Skip to main content
User Image

Mohammad Shamsul Ola

Professor

Faculty

كلية العلوم
Research Group of Diabetic Retinopathy and Biochemical Toxicology and Nanobiochemistry; 2A 61, PO Box 2455, Building 5, Department of Biochemistry, College of Science, King Saud University, Riyadh
publication
Journal Article
2019

Molecular basis for increased lactate formation in the Müller glial cells of retina.

KF, Ola MS, LaNoue . 2019

Müller glial cells are highly metabolic active cells that compensate for the high energy demand of retinal neurons. It has been believed that glucose provides the energy needs by the complete oxidation within Müller cells. However, numerous studies indicated that glial cells convert the majority of glucose to lactate, which may serve as an energy source for neurons. It is still not well understood why within glia, glucose is not completely oxidized under aerobic glycolysis conditions. The aspartate glutamate carrier (AGC) is a major component of the malate-aspartate shuttle (MAS) responsible for transporting the reducing equivalent of glycolysis to the mitochondria for the complete oxidation of glucose. Here, we report the absence of AGC within Müller glial cells which impairs the ability to oxidize glucose. We investigated the expression and localization of AGC and its isoforms (aralar and citrin) in the intact rat retina. We also analyzed the expression and regulation of AGC and its metabolic activity within cultured Müller cells (TR-MUL). The results suggest that AGC and its isoforms seem to be neuronal, with no or low expression within Müller cells of the intact retina. The study of cultured Müller cells suggests a very low expression of AGC and a decreased metabolic activity of the carrier especially under cell differentiation conditions due to low serum and hydrocortisone treatments. Thus, these data give a molecular explanation of increased levels of lactate formation due to a lack of AGC in the retina by Müller glial cells.

Publication Work Type
Research article
Volume Number
144
Magazine \ Newspaper
Brain Research Bulletin
Pages
158-163
more of publication
publications

Glucose, the predominant carbohydrate in the human body, initiates nonenzymatic reactions in hyperglycemia, potentially leading to adverse biochemical interactions. This study investigates the…

by Additiya Paramanya, Abeeb Oyesiji Abiodun, Mohammad Shamsul Ola, Ahmad Ali
2024
Published in:
Wiley
publications

Investigations into cholinesterase inhibition have received attention from researchers in recent years for the treatment of Alzheimer’s disease. Cholinesterase enzymes, namely,…

by Sabrina Lekmine, Ouided Benslama, Hichem Tahraoui, Mohammad Shamsul Ola, Aicha Laouani, Kenza Kadi, Antonio Ignacio Martín-García, Ahmad Ali
2024
Published in:
MDPI
publications

Objective

by Archana Chaudhary, Nandani kumari, Manish kumar, Md. Margoob Ahmad, Mohammad Shamsul Ola & Rizwanul Haque
2024
Published in:
Springer