THE CHRONOLOGY OF THE GHASSULIAN CHALCOLITHIC PERIOD IN THE SOUTHERN LEVANT: NEW 14C DETERMINATIONS FROM TELEILAT GHASSUL, JORDAN

Stephen Bourke¹ • Ewan Lawson² • Jaimie Lovell¹ • Quan Hua² • Ugo Zoppi² • Michael Barbetti³

ABSTRACT. This article reports on ten new accelerator mass spectrometry (AMS) dates from the Chalcolithic period (fifth millennium BC) archaeological type-site of Teleilat Ghassul in Jordan. Early radiocarbon assays from the site proved difficult to integrate with current relative chronological formulations. The ten new AMS dates and follow-up enquiries connected with the early assays suggest that the original dates were up to 500 years too early. A necessary reformulation of regional relative chronologies now views the Ghassul sequence falling between Late Neolithic Jericho and the Beersheban Chalcolithic.

INTRODUCTION

Traditionally, the Jordan Valley Chalcolithic cultures are seen to develop relatively smoothly out of the preceding Late Neolithic around 5000 BC (6100 BP) (Stager 1992). Over the course of an approximately thousand year sequence current radiometric evidence would suggest a series of overlapping but essentially smooth transitions from Early to Late Chalcolithic assemblages around 4500 BC (5700 BP). The latest Chalcolithic strata within the Jordan Valley date to 3900 BC (5100 BP) (Levy 1992; Gilead 1994). This cultural phasing is delimited by radiocarbon determinations from a series of atypical but recognizably Late Neolithic horizons at Wadi Ziqlab 200 (Banning et al. 1996) and Abu Hamid Lower (Lovell et al. 1997), and a comparable suite of earliest EB I dates from North Shuna (Philip, in press) and Tell Magass (Kerner, personal communication). This view of the Jordan Valley Chalcolithic enjoys broad consensus (Joffe and Dessel 1995). The major anomaly was Hennessy’s five (SUA 732–739) very early 14C determinations from the Chalcolithic type site of Teleilat Ghassul (Weinstein 1984; Joffe and Dessel 1995). Joffe and Dessel noted the anomalous early position of Hennessy’s Ghassul dates, but as these were first published without any contextual details, it remained unclear how anomalous they actually were.

EARLY 14C DATES FROM TELEILAT GHASSUL

Before the current assays, 12 14C dates were known from Teleilat Ghassul—one taken from the very early Pontifical Biblical Institute (PBI) excavations (Lee 1973), eight deriving directly from J Basil Hennessy’s University of Sydney excavations (Hennessy 1982; Weinstein 1984), and three taken from standing sections several years after Hennessy’s excavations had ceased (Neef 1990). Whilst Hennessy’s (SUA) assays come from reliable contexts, the PBI (RT) and Groningen (GrN) assays derive from uncertain contexts that can only be very approximately equated with known strata (Table 1, below).

The five Early Chalcolithic dates (1–5 below) are relevant to our immediate concerns. A number of publications have acknowledged Hennessy’s early dates, but generally without comment. Gilead (1988) was first to note the implications for long-term in-situ cultural development, a view Hennessy (1989) subsequently emphasized. Levy (1992) outlined a similar claim for the length of occupation at Shiqmim, a view Perrot (1993) attempted to support for Beersheba, although Gilead (1994) was largely successful in rebutting both claims. A comprehensive synthesis of southern Levantine Chal-
colithic ^{14}C data has recently been published by Joffe and Dessel (1995). Although they position Hennessy’s assays within their “Early Chalcolithic” phase, they noted the anomalous early date of the samples. As it was generally assumed that these samples derived from the earliest (and little-known) horizons at the site (Stager 1992), such readings were not seen as particularly problematic. However, Bourke’s (1997) observation that the early Hennessy assays did not derive from the earliest strata threw their problematic status into high relief. Lovell’s (1999) comprehensive review of all the contexts in question emphasized the need to revisit the early readings. One aim of renewed excavations at Teleilat Ghassul (1994–99) was to explore this problem (Bourke et al. 1995; Bourke et al. 2000). Ten new short-life samples were obtained from strata equivalent to those sampled in Hennessy’s assays and processed at the ANSTO AMS Centre in 1997.

