> gifq` 0\bjbjqPqP .j::\(L(D:'''''''$,hK/R(Q (Y(www 'w 'ww^""tϗ2*v".'o(0(~",/I$/"/"0"w(((m
( 'D3J1) 'D0'*J)
1. 'D(J'F'* 'D4.5J)
'D'3@@@@E .'D/ (F 9(/'D92J2 (F %(1'GJE 'DFHJ(*
*'1J. 'DEJD'/ 28 /3 / 1391 G@
'D'D) 'D',*E'9JG E*2H,
'D@@9@FH'F ,'E9) 'DEDC 39H/ / CDJ) 'D9DHE
B3E 'D%5'! H(H+ 'D9EDJ'*
5. (. 2455 'D1J'6 11451
G'*A 'DEC*( 4676334 01
,@@@@H'D 0558888456
'D(1J/ 'D%DC*1HFJ knowibet@ksu.edu.sa
2. 'DE$GD'* 'D/1'3J)
'D/1,) 'D9DEJ)'D*.55'D,G) 'DE'F) DG''D*'1J.'D(C'DH1JH3(H+ 'D9EDJ'*,'E9) 'DEDC 39H/
'D1J'6 'D39H/J)1992'DE',3*J1(H+ 'D9EDJ'*,'E9) ,H1, H'4F7F
H'4F7F 'D9'5E) #E1JC'1999'D/C*H1'G(H+ 'D9EDJ'*,'E9) HD'J) C'1HD'JF' 'D4E'DJ)
C'1HD'JF' 'D4E'DJ) #E1JC'2004
3. 'D*.55 HE,'D'* 'D'G*E'E
'D*.55 9DE (H+ 'D9DEDJ'* (Operation Research)
'D*.55 'D9'E FE'0, 5AHA 'D'F*8'1 (Queueing Modeling)
'D*.55 'D/BJB 4(C'* 5AHA 'D'F*8'1 0'* 'D*H'A/ :J1 'DE3*B1
H'DE3') 'DE/H/)
Nonstationary Queueing Modes with Time
dependent Arrivals and finite buffer)
4. 9FH'F H ED.5 'D13'D)
9FH'F 'D13'D) 5AHA H4(C'* FE'0, %J1D'F, 0'* 'DAB/ :J1 'DE3*B1)
NONSTATIONARY ERLANG LOSS QUEUES AND NETWORKS
ED.5 'D13'D)
FEH0,N Erlang DDAB/ :J1 'DE3*B1 F8'E 5AJ JN*CHF EF 9// E/H/ EPFR EB/EJ 'D./E) HD' JH,/ EC'F DD%F*8'1 EN9 '9*('1 #F 9EDJ) 'D*H'A/ :J1P +'(*)P #NH #F E9/D 'D./E)P /'D) AJ 'D2EF. %FQ FEH0,N Erlang DDAB/ (4CD 9'E JO3*N9EDO D*NE+JD H*NBJJE 'D9/J/ EPFR #F8E)P 'D%*5'DP. AJ #:D( 'D#J'F G0G 'D#FH'9P EPFR #F8E)P 'D./E)P *H',) *N:JQ1' AJ E9/D 'D*H'A/ (E1H1 'DHB* (JFE' F3()N 'D./E)N *N(RBI #EQ' +'(*) #NH *N*:JQ1O (4CD (3J7 ,/'K (E1H1 'DHB*. F81'K DG0' A%F 'D(+ J1C2 9DI /1'3) FE'0, Erlang DDAB/ :J1 'DE3*B1) 'DEFA1/) #H 0'* 'D(F'! 'D4(CJ (E9/D H5HDP E9*E/ 9DI 'D2EF HF3()N ./E)P +'(*)P. *E %J,'/ .H'12EJ) ('3E *B1J(P 'DFB7) 'D+'(*)N (FPA) DDR5HDN 9DI '*E'D'* 'DAB/ AJ 'DFEH0, C/'D) AJ 'D2EF H0DC AJ 'D) 'D*H'A/ 0H 'DA&) 'D#'/J) #H 'D*H'A/ E*9// 'DA&'* +E BH1F* E.1,'* 71JB) 'DFB7) 'D+'(*) E9 'DFN*'&P,P 'D9//J)P 'DBJBJ) H71JB*'(MOL) H (PSA) D5AHA Erlang DDAB/ (E9/D *H'A/ J*(9 'D/'D) 'D,J(J). EF .D'D 'DFN*'&P, 'D*,1J(J) *(JF #F 'D.H'12EJ)O 'DEB*1) *OB/E ND'K 5J' H/BJB' D5AHA Erlang DDAB/ :J1 'DE3*B1) C/H'D AJ 'D2EF. ('D%6'A) %DI 0DC 9EE* .H'12EJ) 'DFB7) 'D+'(*) D'D) 4(C'* 5AHA Erlang DDAB/ :J1 'DE3*B1) HBH1F* 'DFN*'&P, ('DE'C')P. H*(JF #F 71JB) (FPA) *B/E F*'&, *B1J(J) 0'* .7# 6&JD ,/'.
