Skip to main content
User Image

Saad Abdullah AlAhmadi | سعد عبدالله الأحمدي

Professor

Professor in Computer Science - Specialty: Artificial Intelligence (AI), Cybersecurity, and the Internet of Things (IoT)

علوم الحاسب والمعلومات
Building 31 (CCIS Building) - 2nd Floor - Room 2179
publication
Journal Article
2024

RobEns: Robust Ensemble Adversarial Machine Learning Framework for Securing IoT Traffic

adversarial machine learning; intrusion detection; Internet of Things; adversarial attacks; adversar

Recently, Machine Learning (ML)-based solutions have been widely adopted to tackle the wide range of security challenges that have affected the progress of the Internet of Things (IoT) in various domains. Despite the reported promising results, the ML-based Intrusion Detection System (IDS) proved to be vulnerable to adversarial examples, which pose an increasing threat. In fact, attackers employ Adversarial Machine Learning (AML) to cause severe performance degradation and thereby evade detection systems. This promoted the need for reliable defense strategies to handle performance and ensure secure networks. This work introduces RobEns, a robust ensemble framework that aims at: (i) exploiting state-of-the-art ML-based models alongside ensemble models for IDSs in the IoT network; (ii) investigating the impact of evasion AML attacks against the provided models within a black-box scenario; and (iii) evaluating the robustness of the considered models after deploying relevant defense methods. In particular, four typical AML attacks are considered to investigate six ML-based IDSs using three benchmarking datasets. Moreover, multi-class classification scenarios are designed to assess the performance of each attack type. The experiments indicated a drastic drop in detection accuracy for some attempts. To harden the IDS even further, two defense mechanisms were derived from both data-based and model-based methods. Specifically, these methods relied on feature squeezing as well as adversarial training defense strategies. They yielded promising results, enhanced robustness, and maintained standard accuracy in the presence or absence of adversaries. The obtained results proved the efficiency of the proposed framework in robustifying IDS performance within the IoT context. In particular, the accuracy reached 100% for black-box attack scenarios while preserving the accuracy in the absence of attacks as well.

Publication Work Type
Research Article
Publisher Name
Sensors
more of publication
publications

Internet of Things (IoT) networks’ wide range and heterogeneity make them prone to cyberattacks. Most IoT devices have limited resource capabilities (e.g., memory capacity, processing power, and…

2025
Published in:
Sensors
publications

Machine Learning (ML) has been exploited across diverse fields with significant success. However, the deployment of ML models on resource-constrained devices, such as edge devices, has remained…

2025
Published in:
IEEE Access
publications

One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training…

2024
Published in:
Sensors