Answer of the final exam M-203 (Dr Borhen)
Question 1

(a) Determine whether the following sequence {v/n?-+mn—n} converges or diverges
and if it converges find its limit.
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(c) Find the interval of convergence and radius of convergence of the power series
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For convergence [zt —4| <1< -1<zx—-4<1<3<z<5 x€(3,5).

At x = 3, we have Y (—=1)" (n+1))2 which is convergent.

At 2 =5, we have Y (— )” AN Gz Which is convergent (absolutely convergent).

Hence the interval of convergent is [3,5] and radius R = 252 = 1.
Question 2
(a) Find Maclaurin’s series for the function f(z) =e

show that cosh(z) =1+ ”é—? + ﬁ—? +....

T and use this result to

As f(x) = e = f'(x) = f'(x) = ... = f™(x) = .. then f(0) =1 = f/(0) = f"(0) = ... =
f(0) = ... Hence we have
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(b) Evaluate the integral / / Mdmdy.
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(c) Let R be the triangle with vertices (0,0),(0,1) and (1,1). Find the surface
area under the graph of z = 3z +y? and over the region R.



We put z = f(z,y) = 3z + y>. We have f,(z,y) = 3 and f,(z,y) = 2y. The surface area is
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Question 3

(a) Find the mass and centre of mass of the solid Q bounded by the graph of z =
4 — 22 —y? and the zy-plane with a constant density J =1.

The mass m of the solid is:
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By symmetry we have T =% = 0. We find Z by the formula zZ = % with
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Soz= 6(3;5/3)” . Hence the centre of mass of the solid Q has the coordinates (O, 0, %)
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(b) Evaluate the integral / / / Va2 +y? + z2dzdydr by changing
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it to spherical coordinates.
Using spherical coordinates, we get
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(c) Find the work done by the force ﬁ(w,y,z) = —%xi —
object along the curve C: x =cost, y=sint, z=1, 0
The work done W of the force along the curve is

yﬂ'—i— %]_f’ if it moves an
< 3.
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w = / M(x,y)dx + N(z,y)dy + P(x,y)dz = / —ixdx — fydy + Zdz
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Question 4

(a) Use Green’s theorem to evaluate the line integral fc m2y2dx+(x2—y2)dy where
C is the boundary of the square with vertices (0,0),(1,0),(1,1), and (0,1).
We have w(m y) = 2yz? and &Y (z,y) = 22. By Green’s theorem
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(b) Use Divergence theorem to calculate the flux [ [ F.iidS of the vector field
ﬁ(x, Y,z) = 2237 + 237 + 223k through the sphere z? + 92 + 22 = 4.
Here we put M(x,y) = 223, N(x,y) = 2y and P(z,y) = 223. We have:
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(c) Use Stoke’s theorem to evaluate §, F.dF, where F(z,y,2) = —y%i +2j +ak, C
is the boundary of the surface S bounded by the plane 2x + 2y + z = 6 and the

coordinate planes.
By Stoke’s Theorem, we have:
7{ F.dr = / / (curl F).@idS
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= i(-1) - j) + k(2y) = —i — ] +2yk = M(2,y)i + N(z,y)j + P(z,y)k.

So M(z,y) = —1,N(z,y) = —1 and P(z,y) = 2y. As the surface S is bounded, we can
represent S as graph of z = g(z,y) with ( z,y) =6 —2x —2y on R = {(x,y),O <z <
3—9,0 <y <3} So we have g,(z,y) = ( y) = —2 and also g, = g—z(sc,y) =-2. Tt

follows
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