King Saud University College of Sciences Department of Mathematics I-Semester 1428-1429 Time: 3 hours ## Final Examination Complex Analysis II (683) # Problem. #### \mathbf{A} - 1) Prove that if D is a bounded domain in \mathbb{C}^n , then Aut(D) is non-compact if and only if there exist a sequence $\{f_n\}$ of automorphism of D and a point $p \in D$ such that $\{f_n(p)\}$ converges to a boundary point q of D. - 2) Assume that q is a strongly pseudonconvex boundary point of D and assume that for some point $p \in D$, the sequence $\{f_n(p)\}$ converge to q. Prove that after taking a subsequence of $\{f_n\}$ we may assume that $\{f_n\}$ converges uniformly on all compact of D to q. #### В Let $\Omega = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^4 < 1\}$ and \mathbb{B} be the unit ball in \mathbb{C}^2 . - 1) Verify that Ω is a pseudoconvex domain in \mathbb{C}^2 , but not strongly pseudoconvex. - 2) a) We denote by $\omega(\partial\Omega)$ the weakly pseudoconvex part of the boundary. Describe $\omega(\partial\Omega)$. - b) We denote by $Aut_0(\Omega) = \{f \in Aut(\Omega) \text{ and } f(0) = 0\}$. Justify that any automorphism $f \in Aut_0(\Omega)$ has the form : $$f(z, w) = (az + cw, bz + dw)$$ where a, b, c and d are in \mathbb{C} with $ad - bc \neq 0$. - c) Prove that if $f \in Aut_0(\Omega)$ then $f(\omega(\partial\Omega)) = \omega(\partial\Omega)$. - d) Deduce from c) that |a| = 1 and b = 0. - e)* Prove that c = 0 and |d| = 1. - f) Deduce the form of $Aut_0(\Omega)$ and justify that $Aut_0(\Omega)$ is compact. - g) Prove that there is no biholomorphic map between Ω and \mathbb{B} . - h) Give a proper holomorphic map from Ω to \mathbb{B} . C 1) For $a \in \mathbb{C}$, |a| < 1, we define ψ_a as $\psi_a(z, w) = \left(\frac{a - z}{1 - \bar{a}z}, \frac{(1 - |a|)^{\frac{1}{4}}}{(1 - \bar{a}z)^{\frac{1}{2}}}w\right)$. Prove that ψ_a is an automorphism of Ω satisfying $\psi_a(a,0) = (0,0)$ and $\psi_a(0,0) = (a,0)$. 2) Deduce that $Aut(\Omega)$ is non compact. Date: 22 January 2008. 3) We admit that any automorphism $f \in Aut(\Omega)$ satisfies $f(\{(z, w) \in \Omega, w = 0\}) = \{(z, w) \in \Omega, w = 0\}$. Deduce the form of $Aut(\Omega)$. ### Exercise 1. - 1) State the definition of a domain of holomorphy. - 2) Prove that any holomorphic maps on $\Delta^2(0,2)\backslash\overline{\Delta^2(0,1)}$ extends holomorphically to $\Delta^2(0,2)$. - 3) Prove that $\Delta^2(0,2)\backslash\overline{\Delta^2(0,1)}$ is a not a pseudoconvex domain. Justify your answer. - 4) Give an example of a pseudoconvex domain in \mathbb{C}^2 which is not convex. - 5) Give $\underline{\text{an idea}}$ on the proof, showing that a domain of holomorphy is a pseudoconvex domain. - 6) Justify that any domain in \mathbb{C} is a domain of holomorphy.