Assignment 1

COURSE "THEORY OF STATISTICS I"

Stat 520

M. Sc. Program

Dr. M. Kayid

Solve the Following Problems:

- (1) Let $Y_1 = \frac{1}{2}(X_1 X_2)$ where X_1 and X_2 are stochastically independent random variables each being $\chi^2_{(2)}$. Find the probability distribution function of Y_1 .
- (2) Let X_i have a Gamma density with parameter n_i and λ for i = 1, 2. Let X_1 and X_2 are independent. If $Y_1 = \frac{X_1}{X_1 + X_2}$ find the joint probability distribution function of Y_1 .
- (3) Let X_1 and X_2 are two independent stander normal random variables. Let $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_2}$. Find the joint probability distribution function of Y_1 and Y_2 and also the marginal of Y_2 .
- (4) Let X_i have a Gamma density with parameter n_i and λ for i = 1, 2. Assume that X_1 and X_2 are independent. Let $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_2}$. Find the joint probability distribution function of Y_1 and Y_2 .
- (5) Let X have a Beta distribution in [0,1]. If $Y = \frac{X}{1-X}$ find the probability distribution function of Y.
- (6) Let X_1 and X_2 be independent normal variables with zero mean and unit variance obtain the density of $Y = \frac{X_1}{X_2}$.
- (7) If X and Y two independent random variables with $f(x,y) = 2e^{-(x+y)}$, 0 < x < y and $0 < y < \infty$. Find the joint probability distribution function of X, X + Y and the marginal of X and the marginal of X + Y.