Biomechanics of Lifting
(An implication Review)
Al-Angari S. Abdulrahman

Abstract:
Lifting has been the subject of research for many years. The reasons that triggered this interest in lifting are its believed association to low back pain on one hand and to its usefulness in muscle training, rehabilitation and technique enhancement on the other hand. Even though the area of lifting biomechanics is saturated with studies, there still is no agreement on most aspects of lifting and in particular, the safest lifting technique, contribution of intra-abdominal pressure (IAP), use of lifting belts. Previously, there was some effort by some researchers to give some conservative recommendations. With the publication of many recent studies, it was important to review them in the light of the previous ones in the hope of reaching some solid implications. After the review, it was clear that definite recommendations are not at hand yet specifically in terms of lifting technique, and lifting belt, or the contribution of IAP in lowering loads on the lumbar region. The only obvious factor that was in agreement by almost all researchers is the superiority of the use of dynamic biomechanical models in estimating lumbar loads compared to static ones. Based on this review, more research is still needed before definite recommendations are reached. In the end, some implications are suggested in both the ergonomic and sports areas.

Key words: Lifting, Intra abdominal pressure, Lifting belt, Lifting technique

Introduction:
Lifting has been the subject of study for many years. It is expensively studied because of the believed association between lifting and low back disorders1-4 on one hand and on the other hand because of its use in sports training for muscle strength improvement, rehabilitation and technique enhancement5. So, it is no wonder that lifting is researched by many scientists from different disciplines in order to explore its positive or negative effect under the environments of these different disciplines. Because low back pain is one of the most common musculoskeletal complaint encountered by individuals1-3, it dominates the area of lifting biomechanics. It has been reported that it is the leading cause of disability in those under the age of 45 and the third major cause of disability in general6,7. The national Center for Health Statistics in the United States approximates six million Americans suffer from low back impairment8. That accounts to almost 3 in every 100 people.
addition, Lamode in his analysis of the accidents profiles in workers of a freight company found that 1/3 of the accidents were due to muscular efforts. Sixty nine of these accidents were for the back, especially in the lumbar region. Furthermore, low back pain is becoming more common in adolescents because of the nowadays life style.

The mechanics of lifting is not fully understood, as a result the proper lifting technique that minimizes the risk of low back pain is not at hand yet. It is generally believed that this is because of the complexity of the mechanical effect on the spine and so the estimation of spinal load during lifting is very important in addressing problems of lifting induced back pain.

A great deal of effort has been devoted to the development of means of assessing the risk of injury under a variety of lifting conditions. Biomechanical mathematical modeling is one way of estimating these loads. Others have focused on determining the capacity of an individual to perform a specific task based on muscle strength or physiological endurance. On the other hand, the psychophysical approach was suggested and presented as the only method available to researchers for determining the acceptable level at which individuals perform frequent and infrequent manual handling tasks. However, before assessing the relationship between the workload and low back pain, low back pain has to be distinguished from low back impairment, low back disability, and low back compensation. Low back pain is defined as lumbosacral pain as well as buttock pain and leg pain. Low-back disability is defined as time lost from the job whereas low back compensation represent a decrease or loss of ability to perform various musculoskeletal activities.

Lifting can be accomplished using a verity of techniques. Each technique produces a particular amount of stress on the spine vertebrae. The intervertebral discs in the adult do not possess any blood vessels. They are classified as a group called "bradytrophic" tissue which receive their nutrient substances merely by diffusion. Fluid shifts due to load and pressure promotes the exchange of substances in the vertebral disc. It has been experimentally shown that the reversal of the flow in loading and unloading occurs at about 70-80 kp. There is an outflow of fluid when standing, sitting, and carrying a load and influx of fluid when lying down. Prolonged loading or prolonged unloading effects the exchange of these substances in which it depletes the fluid from the discs reducing its volume and its ability to absorb energy and raising the danger of injury.

