CHAPTER 2

SISO Linear System Analysis

4. Analysis of first order systems

A First order system is that whose output is modeled by a first order differential equation.

(1) first order lag (self-regulating)

\[
\begin{align*}
\frac{a_0}{a_1} \frac{dy}{dt} + a_1 y &= b u(t) \\
\frac{a_0}{a_1} \frac{dy}{dt} &= \frac{b}{a_1} u(t) \\
\tau \frac{dy}{dt} &= k_p u(t)
\end{align*}
\]

where \(\tau = \frac{a_0}{a_1} \); \(k_p = \frac{b}{a_1} \)

Taking Laplace transform with all variables are in deviation form we get:

\[
y(s) = \frac{k_p}{\tau s + 1} u(s)
\]

The term, \(\tau \) (time constant) and \(k_p \) (static gain) characterize the first order system.
Time constant: characterize the speed of response of a first-order system. It is a measure of the time necessary for a process to adjust to a change in the input.

Static gain: characterize the sensitivity of the output to the input signal.

Dynamic response:
The dynamic response for a step change in u of magnitude of a: $u(s) = a/s$

$$y(t) = k_p a (1 - e^{-t/\tau})$$

The transient response for step change is shown in Figure (2).

![Figure 1: Response of a first-order lag system to step change in the input](image)

Dynamic characteristics:
- For a step change in the input, the process reaches a new steady state.
- The ultimate value of the output is $k_p a$, which can be found from the last Equation by setting $t \rightarrow \infty$
- The time constant, τ can be found by setting $t = \tau$ in the last equation which gives $y = 0.632 k_p a$. Then from Figure2, the time needed for y to reach 0.632 $k_p a$ is τ.
- The smaller the value of τ, the steeper is the initial response of the output.
- The larger static gain of a process, the larger steady state value of its output for the same input change.
Figure 2: Effect of static gain, time constant on the response of first-order lag system

(2) Pure capacitive system (integrator)

\[a_0 \frac{dy}{dt} = bu(t) \]

Example: Liquid storage tank with **fixed outlet flow**

\[Ah(t) = F_i(t) - F \]

\[h(s) = \frac{1}{As} F_i(s) - \frac{1}{As} F; \quad \Rightarrow \quad k_p = 1/A \]

\[y(s) = \frac{k_p}{s} u(s) \]

Dynamic response:
For a step change in \(u \) of magnitude of \(a \): \(u(s) = a/s \)

\[y(s) = \frac{k_p a}{s^2} \]

which have the following time response:

\[y(t) = k_p at \]

The transient response looks like this:
• Apparently, the ultimate value for the output is not achievable, \(y \rightarrow \infty \) as \(t \rightarrow \infty \).

• A pure capacitive process causes serious control problem because it cannot balance itself.

• For small change in the input, the output grows continuously. This attribute knows as non-self-regulating (integrator) process.

5. Analysis of second order system

A second order system is that whose output is modeled by a second order differential equation.

\[
a_0 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_2 y = bu(t)
\]

\[
a_0 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + y = \frac{b}{a_2}u(t)
\]

\[
\tau^2 \frac{d^2 y}{dt^2} + 2\tau\zeta \frac{dy}{dt} + y = k_p u(t)
\]

\[
y(s) = \frac{k_p}{\tau^2 s^2 + 2\tau\zeta s + 1} u(s)
\]

\(\tau \) = natural period of oscillation (characteristic time constant)
\(\zeta = \text{damping ratio} \)

\(k_p = \text{static gain} \)

Sources of second order dynamics in the chemical industries come from a series of first-order systems, or a processing system with a controller.

