Skip to main content
User Image

Ahmed Sadeq Ahmed Al-fatesh

Professor

Professor

كلية الهندسة
King Saud University, P.O Box-800, Riyadh-11421 Kingdom of Saudi Arabia
publication
Journal Article
2012

Modification of alumina support with TiO2-P25 in CO2 reforming of CH4

Abasaeed, A. H. Fakeeha, A. S.A. Al-Fatesh, A. E. . 2012

Catalyst activity and stability for CO2 reforming of CH4 depends specifically upon the support and the active metal. A side reaction of dry reforming of methane is the decomposition to carbon that covers the Ni particles causing catalyst deactivation. Hence, an appropriate combination of Ni with support is needed to allow for long term stable operation. In this paper, CO2 reforming of CH4 is studied by investigating the effect of addition of TiO2-P25 separately to γ-Al2O3 and α-Al2O3 supports used for nickel based catalyst. The reforming reactions are performed using (CO2:CH4) feed ratio of 1:1 and reaction temperature range of 500–800 °C. Both fresh and used catalysts are characterized by SEM and TGA techniques. It is found when α-Al2O3 support is modified with 20 wt% TiO2-P25, the catalyst activity and stability is enhanced. The conversion rates of CH4 and CO2 without and with 20 wt% TiO2-P25, respectively, are changed from 72.3% to 76.7% and 73.3% to 81.2%, respectively, and, most importantly, carbon formation is reduced from 28.1 to 12.8, respectively. However, when γ-Al2O3 support is modified with TiO2-P25, the catalyst activity is enhanced with simultaneous increase in carbon formation.

Volume Number
18
Magazine \ Newspaper
Journal of Industrial and Engineering Chemistry
Pages
212–217
more of publication
publications

20% iron catalysts supported on combined alumina and silica through different proportions (Al2O3:SiO2:
100:0.00, 90.0:10.0, 80.0:20.0 and 0.0:100.0) were tested for the catalytic…

2019
publications

A novel approach to the in situ regeneration of a spent alumina-supported cobalt–iron
catalyst for catalytic methane decomposition is reported in this work. The spent catalyst was

2018