ABSTRACT: The nonstationary Erlang loss model is a queueing system consisting of a finite number of servers and no waiting room with a nonstationary arrival process or a timedependent service rate. The Erlang loss model is commonly used to model and evaluate many communication systems. Often, these types of service systems encounter a change in the arrival rate over time while the service rate remains either constant or changes very little over time. In view of this, the focus in this research is the nonstationary Erlang loss queues and network with timedependent arrival rate and constant service rate. We developed an iterative scheme referred to as the fixed point approximation (FPA) in order to obtain the timedependent blocking probability and other measures for a singleclass nonstationary Erlang loss queue and a nonstationary multirate Erlang loss queue. The FPA method was compared against exact numerical results, and two other methods, namely, MOL and PSA, for various nonstationary Erlang loss queues with sinusoidal arrival rates. Although we used sinusoidal functions to model the timedependent arrival rate, the solution can be obtained for any arrival rate function. Experimental results demonstrate that the FPA algorithm provides an exact solution for nonstationary Erlang loss queue. The FPA algorithm was also applied to the case of multirate nonstationary Erlang loss queues and the results obtained were compared with simulation. We generalized the FPA algorithm for networks of nonstationary Erlang loss queues with Markovian branching, and compared its accuracy to simulation. Finally, FPA was used to analyze networks of nonstationary Erlang loss queues with population constraints. Numerical results showed that FPA provides a good approximation.
5. 'D#9E'D 'D%/'1J) H'DD,'F
EB11 D,F) 'DE9J/JF (B3E 'D%5'! H(H+ 'D9EDJ'*
96H D,F) 'D'9*E'/ 'D#C'/JEJ AJ 'DB3E
EB11 D,F) 'D*H8JA (B3E 'D%5'! H(H+ 'D9EDJ'*
96H D,F) 'D%E*'F'* (CDJ) 'D9DHE DDA5D 'D/1'3J 'D+'FJ EF 9'E 1427G@ / 1428 G@
96H D,F) 'D9D'B'* 'D9'E) AJ 'DE$*E1 'D39H/J 'D+'D+ DD9DHE
96H D,F) 'D*H9J) 'D%3D'EJ) (CDJ) 'D9DHE DD9'E 'D/1'3J 27G@ / 1428G@
6. 'D#('+ 'D9DEJ)
[1] Alnowibet K. and Perros H., HYPERLINK "http://www4.ncsu.edu/~hp/Khalid3.pdf" The Nonstationary Loss Queue: A Survey , K., Imperial College Press, 2006. KLD3
Abstract: The nonstationary loss queue is of great interest since the arrival rate in most communication systems varies over time. In view of the difficulty in solving the nonstationary loss queue, various approximation methods have been developed. In this paper, we review several of these approximation methods and present a new technique, the fixed point approximation (FPA) method. Numerical evidence points to the fact that the FPA method gives the exact solution.
