King Saud University College of Sciences Department of Mathematics Complex Analysis 1426-1427

Exercises S.2

Exercise 1. Precise the type of singularities of the following functions. $\frac{1-\cos z}{\sin^2 z}$, $z(e^{\frac{1}{z}})$, $z^2 \sin \frac{z}{z+1}$, $sin(e^{\frac{1}{z}})$, $e^{cotan\frac{\pi}{z}}$.

Exercise 2. 1) Let f be a non-constant holomorphic function in an open set $\Omega \subset \mathbb{C}$ and let K be a compact of Ω . Prove that Ref can not have a maximum or a minimum in K (consider e^f).

2) Prove that if Ω is connected and f takes real values in the circle $\{z; |z-z_o|=R\} \subset \Omega$, then f is constant.

Exercise 3. Let $a \in \mathbb{C}$, r > 0 and f a holomorphic function in $D^*(a, r)$. 1) a) Prove that if a is an essential singularity, then there exists no neighborhood V of a such that $f(V \setminus \{a\}) \subset \{z \in \mathbb{C}, Rez > 0\}$.

b) Prove that if a is a pole of order $k \ge 1$, then we may write $f(z) = \frac{c}{(z-a)^k}(1+g(z))$, where c is constant and g is a holomorphic function and g(a) = 0. Deduce that any neighborhood of a intersects the set $\{Ref(z) < 0\}$.

c) Deduce that if there exists a neighborhood of a such that $f(V \setminus \{a\}) \subset \{z \in \mathbb{C}, Rez > 0\}$ then f extends in a.

Exercise 4. For r > 0, we denote by $D_r = \{z \in \mathbb{C} : |z| < r\}$. Let g be an analytic function in \mathbb{C} such that g(0) = 0 and

$$\forall z \in \mathbb{C}, \ \mathcal{R}eg(z) \le a + |z|^{\alpha}$$

with $\alpha \in (0,1)$ and $a \in \mathbb{R}$. For r > 0, we define the function

$$h(z) = \frac{g(rz)}{2A - g(rz)}, \text{ for } z \in D_1.$$

with $A = a + r^{\alpha}$.

a) Prove that h is analytic in D_1 and $h(D_1) \subset D_1$.

- b) Deduce that $|g(rz)| \leq \frac{2A|z|}{1-|z|} \quad \forall z \in D_1 \text{ and } |g(z)| \leq \frac{2A|z|}{r-|z|} \quad \forall z \in D_r.$
- c) Deduce that g identically equal to zero in \mathbb{C} .

Exercise 5. Let $f: D(0,1) \to D(0,1)$ be an analytic function. Assume that f has two fixed points in D(0,1). Prove that f = Id (we can use the Schwarz's lemma).

Exercise 6. Let $\Omega = \{z \in \mathbb{C} : -\pi < Imz < \pi\}$ and D the unit disc in \mathbb{C} . We consider $f(z) = \frac{1-z}{1+z}$ for $z \in D$. 1) Prove that f is analytic in D and find f(D).

2) Deduce that $g = Log_{-\pi}(f^2)$ is well define and g(0) = 0.

- 3) Prove that g is a biholomorphism from D into Ω .
- 4) For 0 < r < 1, we denote by D_r the disc of center 0 and radius r.
 - a) Prove that $f(D_r)$ is the disc of diameter $[\frac{1-r}{1+r}, \frac{1+r}{1-r}]$.

b) Deduce that $|Argf(z)| \leq 2Arctanr$ for $z \in \overline{D}_r$.

5) Let k be an analytic function in D such that $K(D)\Omega$ and k(0) = 0. Prove that $k(\overline{D}_r) \subset \overline{D}_r$ for 0 < r < 1 (apply the Schwarz's lemma to $g^{-1} \circ k)$ 6) Deduce that $Rek(z) \leq 2ln \frac{1+|z|}{1-|z|}$ and $|Imk(z)| \leq 4Arctan|z|$.