Name of Student: **Number of Student:**

Name of Staff Member: TIME: - 90 MINUTES

FIRST MIDTERM EXAMINATION THERMAL ENGINEERING FOR INDUSTRAIL ENGINEERING STUDENTS **ME-329**

OI.	EST	ION	J (1)

1- In thermodynamics,	a fixed quantity of mass	selected for the purpo	ose of study is called a:
		~:	

A) system C) open system **D**) control volume B) closed system

2- A specific property is also:

A) an extensive property C) an amount of mass dependent property

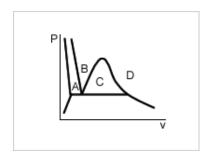
B) the product of two extensive properties **D**) an intensive proper

3- In order for a system to be in thermal equilibrium, which of the following properties must be the same throughout the system?

A) mass C) temperature **B**) pressure **D**) volume

4- The interaction that occurs between a system and its surroundings as the system executes a process, which is the result of the system being at a temperature different from the surroundings, is:

A) Mass transfer C) Work transfer B) Heat transfer **D**) None of these


5- Which one is NOT part of the total energy of a system?

A) Sensible energy C) Work

B) Chemical energy **D**) Thermal energy

6- In which region of the property diagram below is liquid-vapor mixture state located?

C)C A) A **B**) B D)D

7- Air ($c_p = 1.005 \text{ kJ/kg-k}$) is heated from 27°C to 327°C. How much does the specific internal energy of the air change as a result of this heating?

A) 301.5 kJ/kg decrease C) 215.4 kJ/kg decrease D) 215.4 kJ/kg increase B) 301.5 kJ/kg increase

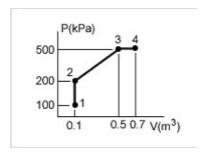
8- Oxygen (M = 32 kg/kg-mol) at 200 kPa, 27°C is contained in a piston-cylinder device arranged to maintain a constant pressure. How much work is produced by this system when it is heated to 227°C?

C) 37.1 kJ/kg \mathbf{A}) 0 kJ/kg **B**) 11.2 kJ/kg **D**) 52.0 kJ/kg

9- Air at 1 MPa, 27° C is contained in a piston-cylinder device that is arranged to maintain a constant pressure. How much heat is required to raise the temperature of this air to 527° C? ($C_p=1.05 \text{ kJ/kg K}$)

A) 180 KJ/kg

C) 520 KJ/kg


B) 370 KJ/kg

D) 1040 KJ/kg

10- A closed system undergoes the series of quasi-equilibrium processes shown here. The work done is:

A) 40 kJ

- C) 240 kJ
- **B**) 140 kJ
- **D**) 340 kJ

11- Air is compressed in an insulated piston-cylinder device. Using constant specific heats, (C_p =1.05 kJ/kg K, R=0.287 kJ/kg K). The amount of work required to compress this air from 100 kPa, 27°C to 2 MPa, 706°C is:

A)
$$W_{12,in} = 418 \text{ kJ/kg}$$

C)
$$W_{12,in} = 721 \text{ kJ/kg}$$

B)
$$W_{12,in} = 518 \text{ kJ/kg}$$

D)
$$W_{12,in} = 1030 \text{ kJ/kg}$$

(10 marks)

QUESTION (2)

Complete the table

T,°C	P,kPa	v,m ³ /kg	u,kJ/kg	Fluid	Quality, x
?	400	?	1825	water	?
220	?	?	?	water	1
110	?	?	?	R-134a	0.5
?	4000	?	3650	R-134a	?

(5 marks)

QUESTION (3)

A 20m³ tank contains nitrogen at 25°C and 800 kPa. Some nitrogen escapes the tank through a leakage. The leakage is stopped. The final temperature and pressure of the nitrogen in the tank is 20°C and 600 kPa respectively.

- (1) The initial mass of the nitrogen is -----kg
- (2) The final mass of the nitrogen is -----kg
- (3)The mass of nitrogen that leaked is -----kg.

(5 marks)

QUESTION (4)

Fill in the blanks. (1 mark each)

- (a) The vacuum gage on a tank reads 35 kPa at a location where barometer reads 760 mm of mercury. The absolute pressure in the tank is ----kPa.
- (b) A 800 L rigid tank contains 10 kg of oxygen at 25°C. The pressure in the tank is ------kPa.
- (c) A fluid in a rigid tank having an internal energy of 800 kJ is stirred by a paddle wheel doing 100 kJ of work. The tank looses 500 kJ of heat to the surroundings. The change in the internal energy is-------
- (d) A tank contains a gas at 100 kPa. It is heated so that the temperature changes by 10°C. The corresponding change in Kelvin scale is ------.
- (e) The weight of the air of density 1.16 kg/m³ contained in a room whose dimensions are 6mx6mx8m is------.
- (f) A rigid tank contains 10 kg of air at 200 kPa and 27°C. The air is heated until its pressure doubles. The volume of the tank is-----and the amount of heat supplied to the air is------
- (g) 5 kg of hydrogen are heated from 400 K to 1200 K. the change in internal energy of hydrogen is -----kJ and change in enthalpy is-----kJ.
- (i) Air having density of 2.21 kg/m³ enters a nozzle steadily at 30 m/s. The inlet area of the nozzle is 80 cm². The mass flow rate of air is ------.
- (j) A piston cylinder contains 10 kg of air. It is heated by an electrical heater, placed outside it, that passes 5 Amperes of current for 5 minutes from a source of 120 Volts. What types of energy ii transferred and by how much?