"*JLPd & < x
(
*
,
@
X
Z

~
ƸwmwfYhBh5Z\o(hBZo(hhZo(hB5Z\o(h5Z\o(hZ^Jo(hZo(h5Z\ hZhBhCJ$Z^JaJ$o(hhCJ$Z^JaJ$hBCJ$Z^JaJ$o(hZaJo(hZaJ2o(hhZ^JaJ2o(hhZ^JaJ2 "L" z *
V
$
3gdB$
3gd$
3gdcw$
gdB$
gd$a$gd\~
8: 0NP~
@
B
F
R
T

̷̾٪٪٣٪٪٪ٖ̋٪v٪nhBCJaJhBhBCJaJhB5Z\o(hBCJ$Z^JaJ$hcwCJ$Z^JaJ$o(hHZo( hBZhB5Z\hcwZo(hhBCJ$Z^JaJ$hBCJ$Z^JaJ$o(hBZo(hZo(hBh5CJ\aJhBhCJaJ)
(8:RnHkd$$IfTlm\U6$1 jF V($4
lap($$Ifa$gdBDNztkd\$$IfTl\U6$1 jFV$4
la$$Ifa$gdBNPdzzzzz$$Ifa$gdBtkdE$$IfTl\U6$1 jFV$4
la
B
dyhhhhhhyhyy$
3gdB$
3gdcwtkd<$$IfTl\U6$1 jFV$4
la46B`bdftvzźͯ~͉qeZeLhnzhnzCJZaJo(hnzhnzCJaJhnzhnzCJZaJhnzhnz5Z\o(hnzhzzZo(hnz5Z\o(hnzZo(hnzCJ$Z^JaJ$o(hBhBZhcwhBCJaJhcwCJZaJo(hBCJaJhBZo(hBhBZo(hB5Z\hB5Z\o(hcwZo( hBZhBdfvx!!0""j$
&F
p88^8gdxC$
3F]^Fa$gdnz$
3F]^Fa$gdzz$
3gdcw$^`gdnz$`gdzz$
3gdnz$
3gdB*R^~tvx~"(:FFRz$wylڻhnzCJOJQJaJh1hEhnzCJOJQJaJhnzCJaJhnzhnz5CJ\aJhnzCJZaJo(hzzCJZaJhzzCJZaJo(hnzhnzCJZaJo(hnzhnzCJaJhnzhnzCJZaJ6lno 6gijq.\"#)*4T N b l  4!l!!!!!!!!."0"6#8#H$ƹƲ hxCZhxCZo(hnzZo(hv
CJ$Z^JaJ$o(hnzCJ$Z^JaJ$o("hhnz6CJOJQJ]aJh1hEhnzCJOJQJaJhnzCJOJQJaJA""8##J$$$$'&''(ll$h7$8$A$H$]h^a$gdmr$h7$8$A$H$]h^a$gdU$
3
A$^
`gd3$
3gdv
$
3gdcw$
&F
p88]^8gdv
$
&F
p88^8gdxCH$J$$$$$$$%%<%@%B%D%%%%%%%%%%%%%%%%%~q~d~q~q~q~\Qh~ahv
^JaJh3^JaJh3hU0J^JaJh3h30J^JaJh3hv
0J^JaJ h3hv
>*B*^JaJph)jh3hv
>*B*U^JaJphh3hc^JaJh3h3h35\h3hc5\hv
hv
CJ$Z^JaJ$o(hBZo(hv
Zo(hxCZo( hxCZ%%&&&!&&&'&0&1&&&&&C'D''''''''(պ~~~fQ~?"hmrCJOJQJ^JaJnH tH (hU6CJOJQJ]^JaJnH tH .hUhU6CJOJQJ]^JaJnH tH "hUCJOJQJ^JaJnH tH (hUhUCJOJQJ^JaJnH tH (hmr6CJOJQJ]^JaJnH tH 4hmrhmr56CJOJQJ\]^JaJnH tH hB^JaJh3^JaJh~ahv
^JaJh3hv
hv
^JaJ
[2] Alnowibet K. and Perros H., HYPERLINK "http://www4.ncsu.edu/~hp/Khalid2.pdf" Nonstationary Analysis of CircuitSwitched Communication Networks , Performance Evaluation 2006 KLD2
Abstract: Circuitswitched communication networks have been analyzed extensively in the stationary case, i.e. where the arrival and/or service rates are timeindependent. In this paper, we study a circuitswitched network where the external arrival rates to the network are timedependent functions. The circuitswitched network is modelled as a nonstationary queueing network with population constraints, which is analyzed approximately in order to obtain the blocking probability functions. Using this method we model two circuitswitched networks, namely, a trafficgroomed tandem optical network and a singleorbit LEO satellite network.