Table 1 Early dates from Teleilat Ghassul

<table>
<thead>
<tr>
<th>Reference</th>
<th>Lab</th>
<th>Date BP</th>
<th>Cal BC</th>
<th>Material</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Weinstein 1984</td>
<td>SUA–734</td>
<td>6370 ± 105</td>
<td>5280</td>
<td>Wood</td>
<td>Early Chalco</td>
</tr>
<tr>
<td>5. Weinstein 1984</td>
<td>SUA–739</td>
<td>6070 ± 130</td>
<td>4950</td>
<td>Wood</td>
<td>Early Chalco</td>
</tr>
<tr>
<td>6. Hennessy 1982</td>
<td>SUA–511a</td>
<td>5507 ± 120</td>
<td>4350</td>
<td>Wood</td>
<td>Late Chalco</td>
</tr>
<tr>
<td>7. Hennessy 1982</td>
<td>SUA–511b</td>
<td>5796 ± 115</td>
<td>4650</td>
<td>Wood</td>
<td>Late Chalco</td>
</tr>
<tr>
<td>8. Hennessy 1982</td>
<td>SUA–511c</td>
<td>5661 ± 120</td>
<td>4480</td>
<td>Wood</td>
<td>Late Chalco</td>
</tr>
<tr>
<td>10. Neef 1990</td>
<td>GrN–15194</td>
<td>5330 ± 25</td>
<td>4190</td>
<td>Wood</td>
<td>Late Chalco</td>
</tr>
<tr>
<td>11. Neef 1990</td>
<td>GrN–15195</td>
<td>5270 ± 100</td>
<td>4060</td>
<td>Wood</td>
<td>Late Chalco</td>
</tr>
<tr>
<td>12. Neef 1990</td>
<td>GrN–15196</td>
<td>5110 ± 90</td>
<td>3940</td>
<td>Dung</td>
<td>Late Chalco</td>
</tr>
</tbody>
</table>

TECHNICAL DATA: PREPARATION AND PROCESSING

A standard AAA (acid/alkali/acid) method of pretreatment was used for all samples (all were charcoal); hot 2M HCl for 2 hr, then hot 2% NaOH for 2 hr, followed by 2M HCl for 2 hr. Pretreated samples were combusted to CO$_2$ using the sealed tube technique. A small portion of this CO$_2$ was collected for the determination of $\delta^{13}\text{C}$ at the University of Wollongong (using a Stable Isotope Ratio Mass Spectrometer), while the remainder was graphitized using the Zn/Fe method. The technical aspects of these processes have been described elsewhere (Hua et al. 2000). The graphite masses were in the range 1.70–2.63 μg carbon, except sample OZD030, which had a mass of 90 μg carbon (see Table 2).
The graphite derived from the samples was loaded into cathodes and measured by AMS using the ANTARES tandem accelerator (Lawson et al. 2000). The $^{14}C/^{13}C$ ratio of each sample was measured relative to the NIST standard of HOxI and sample ^{14}C ages were calculated after correcting for backgrounds (accelerator and chemistry) and isotopic fractionation using $\delta^{13}C$. The results were then converted to calendar ages using INTCAL 98, the most recent data set (Intcal98 1998), and the calibETH calibration program (Niklaus 1992). The cumulative probability distribution was used and the one standard deviation (1σ) range is reported here in Table 2.

DISCUSSION

The new determinations derive from two well separated but equivalent stratigraphic profiles (Areas A and G) at Teleilat Ghassul and both returned equivalent results, which suggest that Hennessy’s Early Chalcolithic dates (SUA 732–739) were as much as ±500 years too early. The SUA Ghassul dates were measured in 1977, several years before a non-systematic error was discovered by the laboratory. The error was probably due to non-uniformities in the shape of the hand made glass vials used for measurements in one of the liquid scintillation counters and revisions of up to several hundred years proved necessary for samples measured between December 1978 and November 1980 (Temple and Barbetti 1981). For the Teleilat Ghassul samples it was not possible to calculate appropriate corrections due to vial changes made between 1977 and 1979, but the error from this source could be up to ±400 years.

CULTURE SEQUENCING AND RELATIVE CHRONOLOGY

The broad assemblage sequencing provided by the new ^{14}C dates allow us to suggest several modifications to the accepted relative chronological placement of problematic assemblages, particularly the basal Hennessy H-I ‘Neolithic’ assemblages from Ghassul. The new dates go some way towards...
explaining the lack of parallels between the geographically proximate Jericho Late Neolithic and early Ghassulian assemblages (Hennessy 1989) as it now seems probable that Ghassul was not occupied during the Jericho Late Neolithic. Recent study of the basal levels at Abu Hamid (Lovell et al. 1997) suggests that this assemblage contains elements contemporary with Late Neolithic Jericho, and similarities with both the Ghrubba (Mellaart 1956) and Beth Shan (Fitzgerald 1935) assemblages (Lovell 1999). Also, 14C data (Lovell 1999) suggests that the Abu Hamid “Early” levels preceede the basal (Hennessy H-I) levels at Ghassul. The Abu Hamid “Middle” levels would seem to be broadly contemporary with the “pre-Ghassulian” Early Chalcolithic (Hennessy G-E) phases at Teleilat Ghassul.
CONCLUSION

The new AMS dates from Teleilat Ghassul clarify our understanding of both the origins and cultural contemporaries of the various phases of the Ghassul Chalcolithic sequence. It is likely that the earliest occupation at Ghassul postdates Neolithic exemplars and that significant occupation at Ghassul had ended by the fluruit of the Beersheban Chalcolithic (Joffe and Dessel 1995). These possibilities have revolutionary significance for our understanding of the development of Chalcolithic culture in the southern Levant.

ACKNOWLEDGMENTS

The ten new AMS dates were processed under AINSE Grant 97/021. The authors would like to thank AINSE for this grant, and all members of the AMS dating facility at ANSTO (Lucas Heights, Sydney) for their assistance in the preparation of the new dates. We also thank Emeritus Professor J Basil Hennessy (Department of Archaeology, University of Sydney) for a very fruitful discussion on the early Sydney University excavations at Teleilat Ghassul.

REFERENCES