Injury and proper technique of lifting are both important aspects that have to be addressed in addition to low back impairment. Even though the area of lifting biomechanics is full of studies, there is still no conclusive recommendations about most aspects of lifting and because there are many studies that have been done recently, it is useful to review the previous recommendations with the recent findings in the hope of reaching solid implications. Further more, there is no review that combined the subjects of lifting in sports with ergonomics. So, the coming sections are to address the most aspects that relate to lifting biomechanics from an implication point of view with the aim of integrating previous findings with the recent ones. This review begins with a brief description of the biomechanics of the spine and ends with possible implications.

Biomechanics of The spine

The spinal column consists of mainly twenty-four vertebrae, seven of which are in the cervical region, twelve in the thorax region, and five in the lumbar region. The main functions of the spine are: to protect the spinal cord, provides sites for muscle attachment and to transfer loads from the head and trunk to the pelvis. Each vertebra articulates with the adjacent one to provide motion in three planes: transverse, frontal, and sagital (six degrees of freedom). This motion is small and involves the motion of other motion segments in the form of rotation and translation. Stability of the spine comes from the intervertebral discs and the surrounding ligaments and muscles, the discs and ligaments provide intrinsic stability and muscles provide extrinsic support.

The functional unit of the spine consists of two vertebrae and their intervening soft tissues, particularly discs. The vertebral bodies could mainly bear compressive loads and they get progressively larger as weight of the upper body increases. The bodies of the lumbar vertebrae are thicker and wider which allow them to sustain larger loads. Trew added that the vertebral body consists of a cylinder of cancellous bone with trabeculae surrounded by a thin layer of cortical bone. The trabeculae acts like a strut strengthening the vertebral body: the vertebral trabeculae resist compressive forces and horizontal trabeculae resist bowing of the trust and thus increase its strength. The orientation of the facets of the intervertebral joints to the frontal and transverse planes determines motion of the functional unit of the spine. This orientation changes throughout the spine. For the lumbar region, the vertebrae are aligned in a 90 degree angle to the transverse plane.
and at 45 degree to the frontal plane. This alignment allows flexion, extension, and lateral flexion but not rotation. The other essential part of the functional unit is the intervertebral discs. The intervertebral disc is of great importance because it serves to distribute loads and restrain excessive motion. During daily activities, the disc is loaded in a combination of compression, bending and torsion. During loading of the spine, the nucleus pulposus acts hydrostatically allowing a uniform distribution of pressure throughout the disc, hence the entire disc acts as a cushion between the vertebral bodies to store energy and distribute loads. During this process, the disc deforms elastically in response to high rate of loading and short duration and viscoelastically in response to loads applied slowly and for long time. Fluid content of the disc is squeezed out and the disc becomes thinner. This resembles water squeezed out of a sponge. The water content of the sponge gets absorbed after unloading it. In addition to its mechanical importance, viscoelasticity of discs is essential in nutrient supplementation. The alternate expulsion and absorption of water enables the discs to receive nutrients and get rid of wastes. Furthermore, these discs are thinnest in the cervical region and thickest in the lumbar region. In proportion to the height of the vertebral body, the discs are thickest in the cervical region which enable the cervical spine to have a greater physiological range of movement.

Biomechanical Lifting Models

Moments and forces on the lumbar spine come from body-segments, movement of the trunk, and external loading. These moments and forces have to be equilibrated by internal forces which come from muscle contraction, resistance of soft tissue, and pressures within the trunk cavities. The most common biomechanical means of assessment for moments and forces on the lumbar spine during lifting are static and dynamic models. It has been shown that the static models usually used do not account for some of the factors involved in the lifting and hence loading of the lumbar spine. The adequacy of the static models are important because they are being used to establish lifting guidelines (e.g. NIOSH, 1981) and the development of pre-employment selection standards for workers may be based upon them in the future. Static models have been shown to underestimate the loading on the lumbar spine. One study reported 5218N of compressive force on the L4/L5 in the case of using the static model. That is well below the NIOSH maximum permissible limit which is 6377N. When using the dynamic model, 6391 N of compression force was found marginally above the permissible limit. Another study found the compressive force on the lower back was approximately two to three times greater when dynamic analysis was used than those based on static analysis. Furthermore, 33 to 60% increase in predicted moment was found when using the dynamic model compared to a static one. McGill and Norman compared static and dynamic models and found similar results. They reported 19% increase in L4/L5 moments with the dynamic model. Also, Static and dynamic models were compared in relation to speed and varying loads. A 45 to 54% increase was found when the dynamic model was used. It was concluded that static models ignore the speed factor and hence underestimate the load on the L5/S1 vertebrae.

