Second Midterm Exam

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Mark</td>
<td></td>
</tr>
</tbody>
</table>

Instructors: A. Sheta & S. Aldosari

Date: 19/12/1427

Time: 5:45 - 7:15 pm
Answer All Problems (60 points)

Problem I (20 points)

a- For each of the following signals find:

i. The dc components.
ii- The fundamental and the second harmonic frequencies.
iii- The second harmonic components.

\[x_1(t) = \left| \cos \frac{t}{2} \right| \]
b- Find the Fourier series representation of the signal

\[x[n] = 2 + \sin \frac{2\pi n}{3} + 2 \cos 2\pi n \]
Problem II (20 points)

Consider a CT signal with Fourier transform given by \(X(j\omega) = \frac{1}{(j\omega)^2 + 7(j\omega) + 12} \)

(a) Find \(x(t) \).

(b) Let \(y(t) = tx(t) + x(t/3) \). Find \(Y(j\omega) \) (the Fourier transform of \(y(t) \)).

(10 points)

(10 points)
Problem III (20 points)

The following figure shows a DT linear time invariant system where:

\[H_1(e^{j\omega}) = \begin{cases}
1 & |\omega| < \pi/4 \\
0 & \text{otherwise}
\end{cases} \]

\[H_2(e^{j\omega}) = \begin{cases}
1 & \pi/2 < |\omega| < \pi \\
0 & \text{otherwise}
\end{cases} \]

\[X(e^{j\omega}) = |\omega|, \quad -\pi < \omega < \pi \]

(a) Find the odd part of \(x[n] \).
(b) Sketch \(H_1(e^{j\omega}) \), \(H_2(e^{j\omega}) \), and \(X(e^{j\omega}) \).
(c) Find and sketch \(Z_1(e^{j\omega}) \), \(Z_2(e^{j\omega}) \), \(Z_3(e^{j\omega}) \), and \(Y(e^{j\omega}) \).

Note: you MUST clearly label all your plots.