> ')&q` 0n-bjbjqPqP 4:::s
jjjj<$:h@!iV@ \J_ªjC0Ox!:!!P"2J^
UNCERTAINTY PROPAGATION
(1) A flow nozzle is used to measure the flow rate of steam according to the equation
EMBED Equation.3 kg/sec.
where:
P is the pressure differential, in Pa.
Nozzle area A = 0.0492 m2 0.6% 95% confidence level.
Steam density = 50.0 kg/m3 0.8 kg/m3 95% confidence level.
The pressure transducer is used to measure the pressure differential across the nozzle. Eight(8) replicated readings of the pressure transducer in Kilopascal are recorded:
2.0, 2.1, 1.9, 2.0, 2.0, 2.05, 1.95, 2.0 k.Pa.
Calculate:
The differential pressure and its percentage uncertainty using 95% confidence level.
The steam mass flow rate and its percentage uncertainty using 95% confidence level.
(2) Given that the thermocouple time constant = D C /6 h seconds and;
Junction diameter D = 0.002 m 2% (95% confidence level)
Junction specific heat C= 140 3 J/kg oC (95% confidence level)
Junction density = 21450 kg/m3 5% (95% confidence level)
Heat transfer coefficient h = 500 10 W/m2 oC (95% confidence level)
Find the thermometer time constant and its uncertainty.
(3) The hoop stressfor thin-walled cylindrical pressure vessel is given by
EMBED Equation.3
where D is the diameter = 0.4 meter 0.75% (95% confidence level)
t is the wall thickness = 10 0.5 mm (95% confidence level)
The pressure P is measured 6 times by a pressure transducer that has the following specification
Range 0 10 volt
Sensitivity 5 mV / K. Pascal
Nonlinearity and hysteresis 0.1% full scale.
The transducer output in Volts is,
2.525, 2.520, 2.515, 2.505, 2.510, 2.515
(a)Find the mean pressure and its uncertainty
Find t068
4
`
p
G\]^`mortɾuɾɾɾɾɾɾɾɾhbOh1aJ5CJH*\aJ'jh}h1aJ5CJEHU\aJ-jl}\I
h1aJCJUVaJmH nH sH tH jh1aJ5CJU\aJh1aJ5CJ\aJhbOh1aJ5CJ\aJhbOh1aJCJaJh[CJaJh1aJCJaJh[h[5CJ\aJ.04 B `
5HQ
R
S
Bv\
&F]^gd8'
87$8$H$^8gd8'7$8$H$^`gd8']^`gd8'$]a$gd[n-
R
S
U
$26 "469:;<ҸҸҸҸҩ~i)jI
hs h1aJ5CJUV\aJhs h1aJ5CJ\aJ#jhs h1aJ5CJU\aJh#h1aJCJaJh1aJh1aJ5>*CJ\aJhX?h1aJCJH*aJhX?h1aJ5CJ\aJhX?h1aJCJaJh1aJCJ aJ hXnCJaJhbOh1aJCJaJh1aJCJaJ#\P(8^"`"b"d"f"$7$8$H$^a$gdP$7$8$H$^`a$gd[
&F^`gd8'^`gd8'
&F]^gd8'bdp"\"`"f"l"n"""&#(#####"$$$$$$$$$%>%οηοηοηοηηηεηxh8rh1aJ5CJ\aJh1aJh1aJCJH*aJh@"CJaJh1aJh1aJCJaJh[CJaJhXnCJaJUh1aJCJaJh#h1aJCJOJQJaJh#h1aJCJaJ#jhs h1aJ5CJU\aJ'jhs h1aJ5CJEHU\aJ/he hoop stress and its percentage uncertainty.
(4) The density of air is determined from the ideal gas equation P=RT. In a certain measurement
the value of R is known accurately as 287.11 J/kg-K. The pressure and temperature are given
as P=125 0.5 k Pa and T=550.5 0C. Determine nominal value of the density and its uncertainty.
(5) An aluminum rod of diameter d = 15 0.03 mm (95% confidence level) is L = 0.65 m 0.1%
long (95% confidence level). A concentrated mass M is attached to the end of the rod.
The experimental results recorded for this mass (M) are:
10.05, 10, 10.06, 10.02, 10.01, 9.98, 9.99, 10, 9.94, 9.95 kg
A bias limit of 20 gram is estimated by the operator for mass measurements.
The natural frequency n is given by:
n = 3 " EI / M L3 rad /sec
Where ; E is the modulus of elasticity of aluminum
E = 75x 106 kPa. 0.3% (95% confidence level)
I is the area moment of inertia = d4 / 64
Calculate the natural frequency of the system and its percentage uncertainty using 95% confidence
level.
(6) The deflection caused at the mid span of a simply supported beam of length l, width b and
thickness t by a concentrated load W at the centre is given by EMBED Equation.3 . The deflection for a
load of 15 N on a beam of length 1 m 0.005m, width 7mm0.05mm and thickness
4 mm 0.04mm was measured as = 3mm 0.5%. Calculate the nominal value of
the Young s modulus E and its percentage uncertainty.