Finally, Freivalds et al. reported that static models underestimate the actual load by 40%. That may lead to an assessment that a particular load is safe when in fact it is not. At the same time, there is an ongoing effort to improve the accuracy of the biomechanical models by understanding spinal motion.

Lifting techniques

Even though the research is not completely conclusive about the safest style of lifting, the one technique that has been advocated by many sources is the squat lift, in which the back is relatively straight and the hips and knees are flexed. This technique is supported by the National Safety Council (National) and the International Labor Office. Many reasons have been sited for the advocating of this method: the center of gravity of the load may be held close to the body minimizing the torque, the strong leg muscles are active to assist in lifting the load, movement of the weight of the body is used to initiate horizontal motion during lifting, and the early onset of erector spinae muscles activities during the squat lifting is thought to be important in reducing the stress on the lumbar spine. Lower center of gravity of the body which improves balance, and finally the hamstring muscles operate at the closely their resting length which may improve their efficiency in stabilizing the pelvis.

Squat lifting could be preformed with differing styles. The optimal position for lifting load is the squat style with anterior tilt as opposed to posterior tilt. In this position, the lumbar spine is aligned in its normal lordosis and the pelvis is aligned in an anterior tilt. However, in this posture, there has...
to be an accompanying strengthening and endurance training for the extensor muscles of the back. Furthermore, squat lifting with an angle from vertical decreases the compressive forces on the lumbar spine by 11%. Also, squat lifting results in the lowest compressive force on the knees flexed 36°. In a similar study, even though all types of lifts recorded high in all variables measured, squat lift with highest weight lifting produce the greatest physiological stress. In conclusion, his most recent study said that cautioned needs to be exercised when applying the results of stoop or squat lifts to real life lifting.

Load knowledge can influence the technique used. Experienced lifter benefited from load knowledge and used different techniques that reduced the stress on the L4/L5. Non experienced lifters used the same technique regardless of the load weight. The result also showed that non lifters relied on the low back musculature in lifting the weight. In another study, with unexpected loads, there was an increase in lumbar joint reaction moments which could lead to an increase in the risk of low back injury. Asymmetrical techniques have also been investigated. It is more dangerous to the musculoskeletal system when the weight is lifted at the side or in planes other than the sagittal. Maximum acceptable weight was found to be lower in asymmetrical lifting compared to symmetrical. Also, trunk loading with unexpected loads is shown to be associated with increased risk of injury. Straddling- one foot placed at the side of the load and the other behind it- as a mean of lowering back load has been also shown to be no difference to the symmetric style of lifting. In addition, lifting an unstable load produced higher abdominal muscle activities compared to stable one which indicates the role of these muscles in spinal stability.

