King Saud University
College of Sciences
Department of Mathematics

I-Semester 1427-1428 Time: 3 hours

Final Examination Math 683

Exercise 1.(35 mn)

1) State the maximum principle.

Prove that if Ω is connected and f takes real values in the circle $\{z; |z-z_o| = R\} \subset \Omega$, then f is constant.

- 2) Let U be a harmonic function of class C^2 on a simply connected domain D in \mathbb{C} . Consider $f(z) = \frac{\partial U}{\partial x}(z) i\frac{\partial U}{\partial y}(z)$.
 - a) Prove that f is holomorphic on D.
- b) Justify that f admits a primitive on D. Deduce the existence of a holomorphic function g on D such that $U = \mathcal{R}e(g)$ on D.
- 3) Precise the image of the half-plane $\{z \in \mathbb{C} : Rez > 0\}$ by the mapping $f(z) = z^2$ and give a conformal transformation from $\mathbb{C}\backslash\mathbb{R}$ into the unit disc.
- 4) If Ω is a simply connected domain in \mathbb{C} , justify the non-existence of a conformal transformation from \mathbb{C} into Ω .

Exercise 2.(25 mn)

1) Let $a, b, c \in D(0, 1)$ Prove that the function

$$f(z) = z(\frac{z-a}{1-\bar{a}z})^n(\frac{z-b}{1-\bar{b}z})^m + c$$

has exactly n + m + 1 roots in D(0,1) (use Rouché theorem).

- 2) State the Cauchy inequality and find all holomorphic mappings $f: \mathbb{C} \to \mathbb{C}$ that satisfy $|f(z)| \leq |z|$ (Hint: note that f(0) = 0).
 - 3) let $f(z) = \prod_{n=1}^{\infty} \cosh(\frac{z}{n})$. Prove that f is holomorphic on \mathbb{C} .

Exercise 3.(1 hour)

We denote by D the unit disc. For $a, b \in D$, we define $\delta(a, b) = \left| \frac{b - a}{1 - \bar{a}b} \right|$.

1) Prove that $\delta(a,b)<1$ for all $a,b\in D$ (Hint: apply the maximum principle to the function $b\to \frac{b-a}{1-\bar ab}$.

Date: 5 Feb 2007.

2) Let $f:D\to D$ be a holomorphic function. We denote by h(z)= $\frac{z-a}{1-\bar{a}z}$, $k(z) = \frac{z-f(a)}{1-\overline{f(a)}} z$ and $g = k \circ f \circ h^{-1}$.

a) Verify that g satisfies the hypothesis of Schwarz lemma.

b) Apply the Schwarz lemma to the function g to deduce that $\delta(f(a), f(b)) \leq$ $\delta(a,b)$ for all $a,b\in D$.

c) Deduce from b) that if moreover f is bijective then $\delta(f(a), f(b)) =$ $\delta(a,b)$ for all $a,b \in D$.

3) Conversely: assume that there exist $a \neq b$ in D such that $\delta(f(a), f(b)) =$ $\delta(a,b)$. Prove that f is bijective from D to D (Hint: use the Schwarz lemma

Exercise 4.(1 hour)

Let $f(z) = cotan(\pi z)$.

1) Find the poles of the function f and their correspondent residues.

2) a) Let C_n the square contour with corners at $\pm (n + \frac{1}{2}) \pm i(n + \frac{1}{2})$ $n \in \mathbb{N}$. Prove that the function f is bounded on ∂C_n (the boundary of C_n) by a constant independent of n.

b) Use the Residues theorem to prove that for all $z \in \mathbb{C} \setminus \mathbb{Z}$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\frac{1}{2\pi i} \int_{\partial C_n} \frac{\cot an\pi w}{w - z} dw = \cot an\pi z - \frac{1}{\pi} \sum_{p=-n}^{p=n} \frac{1}{z - p}.$$

3) a) Verify that $\int_{\partial C_n^+} \frac{\cot an\pi w}{w} dw = -\int_{\partial C_n^-} \frac{\cot an\pi w}{w} dw$, where ∂C_n^+ denotes the vertical lines of the square and ∂C_n^- denotes the horizontal lines. Deduce that

$$\int_{\partial C_n} \frac{\cot an\pi w}{w} dw = 0.$$

b) Deduce from 3-a) and 2-b) that $\lim_{n\to\infty}\int_{\partial C_n}\frac{\cot an\pi w}{w-z}dw=0$ (Hint : we can write $\frac{1}{w-z} = \frac{1}{w} + \frac{z}{w^2 - wz}$).

4) Deduce from 3-b) that
$$\frac{\sin \pi z}{\pi z} = \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2}).$$

Exercise 5.(1 hour)

Let $\gamma:[a,b]\to\mathbb{C}^*$ be a closed curve of class C^1 .

1) Prove that for all $n \in \mathbb{Z} \setminus \{-1\}$, $\int_{\mathbb{R}} z^n dz = 0$.

Now we assume that
$$Im(\gamma) \subset D(0,r)$$
, $0 < r < 1$.
2) Prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z^{n+1}(1-z)} = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}$.

3) Let f be a non-constant holomorphic function on D(0, r).

- a) Prove that there exists $s, \ 0 < s < r$ such that f has no zero on the circle of center 0 and radius s.
- b) Prove that $I_s = \frac{1}{2\pi i} \int_{\gamma_s} \frac{f'(z)}{f(z)} dz$ is equal to the number of zeros of f counted with multiplicity in the disc D(0,s), with $\gamma_s(t) = se^{it}$, $t \in [0,2\pi]$.
- c) Consider $\Gamma_s = f \circ \gamma_s(t)$, $t \in [0, 2\pi]$. Prove that $Ind(\Gamma_s, 0) = I_s$. Deduce that there exists an open set $U \ni 0$ such that $\frac{1}{2\pi i} \int_{\gamma_s} \frac{f'(z)}{f(z) a} dz = I_s$ for all $z \in U$.
- d) Deduce the number of solutions of the equation f(z) a = 0 in the disc D(0, s).