Skip to main content
User Image

Dr Ali Daoud

Professor

Faculty

كلية العلوم
Department of Zoology College of Science King Saud University, Riyadh, Saudi Arabia

Reserpine inhibits DNA repair, cell proliferation, invasion and induces apoptosis in oral carcinogenesis via modulation of TGF-β signaling

Abdula, Arun KumarRamua Daoud Ali SaudAlarifib Mohamed Hussain Syed AbuthakircBakrudeen Ali Ahmed . 2021

Reserpine is a natural indole alkaloid isolated from Rauwolfia serpentina and has potent antioxidant, antimicrobial, and anti-mutagenic properties. Accordingly, this study aimed to investigate the effect of reserpine on DNA repair, cell proliferation, invasion and apoptosis in 7,12-dimethylbenz[a]anthracene(DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Transforming growth factor-β (TGF-β) was found to induce Smad2, 3 and 4 phosphorylation triggering Smad3/Snail mediated DNA repair proteins and Smad2/4 nuclear translocation. In contrast, reserpine inhibits TGF-β dependent Smad2/3/4 phosphorylation, thereby blockage Smad3/ Snail activation and Smad2/4 nuclear translocation. Interruption of these oncogenic signaling pathways leads to downregulating ERCC1, XPF, Ku70, DNA-PKcs, PCNA, cyclin D1, HIF-1α, IL-6, Mcl-1 and stimulates Bax, cytochrome C, Apaf-1, caspase-9, caspase-3 and PARP protein expressions. This study provides therapeutic potential of reserpine in inhibiting DNA repair, cell proliferation, and invasion while simultaneously inducing apoptosis via modulation TGF-β signals. 

Volume Number
264
Magazine \ Newspaper
Life Sciences
Pages
118730
more of publication
publications

Metal nanomaterials such as bismuth oxide nanoparticles (Bi2O3NPs) have been extensively used in cosmetics, dental materials,pulp capping, and biomedical imaging. There is little knowledge about…

by Ali Alamer1 & Daoud Ali2 & Saud Alarifi2 & Abdullah Alkahtane2 & Mohammed AL-Zharani3 & Mohamed M. Abdel-Daim2,4 & Gadah Albasher2 & Rafa Almeer2 & Nouf K. Al-Sultan2 & Abdulaziz Almalik1,5 & Ali H Alhasan1,5 & Saa
2021
publications

Silver nanoparticles (AgNPs) possess properties that are important for industrial and medical applications. This study is aimed to investigate intra-peritoneal toxicity of AgNPs at 26, 52 or 78 mg…

by Saud Alarifi, Daoud Ali, Mohammed A Al Gurabi & Saad Alkahtani
2017
publications

The present work was designed to investigate the effect of palladium nanoparticles (PdNPs) on human skin malignant melanoma (A375) cells, for example, induction of apoptosis, cytotoxicity, and DNA…

by Saud Alarifi, Daoud Ali, Saad Alkahtani, and Rafa S. Almeer
2017