[3] Alnowibet K. and Perros H., HYPERLINK "http://www4.ncsu.edu/~hp/Khalid2.pdf" Nonstationary Analysis of Loss Queue and of Queueing Networks of Loss Queues , European Journal of OR, to appear
Abstract: We present an iterative scheme based on the fixed point approximation method, for the numerical calculation of the timedependent mean number of customers and blocking probability functions in a nonstationary queueing network with multirate loss queues. We first show how the proposed method can be used to analyze a singleclass, multiclass, and multirate nonstationary loss queue. Subsequently, the proposed method is extended to the analysis of a nonstationary queueing network of multirate loss queues. Comparisons with exact and simulation results showed that the results are consistently close to the exact results and they are always within simulation confidence intervals.
[4] Alnowibet K. and Tadj L., A Quorum Queueing System with Bernoulli Vacation Schedule and Restricted Admission , AMO  Advanced Modeling and Optimization1, Volume 9, 2007
Abstract: We present an iterative scheme based on the fixed point approximation method, for the numerical calculation of the timedependent mean number of customers and blocking probability functions in a nonstationary queueing network with multirate loss queues. We first show how the proposed method can be used to analyze a singleclass, multiclass, and multirate nonstationary loss queue. Subsequently, the proposed method is extended to the analysis of a nonstationary queueing network of multirate loss queues. Comparisons with exact and simulation results showed that the results are consistently close to the exact results and they are always within simulation confidence intervals.
7. 'DF4'7 'D*/1J3J
'DEB11'* 'D*J /13* 101 (+ : #33 (H+ 'D9DEDJ'*
101 %5: E('/& 'D%5'! H(H+ 'D9DEDJ'*
222 (+ : F8E 6(7 HE1'B() 'DE.2HF
351 (+ : F81J) 'D4(C'*
372 (+ : F81J) 'D5AHA
499 (+ : E41H9 'D*.1,
(FFF
F>FBFDFFFFFFFFFFFGGG G.G0G2GbGlGvGxGǲqiah3^JaJhU^JaJh~ahv
^JaJh3h3^JaJh3h30J^JaJh3hv
0J^JaJ h3hv
>*B*^JaJph)jh3hv
>*B*U^JaJphh3h3h35\h3h35\hv
5\^JaJhv
hv
^JaJhv
^JaJU(FxGL~LNxSzSTBZDZFZHZrZt$
3gdv
$
3gdcw$
3A$gdv
$h7$8$A$H$]h^a$gd3$h7$8$A$H$]h^a$gdU$
3
A$^
`gd3$
3
A$^
`gdv
xGGGzLLLLLLL&M(M\MMMMM
NͻtctVLtA6.h3^JaJh~ah3^JaJh3h3^JaJh30J^JaJh3h30J^JaJ h3h3>*B*^JaJph)jh3h3>*B*U^JaJphh3h3h35\h3h35\hv
^JaJ"hUCJOJQJ^JaJnH tH "hUCJOJ QJ ^J aJnH tH .hU56CJOJQJ\]^JaJnH tH 4hmrhU56CJOJQJ\]^JaJnH tH
NNN NxSzSSSTT\T^TbTTTTTųqbO*B*^JaJnH phtH (h3hv
>*B*^JaJnH phtH h3^JaJnH tH hv
^JaJnH tH "hUCJOJ QJ ^J aJnH tH .hU56CJOJQJ\]^JaJnH tH 4hmrhU56CJOJQJ\]^JaJnH tH hv