Dead lift is wildly used as an effective exercise in sport training and muscle rehabilitation. Dead lift could be performed with different styles depending on the preference of the athletes. There are two known styles of dead lift: sumo and conventional. Both use a squat style with feet positioned further apart and turned out more in the sumo style. In the conventional style, the arms are positioned to the outside whereas to the inside in the sumo style. Both the sumo and conventional style dead lifts could be used equally effective in muscle training. However, the sumo dead lifts is found to be more effective in working ankle dorsiflexors and knee extensors whereas conventional style is more effective in working ankle plantar flexors and knee flexors. In regards to sport competition, the ground reaction forces in power clean lifting were analyzed. It was found that the vertical force was higher in the second pull and the unweighted phase compared to the first pull. However, with increased weight lifted from 60 to 70% of maximum, the peak was higher in the first pull than the first one. The researchers emphasized understanding the proper lifting technique in order to be competitive in weightlifting or sporting events. Schilling et al. studied the effect of foot displacement on performance in snatch lifting. The horizontal displacement of the feet during the snatch did not effect lifting ability or snatch success. Moreover, the snatch technique was compared between males and females and the results showed that there are significant differences between the two sexes. The differences were attributed to the lower skill level as a result to recent participation of women in weightlifting. In a similar study, it was also concluded that men and women should be considered separately in the evaluation of manual handling of tasks. That emphasizes the complexity of determining the acceptable weight for an individual or the proper technique of lifting because. In addition to what has been mentioned, other factors like: object weight, load acceleration, age, to name a few- play a role.

Intra Abdominal Pressure (IAP)

Even though there are dissenting opinions about the role of IAP in relieving the stress on the low back and restricting its to role to helping stiffening the trunk and preventing tissue strain, IAP has been recognized as a normal accompaniment and an important factor in supporting the lumbar spine during lifting. Bartilink in 1957 proposed the idea and was expanded by other researchers. It is believed that as a result of the inflated abdominal cavity.
because of muscle contraction, the moment arm of
the erector spinea muscle group is lengthened as
the axis of rotation for the sagital movement is
shifted anteriorly into the abdomen from the
intervertebral space. This allows the erector spinea
muscles to stabilize the trunk with less force and
hence reduce spinal compression. In addition to
that, IAP makes a rigid compartment that resists
lumbar flexion and as a result relieves stress off the
erector spinea muscles. One researcher
reported that IAP may contribute from 11 to 20% in
releasing compressive forces in the lumbar spine.
While others suggested 40%, 54-56. One researcher
reported that IAP may contribute from 11 to 20% in
releasing compressive forces in the lumbar spine.

In order to examine IAP with other aspects of
lifting, oblique abdominal muscles (OA) activities
were compared with intra abdominal pressure. The
results showed that the intra abdominal pressure
was higher in the squat lift (5.7kpa) than back lift
(3.4kpa) and the activity of the OA and IAP tended
to coincide but OA activity proceeded the IAP by
about 100 ms. This may have happened because of
the need to stabilize the trunk in the start of the
lift. That is in agreement with another study that
stressed the importance of this result to the
pathogenesis of inguinal hernia. Further more,
less intra abdominal pressure (IAP) was observed
when the trunk was flexed than when the trunk was
erect, but when IAP was assessed in relation to
lifting while sitting it was found that the IAP
increased when lifting with the trunk rotated to
either side and also when bending forward. There
was further increase as bending of the trunk increased.

Lifting Belt

Lifting belt is commonly used in industrial
work and in sports. In one recent study, about 30%
of health club members used lifting belts and most
of them utilized belts in situations that do not
typically stress the trunk musculature. (Dan
Abraham, 2003) The working mechanics of the
belt is thought be in forcing the abdominal muscles
to move inward as they bulge while contracting
which leads to a rise in abdominal muscle activity
and hence increased IAP which help in decreasing
the high lumbar compression and shear forces
when lifting. The increased abdominal
muscle activates is though to be a result of the belt
resistance to the contraction of the abdominal
muscles allowing a more intense voluntary
contraction. The decrease in lumbar
compression and shear forces is attributed to the
increase in the abdominal cavity pressure (IAP)
which in turn enables it to bear up to 50% of the
load normally placed on the spinal column. An
increase in IAP from 13-40% with the belt worn is
well documented. Others linked the use of
the belt to improvement in performance when
compared to without and to trunk stabilization
and avoidance of twisting when lifting.

