Skip to main content
User Image

مها بنت محمد بن عبدالعزيز اليحيى Maha Al-Yahya

Associate Professor

عضو هيئة تدريس في قسم تقنية المعلومات

علوم الحاسب والمعلومات
مبنى رقم ٦- الدور الأرضي
publication
Journal Article
2019

A Comparative Study of Machine Learning Methods for Genre Identification of Classical Arabic Text

اليحيى, مها . 2019

The purpose of this study is to evaluate the performance of five supervised machine learning methods for the task of automated genre identification of classical Arabic texts using text most frequent words as features. We design an experiment for comparing five machine-learning methods for the genre identification task for classical Arabic text. We set the data and the stylometric features and vary the classification method to evaluate the performance of each method. Of the five machine learning methods tested, we can conclude that Support Vector Machine (SVM) are generally the most effective. The contribution of this work lies in the evaluation of the five machine learning methods for the task of genre identification for classical Arabic text using stylometric features.

Publication Work Type
بحث علمي مصنف ضمن ISI
Volume Number
٦٠
Issue Number
٢
Magazine \ Newspaper
CMC-Computers, Materials & Continua
Pages
421-433
more of publication
publications

Fake news detection (FND) remains a challenge due to its vast and varied sources, especially on social media platforms. While numerous attempts have been made by academia and the industry to…

by Lama Al-Zahrani , Maha Al-Yahya
2024
publications

Authorship attribution (AA) is a field of natural language processing that aims to attribute text to its author. Although the literature includes several studies on Arabic AA in general, applying…

by AlZahrani, F.M.; , Al-Yahya, M.
2023
publications

Abstract: In the domain of law and legal systems, jurisprudence principles (JPs) are considered major sources of legislative reasoning by jurisprudence scholars. Generally accepted JPs are often…

by Nafla AlRumayyan, Maha Al-Yahya
2022