^JaJTTTBZDZFZHZpZvZZZZt[v[\\\ͻ{whKThZaJ2o(hZo(hv
5Z\o(hv
CJ$Z^JaJ$o(hBZo(hv
Zo(h3Z^JaJo("h3CJOJ QJ ^J aJnH tH .h356CJOJQJ\]^JaJnH tH 4hmrh356CJOJQJ\]^JaJnH tH rZZ,[v[[[\\\
$gd$a$gd$
3gdv
,1h/ =!"#$%Z$$If!vh551 5j5F#v#v1 #vj#vF:Vlm V($,551 5j5F//
//
///4p($$If!vh551 5j5F#v#v1 #vj#vF:VlV$,551 5j5F//////4$$If!vh551 5j5F#v#v1 #vj#vF:VlV$,551 5j5F///////4$$If!vh551 5j5F#v#v1 #vj#vF:VlV$,551 5j5F///////4V@VNormal$A$ CJ^J_HaJ mH nHsH tHDA@DDefault Paragraph FontRi@RTable Normal4
l4a(k@(No List4U@4v
Hyperlink >*phj&Ww+STUkl{
"'(2@_z
H^
;<JHm%ij'>?k!"#$9l
000000000000000000 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0000000000000000000000 0 0 0 0 0 0000000000000000000000000000&+STUl'2@_z
;<J%ij'>?k!"#$9
K00\8K00K00K008K00K00K00K00K00K00K0
0cK00X*x\10TP K00 K00X@002 K00 K00K00 K00 K00K00K00K00K00K00 ،K00K00K00K00K00K00K00C0!0"C0!0@0K00K0%0&hK0%0K0%0I00I0)0I00I00I00I00I00I00I00I00I00K020
K00I05
K05 I00K00K00K000K00K00K00K00(~
lH$%(xG
NT\!"/123
Nd"(rZ\ 04\"U`XXX4KfTaa
=*urn:schemasmicrosoftcom:office:smarttags PlaceType=*urn:schemasmicrosoftcom:office:smarttags PlaceName9*urn:schemasmicrosoftcom:office:smarttagsplace:C?RLU_hanQWIQ)/#)
$%+=JV\_lmsz5BVc#CLTZ\fw8E9Fbksv3Yalr{(1KSnu33%,SUjl{"'(_z]
:$9oP(pp^p`CJ OJ
QJ
aJ o(hH^`OJQJ^Jo(hHopp^p`OJ
QJ
o(hH@@^@`OJQJo(hH^`OJQJ^Jo(hHo^`OJ
QJ
o(hH^`OJQJo(hH^`OJQJ^Jo(hHoPP^P`OJ
QJ
o(hHP( !U S+YXhE$CLoIuLZ.wMcrsH ( A
C
wlpt"nz?.TDlb$ =UZ@8r %t/!m"+F#$2$
C$i$5%t'7)3)B,v,;/45lS5&F8d82>;h;(<Lz<>I>Y>"#@A@!A`BsBCD)D\HLJ_KEhKQLpL.
M3OOC2PRsRTpTKTTUYVSW5XBXKY(Yx2Y}2Y[Y!^b_f`:)74=.EnV1CAs0!`UxC)N~wk;iR9 pYY&n]rTcr47{E0FV2"{3PS _e
i.m`+>:Z_x9Bwi~GE1emrgPy_Opcp_P!lOM]ucm ^?'iX)!nl{"'(2@z@PL 0004@0 0L@0FUnknownG: Times New Roman5Symbol3&: Arial9 @AlHomam; @ALMateenABook AntiquaY BookAntiquaItalicArialW TimesNewRomanPSMTAriale TimesNewRomanPSItalicMTArialK BookAntiquaArialUCMTI10Times New RomanQCMR8Times New RomanM @Arabic Transparent;Wingdings?5 : Courier New"qhKƓj8j8!24d
2qHX)?2'D3J1) 'D0'*J)ABSABSOh+'0l
(4
@LT\d ABSNormalABS6Microsoft Office Word@@bŊ@
z2j՜.+,D՜.+,<hp
8 Title 8@_PID_HLINKSA_J%http://www4.ncsu.edu/~hp/Khalid2.pdf_J%http://www4.ncsu.edu/~hp/Khalid2.pdf_K%http://www4.ncsu.edu/~hp/Khalid3.pdf
!"#$%&'()*+,./012345789:;<=?@ABCDEFGHIJKLMNOPQRSTUWXYZ[\]_`abcdehkmlnopqrstRoot Entry FПrj@Data
61Table>/WordDocument.jSummaryInformation(VDocumentSummaryInformation8^CompObjqMsoDataStoreПrПr
!"#$%&'()*+,./012345678:;<>?@BCD
FMicrosoft Office Word Document
MSWordDocWord.Document.89q
This value indicates the number of saves or revisions. The application is responsible for updating this value after each revision.
DocumentLibraryFormDocumentLibraryFormDocumentLibraryForm