f"(##$$$d%&&'''((((T)*&*(****+^,,d-f-]^`gd8'7$8$H$^`gd8'>%@%b%d%&&&&&&&&&&&&&&&&&&&&'''z'|'''''''''''ם׀qhh1aJCJH*aJhSh1aJ5CJ H*\aJ hSh1aJ5CJ \aJ hH$h1aJ5CJ H*\aJ hH$h1aJ5CJ \aJ h
h1aJCJaJh1aJ5CJ\aJh%h1aJ5CJ\aJh@"CJaJh1aJCJaJh@"5CJ\aJh8rh1aJ5CJ\aJhPCJaJ&''((
((((:(<((((((((((((((()))@)B)F)ĶĨğđۃۃ۶xfXh8rh1aJ5CJ \aJ "h8rh1aJ5CJ OJQJ\aJ hH$h1aJCJaJh8rh1aJ5CJ\aJhSh1aJ5CJ\aJh1aJCJH*aJh!"h1aJ5CJ\aJhH$h1aJ5CJ\aJh1aJCJaJhSh1aJ5CJH*\aJh1aJ5CJ\aJhSh1aJ5CJ \aJ h1aJCJOJQJaJF)H)R)T)**(***2*****f+h++++++++\,^,,,b-d-f-h-̼̩̚|kdYh1aJh1aJCJaJhqh1aJ!j h~5h1aJCJEHUaJ%j>-I
h1aJCJUVaJnH tH h~5h1aJCJaJjh~5h1aJCJUaJhpth1aJCJaJh[CJaJhXnCJaJh@"CJaJh1aJCJaJhH$h1aJ5CJ\aJh8rh1aJ5CJ \aJ h8rh1aJ5CJ H*\aJ f-h-j-l-n-]^gd@"$^a$gd@"$7$8$H$^a$gd@"h-j-l-n-hh1aJCJaJh1aJh1aJ5>*CJ\aJ21h:p[/ =!"#$%Dd
b
c$A??3"`?2L?y]=gO&o
HkJA\;z71Sjuǅ
蘅٠4
]kDd
lb
c$A??3"`?2hOO5@>%`!hOO5@>% ~ Wxcdd``f2
ĜL0##0KQ*
WYMRcgbR v@=P5<%!@5@_L ĺE:A,a 8+ȝATNA $37X/\!(?71XAkz4u`zOtTByA p
&o&.Xܵ\\Ewob.h
p00@``"b#RpeqIj.:\E.B~`U:yDd
Lb
c$A??3"`?2NS9^:~Ց|M`!NS9^:~Ց|
dexcdd``.a2
ĜL0##0KQ*
WäMRcgbR V6@=P5<%!@5@_L ĺEv1X@6;3)V ZZpc@\7LF]F\XAZ+!|&F3(b~?gܞW@F`H!2blRf`p2&BlZǘ,>`\ ˕>XTvm+U\`*1MႦ .p8.v0oc+KRsePdk)Y`N
!"#$%(+,-/.01DC3456789:;<=>?@ABFEHIJKLMNOPQRSTUVRoot Entry F@h*@Data
WordDocument4:ObjectPool \J_ª__ª_1230798188 F \J_ª \J_ªOle
CompObjfObjInfo "#$&'(*+,
FMicrosoft Equation 3.0DS EquationEquation.39qB0,
'm.
=A*
*P
FMicrosoft Equation 3.0DS EqEquation Native ^_1239348408F \J_ª \J_ªOle
CompObj
fuationEquation.39q8h
h
=PD2t
FMicrosoft Equation 3.0DS EquationEquation.39qObjInfo
Equation Native
T_1226124606F \J_ª \J_ªOle
CompObj
fObjInfoEquation Native i1Table2!MH,
=Wl3
4Ebt3Oh+'0 ,8
Xdp
|UNCERTAINTY PROPAGATIONwww.arabswell.comNormalwww.arabswell.com8Microsoft OfficeSummaryInformation(DocumentSummaryInformation88CompObjqMsoDataStore@h@h Word@J6@^1ª@M@mUªr՜.+,0hp
BEST FORUMm
UNCERTAINTY PROPAGATIONTitle
FMicrosoft Office Word Document
@@@1aJNormalCJ_HaJmH sH tH DADDefault Paragraph FontRiRTable Normal4
l4a(k(No ListH@H8'Balloon TextCJOJQJ^JaJs
:v05HQRS<d85XP
n >
:f18
n
o
p
q
r
u
00000000000 0 00000000 000000000000000 0000000000000000000000000000000000d85
>
u
K00K00K00K00K00K00K00K00K00K00K00K00
I00I00I00I00K00I000
00
00>%'F)h-n-\f"f-n-n-
vqos
:::X+Yu
u
9*urn:schemas-microsoft-com:office:smarttagsplace9*urn:schemas-microsoft-com:office:smarttagsState@125
u
nr&-PS> C n u K
P
1:8
;
u
333333333333333333333v]n =
u
u
k21FPUwdmNrh55^5`OJQJo(hHh
^
`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhuu^u`OJQJ^Jo(hHohEE^E`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHD?D^D`?o(()
^`hH.
L^`LhH.
[[^[`hH.
++^+`hH.
L^`LhH.
^`hH.
^`hH.
kLk^k`LhH.hTT^T`OJQJo(hHh$ $ ^$ `OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohdd^d`OJQJo(hHh44^4`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHkdmN1F N[
1aJ[TqZ|8'P@"Xn[XX#@ds
PP
P@PP @PPP"UnknownGz Times New Roman5Symbol3&z ArialW& MS Reference Sans SerifOF Old English Text MT5&zaTahoma?5 z Courier New;Wingdings"qhaS&bS&bS&rr!24m
m
2qHX)?1aJ2UNCERTAINTY PROPAGATIONwww.arabswell.comwww.arabswell.comMSWordDocWord.Document.89qDocumentLibraryFormDocumentLibraryFormDocumentLibraryForm
This value indicates the number of saves or revisions. The application is responsible for updating this value after each revision.