Dynamic response:
For input step change of magnitude of \(a \), \(u(s) = a/s \) we have:

\[
y(s) = \frac{k_p a}{s(\tau^2 s^2 + 2\tau \zeta s + 1)} \equiv \frac{k_p a / \tau^2}{s(s - p_1)(s - p_2)}
\]

where

\[
p_1 = -\frac{\zeta}{\tau} + \frac{\sqrt{\zeta^2 - 1}}{\tau} \quad p_1 = -\frac{\zeta}{\tau} - \frac{\sqrt{\zeta^2 - 1}}{\tau}
\]

Case A: (over-damped) when \(\zeta > 1 \), we have two distinct and real poles

\[
y(t) = k_p a \left[1 - e^{-\zeta t / \tau} \right] \left(\cosh(\sqrt{\zeta^2 - 1} \frac{t}{\tau}) + \frac{\zeta}{\sqrt{\zeta^2 - 1}} \sinh(\sqrt{\zeta^2 - 1} \frac{t}{\tau}) \right)
\]

Case B: (critically-damped) when \(\zeta = 1 \), we have two equal poles

\[
y(t) = k_p a \left[1 - \left(1 + \frac{t}{\tau}\right) e^{-t / \tau} \right]
\]

Case C: (under-damped) when \(\zeta < 1 \), we have two complex conjugate poles

\[
y(t) = k_p a \left[1 - \frac{1}{\sqrt{\zeta^2 - 1}} e^{-\zeta t / \tau} \sin(wt + \phi) \right]
\]

The dynamic response for all cases is shown in Figure (4)
The response of second order system to step change

- The over-damped response is sluggish and resembles a little the response of a first-order system. It becomes more sluggish with larger values of ζ.
- The critically damped response is faster than the over-damped one.
- The under-damped response is faster than the others, but oscillates. The oscillatory behavior becomes pronounced with smaller values ζ.

Characteristics of under-damped system

- Overshoot, A/B

\[A / B = \exp \left(\frac{-\pi \zeta}{\sqrt{1 - \zeta^2}} \right) \]

- Decay ratio, C/A

\[C / A = \exp \left(\frac{-2\pi \zeta}{\sqrt{1 - \zeta^2}} \right) \]

- Period of oscillation

\[\omega = \text{radian frequency} = \frac{\sqrt{1 - \zeta^2}}{\tau} \]
$T = \text{period of oscillation} = \frac{2\pi \tau}{\sqrt{1 - \zeta^2}}$

- Rise time, t_r: is the time the output takes to first reach the new steady state value
- Process time, t_p: is the time required for the output to reach its first peak.
- Settling time, t_s: is the time required for the output to reach within $\pm 5\%$ of the new steady state value.

![Figure 5: characteristics of second-order under-damped response](image-url)
6. Delay time

The delay time known as transportation time is basically the time required for a material to move a specific distant. However, time delay is an inherent property of any chemical process.

\[G(s) = e^{-\theta s} \]

Sources:
- The use of chromatography to measure composition of liquids or gases is another source of dead time.
- Flow in a long pipe.
- Time lag produced from staged processes.

Therefore, a first-order system with dead-time is:

\[G(s) = \frac{Ke^{-\theta s}}{\tau_1 s + 1} \]

Therefore, a second-order system with dead-time is:

\[G(s) = \frac{Ke^{-\theta s}}{\tau s^2 + 2\xi \tau s + 1} \]
7. Approximation of higher order systems

Systems with order higher than one can be represented by:

\[G(s) = \prod_{i=1}^{n} G_i(s) = \frac{K}{\prod_{i=1}^{n}(\tau_i s + 1)} \]

It can be approximated by low order transfer function with dead time as follows:

\[G(s) = \frac{Ke^{-\theta s}}{\tau_1 s + 1} \]

where \(\tau_1 \) is the dominant time constant and the dead time is:

\[\theta = \sum_{i=2}^{n} \tau_i \]

8. Transfer function and Block diagram

Transfer function relates the process input to the process output in a linear mathematical function. Therefore,

Transfer Function: is the Laplace transform of the output, \(y(s) \) divided by the Laplace transform of the process input, \(u(s) \), with all initial conditions are zero (deviation form)

\[G(s) = \frac{y(s)}{u(s)} \]

Example: For the storage tank we have:

\[\frac{h(s)}{F(s)} = \frac{K}{\tau s + 1} \equiv G_p(s) ; \quad \text{with } \tau = AR, K = 1/R \]

