9. Palaeolithic Implements from the Rub’ al Khali

Henry Field

Stable URL: http://links.jstor.org/sici?sici=0025-1496%28196101%291%3A61%3C22%3A9PIFTR%3E2.0.CO%3B2-4

Man is currently published by Royal Anthropological Institute of Great Britain and Ireland.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/rai.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
Triangular picks. The same idea of using the weight of a triangular tool held in the hand to produce maximum force is behind the shape of the implements here called 'triangular picks' (figs. 3 and 4). They differ from the hand adzes in being flaked longer than the other. The long end is the working end, terminating (in complete specimens) in a point which is often worn smooth. The other end is often obliquely truncated (fig. 3b). It may have been used hammer fashion, but the truncation is not always present. The illustrations are self-explanatory. The sizes of large and small examples are as follows:

<table>
<thead>
<tr>
<th>Site</th>
<th>Length, mm</th>
<th>Height, mm</th>
<th>Width, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gáldar, No. 136</td>
<td>288</td>
<td>104</td>
<td>70</td>
</tr>
<tr>
<td>Gáldar, No. 137</td>
<td>170</td>
<td>101</td>
<td>86</td>
</tr>
</tbody>
</table>

The great interest of the hand adzes and triangular picks lies in the fact that nothing resembling them is known from the European Palaeolithic or Neolithic. They may have been developed locally in Gran Canaria. On the other hand, since they appear associated with the red brunted pottery of that island, which is a late-comer and probably has African connexions, it would be interesting to know whether similar tools are known from North or West Africa.

A series of 65 palaeolithic quartzite and flint handaxes and cleavers was found in March, 1960, by Edward Francis in the Southern Tuwayq Quadrangle, Saudi Arabia. The locality, known as Nuhaydayn al-Qawnasah (lat. 20° 27' N. and long. 46° 33' E.), stands in an area called Al-Qawnasat ibn Ghudayyan. This area lies about 65 miles east of As-Sulayyi.

![Image of triangular pick from one of the caves at Gáldar, Gran Canaria](image)

Fig. 3. Triangular pick from one of the caves at Gáldar, Gran Canaria

Two side views of No. 136 (Museo Canario), (b) showing the oblique truncation of one end. Length 28·8 centimetres

![Image of further views of triangular pick No. 136](image)

Fig. 4. Further views of triangular pick No. 136

Side view, like fig. 3, and cross-section. For size see text

![Image of lower Palaeolithic implements from the Rub' al Khali](image)

Fig. 1. Lower Palaeolithic implements from the Rub' al Khali

Photograph: Don Hohn, 1960
In fig. 1 the largest specimen (14×0.5×7.5×3.0 cm.) indicates a powerful user. The quality of the quartzite in the smaller bands or cleavers is fine-grained. The smaller ovates are rolled and show evidence of eolian action. The flints are medium dark brown to mahogany in colour and reveal marked desert varnish and deep patina. This is the first Lower Palaeolithic site in Saudi Arabia. However, a large handaxe from Duwdam is described by Cornwall in 1946.

In three localities, extending for almost 30 miles and lying south-east and east of Nuhaydah al-Qawnasah, flint and quartzite arrowheads were found on the surface of low mounds standing 500 feet above sea level. The westernmost site is in the centre of a sandy ridge known as 'Urur-ar-Rumaylah; the other two stand close together on the northern fringe of a sandy area (elevation 450 feet) north of the 'Irq Abu Faqar.

Attention must be called to the finely grained quartzite spearpoints (24×0.5×7.5×0.75 cm.) with long, wide pressure flakes on one side found east of As-Sulayil (lat. 26° 3' N. and long. 46° 13' E.) by Don Holm of Aramco during October, 1949. This site lies south-west of Al 'Ubaylah midway between As-Sulayil and Nuhaydah al-Qawnasah.

Another archaeological surface site, yielding rather poor-quality artifacts of 'neolithic' or later periods, was located recently in the eastern Rub' al Khali at ST-17 camp (lat. 19° 41' N. and long. 54° 2E.). Fragments of stone bowls or mortars and a piece of possible meteorite were found west of this Aramco camp.

These new discoveries supplement previous finds in the Rub' al Khali, but now we know that the palaeolithic hunters roamed this great area.

Lower Palaeolithic implements have also been found in Sinai, Israel, Jordan, Syria, Lebanon, Anatolia, Iraq, Iran and the Caucasus. Presumably there were contemporaneous cultural contacts between the peoples of the Arabian Peninsula and dwellers in the Horn of Africa extending into East and South Africa, north-west into the Nile Valley, north to Anatolia and north-east into Iraq.

This new palaeolithic discovery is of the greatest significance and forms an important link in the chain of Stone Age sites now being plotted on the map of South-Western Asia.

Sir,—I feel that some of the musical evidence in the Revd. A. M. Jones's recent article "Indonesia and Africa: The Xylophone as a Culture-Indicator" ought to be commented on; the other non-musical evidence, convincing as it is, is not essential to his theme.

Firstly, it must be remembered that we are dealing with peoples most of whom are, musically, extremely sensitive and picturesque, and able to reproduce at a distance not only the degrees of a scale but also its exact pitch to an extraordinary degree of accuracy. Such peoples as the Chopi, when they leave their homes for the mines, do not normally take their xylophones with them; they make them on the mines, and with nothing more than memory, or 'perfect pitch,' they tune them to within one vibration per second of those at home. Others are equally fastidious in the precise tuning of their instruments. Jones's main thesis, that Siamese-Indonesian pelog and slendro tunings are 'the same' as African tunings, is not borne out by the figures which he quotes himself, some of which differ from each other by such relatively large amounts as 74 cents, or 4 of a tempered semitone. To any of the musicians involved, the other scales would quite definitely feel 'out of tune,' and as such, it is doubtful whether they can immediately be considered as 'the same.' Jones's theory depends on the supposed colonists, and the Africans themselves, having a particularly sensitive ear for pitch, yet the differences in the scales are easily appreciable by any musical ear. They make the whole scale sound different. Jones himself explains that the 'makers had no scientific instruments by which to regulate their tuning,' thus indicating that the choice of scale lies in the ear alone.

Throughout there is the assumption that the African normally uses 'nature's own scale,' i.e. a Western scale, one whose octave has seven intervals containing five whole tones and two semitones, and that anything which differs from that is automatically unnatural or artificial and must have been 'influenced' from somewhere else. This is starting from the wrong premise. Measurement of a large number of African scales, such as has been made by the International Library of African Music, shows that there are a myriad of different scales in common use among Africans, of which few approach our diatonic major scale, either in mood or in the exact tuning. One of the main reasons for this is that only approximately 40 per cent. of African tribes use heptatonic scales at all, the other 60 per cent. using one-third hexatonic and two-thirds pentatonic. (And there are a few border tribes which use more than one type of scale. The figures are from the ILAM's measurements of about 80 tribes in the area south of the Sudan.) However, anyone who regularly listens to any type of African music will tell you that it is all too easy to approximate one's ear to the notes which one hears, imagining them to be those of our own scale. It is only when one comes to playing transcriptions of them on our stave, on a piano, or some such