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Chapter 1. Probabilit y

1.1 Intro duction

De nition: A probabilit y is a number betweenO and 1 represeting how likely it
is that an evert will occur.

Probabilities can be:

1. Frequertist (basedon frequencies),

e.g numberof timeseventoccurs :
numberof opportunitiedor eventto occur

2. Subjective: probability represeis a person's degree of belief that an
evert will occur,
e.g.l think thereis an80% chancat will raintoday
written asP(rain) = 0:80.

Regardlessof how we obtain probabilities, we always combine and manipulate
them accordingto the samerules.

1.2 Sample spaces

De nition: A random experiment is anexperimert whoseoutcomeis notknown
until it is obsered.

De nition: A sample space, , isa setof outcome®f arandomexperiment.

Every possibleoutcomemust be listed onceandonly once.

De nition: A sample point is an elemenif thesamplespace.

For example,if the samplespaceis = fsi;Sy;S30, then ead s; is a sample
point.
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Experiment: Tossa coin twice and obsene the result.
Samplesppe: = fHH;HT;TH;TTg
An exampleof a samplepoint is: HT

Experiment: Tossa coin twice and court the number of heads.
Samplespcee: = 0;1;2g

Experiment: Tossa coin twice and obsene whetherthe two tossesare the same
(e.g.HH or TT).
Samplespace: = fsamedi ereng

Discrete and contin uous sample spaces

De nition: A samplespaceis nite if it hasa nite numberof elements.

De nition: A sample spaceis discrete if thereare “gaps”betweenthe di erent
elementsor if theelementsanbe“listed”, evenif anin nite list(eg. 1,2;3;::?).

In mathematical language,a samplespaceis discreteif it is countable.

De nition: A samplespaces contin uous if therearenogapsbetweertheelements,
sotheelementsannotbelisted(eg. theintenal [0; 1]).

Examples:

= f0;1;2; 3g (discreteand nite)

= f0;1;2;3;:::9 (discretejn nite)

= f4.5; 4:6; 4:7g (discrete, nite)

= fHH;HT; TH; TTg (discrete, nite)

= [0; 1] =f all numbersetweerD and1 inclusiveg (continuousjn nite)
= [0;90); [90;360) (discrete,nite)



1.3 Events

Supposeyou are setting out to createa science
of randomness.Somehav you needto harness
the idea of randomnesswhich is all about the
unknown, and expressit in terms of mathematics.

4
How would you do it? T

_ Kolmogorov (1903-1987).
Sofar, we have introducedthe sample space, , One of the founders of
which lists all possibleoutcomesof a random probability theory.

experimert, and might seemunexciting.

Howewer, is a set. It lays the ground for a whole mathematical formulation
of randomnessjn terms of settheory

The next conceptthat you would needto formulate is that of something that
happens at random, or anevent.

How would you expressthe idea of an event in terms of set theory?

De nition: An event is a subsebf thesamplespace.
That is, ary collectionof outcomedormsanevent.

Example: Tossa cointwice. Samplespace: = fHH;HT;TH;TTg

Let evert A bethe evert that thereis exactly onehead.
We write: A = “exactly onehead”

Then A=fHT;THg.

A is a subsetof , asin the de nition. We write A

De nition: Evernt A occurs if we obsere anoutcomethatis a memberof the set
A.

Note: Is a subsetof itself, so is an evert. The empty set, ; = fg, is alsoa
subsetof . This is calledthe null event, ortheevent with no outcomes .
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Experiment: throw 2 dice.
Samplespace: = f(1;1);(1;2);:::;(1;6);(2;1);(2;2);:::5(2;6);:::;(6;6)9

Event A = “sumoftwo facess5” = f(1;4);(2;3);(3;2); (4; 1)g

Combining Events

Formulating random eerts in terms of sets gives us the power of set theory
to descrike all possibleways of combining or manipulating everts. For exam-
ple, we needto descrile things like coincidenceqeverts happening together),

alternativ es,opposites,and soon.

We do this in the languageof set theory.

Example: Supposeour random experimert is to pick a personin the classand see
what form(s) of transport they usedto getto campustoday.