Example: For the heated tank we have:
\[
\frac{T(s)}{Q(s)} = \frac{K}{\tau s + 1} \equiv G_p(s) \quad \text{with } \tau = V/F, \quad K = 1/F \rho C_p
\]

Example: For the CSTR we have:

\[
\frac{C_A(s)}{C_{A0}(s)} = \frac{K}{\tau s + 1} \equiv G_p(s) \quad \text{with } \tau = V/(F+Vk), \quad K = F/(F+Vk)
\]

8.1 Properties of Transfer Function

Order: The order of the system is the highest derivative of the output variable in the defining differential equation. For Transfer Function, it is the highest power of \(s \) in the denominator.

Pole: is the root of the denominator of the transfer function, i.e. the root of the characteristic polynomial. It directly determines:

- The stability of the system (positive poles)
- The potential of periodic transient (imaginary poles)

Zero: is the root of the numerator of the transfer function. It determines an inverse response (positive zero).

Casuality: A physical system is *causal* when the order of the denominator is greater than the numerator, and when the transfer function goes to 0 as \(s \to \infty \), the system is hence *strictly proper*. If the transfer function contains \(e^{\theta s} \) or the order of numerator is higher than the denominator, then the system is *non-casual* or *not realizable* because the current values of the system depends on the future values of the variables.

Steady state gain: is the steady state value of the transfer function, is evaluated by setting \(s = 0 \) in the stable transfer function.

8.2 Effect of poles and zeros

The poles and zeros of a transfer function affect the dynamic of a process.

Consider a particular transfer function:
\[G(s) = \frac{K}{s(\tau_1 s + 1)(\tau^2 s^2 + 2\zeta \tau s + 1)} \]

The poles, i.e. the roots of the characteristic equation are:

\[s_1 = 0 \]

\[s_2 = -\frac{1}{\tau_1} \]

\[s_3 = -\frac{\zeta}{\tau_2} + j\frac{\sqrt{1 - \zeta^2}}{\tau_2} \]

\[s_4 = -\frac{\zeta}{\tau_2} - j\frac{\sqrt{1 - \zeta^2}}{\tau_2} \]

The poles can be represented in the complex plane as follows:

- Complex poles indicate the response will contain sine and cosine modes, i.e. will exhibit oscillation.
- Negative poles will result in a stable decaying response.
• Positive poles indicate that the response will have unstable mode.

The transfer function can be written as follows:

\[G(s) = \frac{b_m (s - z_1)(s - z_2)\cdots(s - z_m)}{a_n (s - p_1)(s - p_2)\cdots(s - p_n)} \]

• Positive zero leads to inverse response.
• Zero-pole cancellation occurs when a zero has exactly the same numerical value as a pole.
• A zero can exert a profound effect on the coefficient of response mode.

8.3 Block diagrams
Block diagram is a graphical representation of transfer functions and their interactions.

Block diagram assist the engineer in determining the quantitative aspects of dynamic performance and in understanding the qualitative features of the system.

- \(y(s) = G(s)u(s) \)

- \(y(s) = A + B \)

- \(y(s) = G_1(s)G_2(s)u(s) \)
\[y(s) = G_1(s)A - G_2(s)B \]

8.4 Input-output relation

Direct action: an increase in the input lead to an increase in the output.

Reverse action: an increase in the input lead to a decrease in the output.
A series of I/I blocks always result in I/I action:

\[u \rightarrow \text{I/I} \rightarrow \text{I/I} \rightarrow y \]

An odd series of I/D blocks results in I/D action:

\[u \rightarrow \text{I/I} \rightarrow \text{I/D} \rightarrow y \]

An even series of I/D blocks results in I/I action:

\[u \rightarrow \text{I/D} \rightarrow \text{I/D} \rightarrow y \]
It is important that the overall system has an I/D action (negative feedback), therefore, the controller action must be adjusted such that the overall action of the closed-loop be I/D or reveres action.

Alternatively:

\[k_c k_p = +ve \]