Geodesic vector fields and Eikonal equation on a Riemannian manifold
Khan, Sharief Deshmukh, Viqar A. . 2019
In this paper, we study the impact of geodesic vector fields (vector fields whose trajectories are
geodesics) on the geometry of a Riemannian manifold. Since, Killing vector fields of constant lengths on a Riemannian manifold are geodesic vector fields, leads to the question of finding sufficient conditions for a geodesic vector field to be Killing. In this paper, we show that a lower bound on the Ricci curvature of the Riemannian manifold in the direction of geodesic vector field gives a sufficient condition for the geodesic vector field to be Killing. Also, we use a geodesic vector field on a 3-dimensional complete simply connected Riemannian manifold to find sufficient conditions to be isometric to a 3-sphere. We find a characterization of an Einstein manifold using a Killing vector field. Finally, it has been observed that a major source of geodesic vector fields is provided by solutions of Eikonal equations on a Riemannian manifold and we obtain a characterization of the Euclidean space using an Eikonal equation.
We aim to examine the influence of the existence of a nonzero eigenvector z of the de-Rham
operator G on a k-dimensional Riemannian manifold (Nk, g). If the vector z annihilates the de-Rham…
The Fischer-Marsden conjecture asserts that an n-dimensional compact manifold admitting a nontrivial solution of the so-called Fischer-Marsden differential equation is necessarily an Einstein…
We use a nontrivial concircular vector field u on the unit sphere Sn+1 in studying
geometry of its hypersurfaces. An orientable hypersurface M of the unit sphere Sn+1
naturally…