require a lot of typing work several times, user-
defined functions may be time saving. A user-defined function is an expression that
may contain any combination of operators, functions, maps and columns in tables.

Firstly you will create a simple function and after that a more complex one.

The Function editor appears showing your newly created function. If necessary, you
can edit your function. The different parameters in your function may be names of
maps or table columns, or you use characters (a, b) which you may specify later when
you apply the function.

The function in the Function editor is defined as follows:

The line numbers do not form part of the function. They are only used here to explain
the contents.

-In line 1, the function name is given and the parameters are listed between brackets.
In this case there are two parameters: Value a and Value b. Also the output domain is
given: Value.

-In line 2, the word Begin indicates the beginning of the actual function expression.

-In line 3, the actual function is given. Note that the expression ends with a
semicolon (;).

-In line 4, the end of the function is indicated with the word End.

Now you can use your function on the Command line of the Main window or table
window. Type an expression that starts with an output map name (or column name)
followed by the definition symbol (=), then the name of your function and fill out the
parameters. The parameters, replacing the characters a and b in your function, have to
be entered in brackets separated by commas. The parameter that is filled in first is
taken as the first parameter encountered in your user-defined function.

ILWIS 3.0 User’s Guide

Scripts and functions

476

• Double-click New Function in the Operation-list. The Create Function
dialog box is opened.

• Type for the Function Name: Average_2.

• Type for the Expression: (a + b)/2.

• Type for the Description: Averaging two value maps. Click OK.

☞

1 Function Average_2(Value a, Value b) : Value

2 Begin

3 Return (a+b)/2;

4 End;

You can use this function also on the Command line of a table window to calculate
the average of two value columns.

The following example shows a more complex expression. We will calculate the
direction of slopes and create an aspect map (see chapter 10). An aspect map (slope
direction map) is calculated using the formula:
Aspect = RADDEG(ATAN2(Dx / Dy) + PI)
When you want to use this formula more often it is convenient to put the formula in a
function. You can create the function Aspect which has two variables: Dx and Dy.
Later, when we apply the function, you substitute the Dx and Dy parameters with the
real names of the maps for the horizontal and vertical gradient.

As you can see in the first line of the function definition, ILWIS assumes that PI is
another variable (a map or value). But in fact PI represents here the system-defined
variable. So you should edit the function to remove the variable declaration Value PI.

The correct definition of the function should be:
Function Aspect(Value Dx, Value Dy) : Value

Begin

Return RADDEG(ATAN2(Dx, Dy) + PI);

End;

Scripts and functions

ILWIS 3.0 User’s Guide 477

• Close the Function editor.

• Type the following expression on the Command line:
Average_tmb=Average_2(Tmb2, Tmb3)↵

• The Raster Map Definition dialog box is opened. Select the system
Domain Image and click Show.

• Examine the results in map Average_tmb.

• Close the map window.

☞

• Double-click New Function in the Operation-list. The Create Function
dialog box is opened.

• Type for the Function Name: Aspect.

• Type for the Expression: RADDEG(ATAN2(Dx, Dy) + PI).

• Type the Description: Slope aspect between 0 and 360 degrees.

• Click OK. The Function editor is opened.

☞

• Edit the function so that it looks as above.

• Save the function and close the Function editor.

☞

To apply the function Aspect:

Now you can easily calculate several aspect maps of other areas. You only have to fill
out your new input variables for the function; you have to specify the new Dx and Dy
map names of the other area.

Summary: Functions

- ILWIS contains over 50 different functions that are pre-programmed and that can
be used in Table Calculation, in Map Calculation, Script and in the pocket line cal-
culator.

- Besides many internal pre-programmed functions, ILWIS gives the user an oppor-
tunity to create new functions.

- A user-defined function is an expression, which may contain any combination of
operators, functions, maps and columns.

- User-defined functions are especially useful when you need to execute certain cal-
culations, which require a lot of typing effort on the Command line.

- To apply your function, type an expression on the Command line of the Main
window or table window. Start with an output map name (or column name) fol-
lowed by the definition symbol (=), the name of your function and fill out the func-
tion parameters. The parameters, replacing the characters a, b, c, etc. in your func-
tion, have to be entered in brackets separated by commas. The parameter filled out
first is taken as the first parameter encountered in your user-defined function.

ILWIS 3.0 User’s Guide

Scripts and functions

478

• Type the following expression on the Command line of the Main Window:
Aspect = Aspect(Dem_dx, Dem_dy) ↵

• The Raster Map Definition dialog box is opened. Select system Domain
Value, and set the Value Range from 0 to 360 and the Precision to 1.
Click Show.

• Examine the results in map Aspect and close the map window.

☞