Many studies have tried to evaluate the benefits
of the lifting belt. Some of the studies have found
positive effects of wearing a belt during lifting.
One aspect that was researched is the effect of
wearing a belt on IAP. In one study, it was found
that wearing a belt increases IAP and suggested
that using a belt reduces disc compression force
and improve lifting safety. Another study
found that wearing a belt aids in supporting the
trunk by increasing IAP. Furthermore, a positive
correlation between the increase in IAP and weight
lifted was found as a result of wearing a belt.
Another aspect that was studied is the effect of the
belt on muscle activities. The expected result is
that with a belt, there would be an increase in
abdominal muscle activities which leads to
increased IAP which in turn help in unloading the
lumbar spine by decreasing erector spinea stress
and resistance to lumbar flexion. In fact, that was
the case in one study. It was found that wearing a
belt increases the activity of rectus abdominus and
decreases the activity of external oblique. The
decrease in the activity of the external oblique with
the belt was also found in another study. The
noticeable remark in this study is that the decrease
was only in women subjects but not men which
stress the differences between the two sexes in the
analysis of lifting. Others found a positive effect
on intra-muscular pressure of erector spinea
muscle and concluded by saying that wearing a
belt may contribute to stabilization during lifting
exertions. Moreover, wearing a belt may improve
the lifting explosive power by increasing the speed
of the movement without altering muscle electrical
activity or compromising joint range of motion and
lifting technique.

Even though the previous studies may indicate
positive effects of wearing a belt during lifting
activities, there are also many studies that found
either no positive effects or negative effects.
In one study, Thomas found that the
biomechanical effect of the belt during sudden
loading is small and situationally dependent and
there was no support to the use of the belt in order
to minimize Para spinal muscle fatigue or a loss in
isometric force production. Moreover, no
difference was found between muscle activities of
the spinea and abdominal when lifting with and
without a belt. Furthermore, a possible
preventive benefit in wearing a belt was found, but
its effect on other joints needs to be studied before
a conclusive recommendation is given. Marras added that lifting with the belt adds a strain on the cardiovascular system and recommended that individuals with compromised cardiovascular system are advised not to exercise with back support.

The effect of wearing a belt was studied in relation to other factors involved in lifting like breath holding and asymmetric lifting. Breath holding when lifting is reported to unload the spine slightly when lifting. The belt has been shown to have no effect on IAP when lifting while holding breath. Asymmetric lifting is also studied. The effect of wearing a belt on erector spinae muscles during asymmetric sudden lifting and found small effect to provide effective protection of workers. Finally, an important issue that has not been addressed is the long term effect of wearing a belt.

Implications

By reviewing the previous recommendations and with this review that included the latest studies, it should be clear that it is still difficult to present solid recommendations about all aspects of lifting. The following recommendations should be considered in light of many involved factors that influence the amount of load placed on the lumbar region.

1- Low acceleration is recommended when lifting moderately heavy load.
2- Avoidance of the pausing in the process of lifting should be taken into consideration.
3- It is recommended that the individual keeps the load as close to the body as possible in order to reduce torques resulting from load handling.
4- Leg lift (squat) where normal lumbar lordosis is preserved and knees and hips are flexed is recommended. Leg lift transfers the load from the small muscles of the back and arms to the strong ones in the legs.
5- The belt should be worn for maximum or near maximum lifting. If training for an activity that a belt is not worn, athletes and workers are advised to do some of their training without a belt. That could help in strengthen the deep abdominal muscles and improve the pattern of muscle recruitment needed to generate high IAP when a belt is not worn.
6- People with a compromised cardiovascular system are advised not to lift with back support.
7- Gender Differences should be taken into consideration when giving advice about lifting.

References:

39- Kirmit, G.D., Riley, E.S., William, S.M. Kinematic contribution and synchronization of

64- Garg, A; and Badger, Don . Maximum acceptable weights and maximum voluntary isometric strengths for asymmetric lifting. Ergonomics 1986; 29: 879-892.

Address correspondents to:
AI-ANGARI, S. ABDULRAHMAN
King Saud university
Dep. of Physical Education and Movement Science
Biomechanics Lab
P.O. Box : 2458
Riyadh: 11451
Email: asangari@ksu.edu.sa