Abu El-magd, A. A., Hamed, M. S., El-Kifl, T. A. and Ahmed, A. M. (1994). In vitro studies on cellular and humoral reactions of Spodoptera littoralis larvae to Bacillus theuringiensis bacteria and spore-δ-endotoxins. Bulletin of Faculty of Science, Assute University. 23(2-E): 201-214.
Ahmed A. M., (2004). Activation of the immune system of Anopheles gambiae against malaria parasite: a comparison between bacterial infection and a botanical extract. The 3rd International Conference on Biological Science. University of Tanta, Tanta, EGYPT, 28 – 29 April. Proc. I.C.B.S., 3(1): 122 - 141
Ahmed A. M., (2005). The humoral anti-bacterial response of Anopheles gambiae and the immunity-reproduction trade-off conflict: between the hope and limitation of the malaria immuno-control strategy. Proceedings of The 3rd International Conference of Applied Entomology, Cairo University, 23rd – 24th of March (2005), 351-374.
Ahmed A. M., R. D. Maingon, Taylor, P. J. and H. Hurd (1999). The effect of infection with Plasmodium yoelii nigeriensis on the reproductive fitness of the mosquito Anopheles gambiae. Invertebrate Reproduction and Development. 36: 217-222.
Ahmed A. M.,, R. Maingon, P. Romans and H. Hurd (2001). Effects of malaria infection on vitellogenesis in Anopheles gambiae during tow gonotrophic cycles. Insect Molecular Biology. 10(4): 347-356.
Ahmed A. M.,, S. Baggott, R. Maingon and H. Hurd (2002). The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. OIKOS 97: 371–377.
Ahmed A. M., (2005). Melanization of Sephadex beads by the malaria vector, Anopheles gambiae: effect of blood meal, and mechanisms of reproductive costs. The Egyptian German Society of Zoology. 47(E): 69-85.
A Ahmed A. M., and H. Hurd (2006). Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes and Infection, 8: 308–315.
Ahmed A. M., (2006). A Dual Effect for the Black Seed Oil on the Malaria Vector Anopheles gambiae: Enhances Immunity and Reduces the Concomitant Reproductive Cost. Journal of Entomology, 4(1): 1-19.
Ahmed, A. M. and El-Katatny, M. H. (2007). Entomopathogenic fungi as biopesticides against the Egyptian cotton leaf worm, Spodoptera littoralis: between biocontrol-promise and immune-limitation. Journal of Egyptian Society of Toxicology. In Press.
Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S. Seeley, D. C., Miller, L. H., Collins, W. E., Campbell, C. C. and Gwadz, R. W. (1986). Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 234: 607-610.
Ferdig, M. T., Beemtsen, B. T., Spray, F. J., Jianyong, L. and Christensen, B. M. (1993). Reproductive costs associated with resistenc in a mosquito-filarial worm system. American Journal of Tropical Medicine and Hygiene. 49: 756-762.
Hopwood, J. A., Ahmed, A. M., Polwart, A., Williams, G. T. and Hurd, H. (2001). Malaria-induced apoptosis in mosquito ovaries: a mechanism to control vector egg production. The Journal of Experimental Biology. 204: 2773-2780.
Kokoza, V., Ahmed, A., Cho, W-L, Jasinskiene, N., James, A. A. and Raikhel, A. (2000). Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Science of America, USA. 97: 9144-9149.
Moret, Y. and Schmid-Hempel, P. (2000). Survival for immunity: the price of immune system activation for bumblebee workers. Science. 290: 1166-1168.
Paskewitz, S. M., Brown, M. R., Collins, F. H. and Lea, A. O. (1989). Ultrastructural localization of phenoloxidase in the midgut of refractory Anopheles gambiae and association of the enzyme with encapsulated Plasmodium cynmolgi. Parasitology. 75: 594-600.
Shahabuddin, M, Fields, I., Bulet, P., Hoffman, J. A. and Miller, L. H. (1998) Plasmodium gallinaceum differential killing of some mosquito stages of the parasite by insect defensin. Experimental Parasitology. 89: 103-112.
Yan, G., Severson, D. W. and Christensen, B. M. (1997). Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution. 51 (2): 441-450.
Yoshida, S., Ioka, D., Matsuoka, H., Endo, H. and Ishii, A. (2001). Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Molecular and Biochemical Parasitology. 113: 89-96.