King Saud University College of Sciences Department of Mathematics I-Semester 1428-1429 Time: 3 hours

Final Examination Complex Analysis II (683)

Problem.

\mathbf{A}

- 1) Prove that if D is a bounded domain in \mathbb{C}^n , then Aut(D) is non-compact if and only if there exist a sequence $\{f_n\}$ of automorphism of D and a point $p \in D$ such that $\{f_n(p)\}$ converges to a boundary point q of D.
- 2) Assume that q is a strongly pseudonconvex boundary point of D and assume that for some point $p \in D$, the sequence $\{f_n(p)\}$ converge to q. Prove that after taking a subsequence of $\{f_n\}$ we may assume that $\{f_n\}$ converges uniformly on all compact of D to q.

В

Let $\Omega = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^4 < 1\}$ and \mathbb{B} be the unit ball in \mathbb{C}^2 .

- 1) Verify that Ω is a pseudoconvex domain in \mathbb{C}^2 , but not strongly pseudoconvex.
- 2) a) We denote by $\omega(\partial\Omega)$ the weakly pseudoconvex part of the boundary. Describe $\omega(\partial\Omega)$.
- b) We denote by $Aut_0(\Omega) = \{f \in Aut(\Omega) \text{ and } f(0) = 0\}$. Justify that any automorphism $f \in Aut_0(\Omega)$ has the form :

$$f(z, w) = (az + cw, bz + dw)$$

where a, b, c and d are in \mathbb{C} with $ad - bc \neq 0$.

- c) Prove that if $f \in Aut_0(\Omega)$ then $f(\omega(\partial\Omega)) = \omega(\partial\Omega)$.
- d) Deduce from c) that |a| = 1 and b = 0.
- e)* Prove that c = 0 and |d| = 1.
- f) Deduce the form of $Aut_0(\Omega)$ and justify that $Aut_0(\Omega)$ is compact.
- g) Prove that there is no biholomorphic map between Ω and \mathbb{B} .
- h) Give a proper holomorphic map from Ω to \mathbb{B} .

C

1) For $a \in \mathbb{C}$, |a| < 1, we define ψ_a as $\psi_a(z, w) = \left(\frac{a - z}{1 - \bar{a}z}, \frac{(1 - |a|)^{\frac{1}{4}}}{(1 - \bar{a}z)^{\frac{1}{2}}}w\right)$. Prove

that ψ_a is an automorphism of Ω satisfying $\psi_a(a,0) = (0,0)$ and $\psi_a(0,0) = (a,0)$.

2) Deduce that $Aut(\Omega)$ is non compact.

Date: 22 January 2008.

3) We admit that any automorphism $f \in Aut(\Omega)$ satisfies $f(\{(z, w) \in \Omega, w = 0\}) = \{(z, w) \in \Omega, w = 0\}$. Deduce the form of $Aut(\Omega)$.

Exercise 1.

- 1) State the definition of a domain of holomorphy.
- 2) Prove that any holomorphic maps on $\Delta^2(0,2)\backslash\overline{\Delta^2(0,1)}$ extends holomorphically to $\Delta^2(0,2)$.
- 3) Prove that $\Delta^2(0,2)\backslash\overline{\Delta^2(0,1)}$ is a not a pseudoconvex domain. Justify your answer.
 - 4) Give an example of a pseudoconvex domain in \mathbb{C}^2 which is not convex.
- 5) Give $\underline{\text{an idea}}$ on the proof, showing that a domain of holomorphy is a pseudoconvex domain.
 - 6) Justify that any domain in \mathbb{C} is a domain of holomorphy.