Car
Walkﬂk

Bike

&
Train ‘-- -

People in clas

This sort of diagram represeting ewerts in a sample spaceis called a Venn
diagram.
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1. Alternativ es: the union “or' operator

We wish to descrike an evert that is composedof seseraldi erentalternatves.

For example,the event that you useda motor vehicleto get to campusis the
event that your journey involved a car, or a bus, or both.

To represen the set of journeys involving both alternatives, we shadeall out-
comesn Bus'andall outcomesn "Car'.

Walk(k

Bike

&
Train a-- —

People in clas

Overall, we have shadedall outcomesn the UNION of BusandCar

We write the ewert that you useda motor vehicleasthe evert Bus[ Car, read
as“Bus UNION Car”.

The union operator, [ , denotesBus OR CarOR both.

Note: Be careful not to confuse Or' and "And'. To shadethe union of Bus and
Car, we had to shadeewerything in Bus AND ewerything in Car.

To remenber whether union refersto "Or' or "And’, you have to considerwhat
doesanoutcomeneedto satisfyfor theshadedventto occur?

The answer is Bus,OR Car OR both.NOT BusAND Car

De nition: Let A and B be ewerts on the samesamplespace: so A and
B

The union of events A and B is written A[ B, andis given by
A[ B=fs:s2A ors2B or bothy:
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2. Concurrences and coincidences: the intersection “and' operator

The intersection is an ewvert that occurswhentwo or more events ALL occur
together

For example,considerthe event that your journey today involved BOTH a car
AND atrain. To represen this evert, we shadeall outcomesn the overlap of

CarandTrain.
i " ®
))

0’ Bus

Car
Walk'k

Bike

&
Train ‘-- T

People in clas

We write the event that you usedboth car and train as Car\ Train, readas
“CarINTERSECTTrain”.

The intersectionoperator, \ , denotesbothCarAND Traintogether

De nition: The intersection of events A and B is written A\ B andis given by

A\ B=fs:s2 A AND s2 Bg:

3. Opp osites: the complement or 'not' operator

The complemen t of an event is the oppositeof the event: whatever the event
was, it didn't happen.

For example, considerthe evert that your journey today did NOT involve

walking. To represen this event, we shadeall outcomesn exceptthosein the
eventWalk.
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Bus
Car

Walk
Bike

Train

People in clas

We write the event "not Walk' as Walk.

De nition: The complemen t of evert A is written A and is given by

A=fs:sZAg:

Examples:

Experiment: Pick a personin this classat random.
Samplesmce: = fall peoplein class).

Let evert A =\p ersonis male" and evert B =\p ersontravelledby bike today".

Supposel pick amale who did not travel by bike. Say whetherthe following
everts have occurred:

1) A Yes. 2)B No.
3)A  No. 4)B  Yes.
5) A[ B = ffemaleor bikerideror bothy. No.

6) A\ B = fmaleandnon-bikery. Yes.

7) A\ B = fmaleandbikerider. No.

8) A\ B = everythingoutsideA\ B. A\ B did notoccur soA\ B did occur
Yes.

Question: What isthe evert 2 = ;
Challenge: can you expressA\ B using only al sign?

Answer: A\ B = (A[ B):



gy THE UNIVERSITY
OF AUCKLAND
NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 1

Limitations of Venn diagrams

Venn diagrams are generally useful for up to 3 ewvens, although they are not
usedto provide formal proofs. For more than 3 ewverts, the diagram might not
be ableto represem all possibleoverlapsof events. (This wasprobably the case
for our transport Venn diagram.)

Example: A B A B

C C

(@ A[B[C (b) A\ B\ C

Prop erties of union, intersection, and complemen t

The following properties hold.

;= and =;.
(i) For any ewvernt A, A[ A =
and A\ A = ;
(i) For any ewverts A and B, A[ B = B[ A;
and A\ B = B\ A Commutatve.
(iv) (@) (A[ B) = A\ B: (b) (A\ B)=A[ B:

S = Ea=fe=s
= — —\
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Distributiv e laws

We are familiar with the fact that multiplication is distributiv e over addition.
This meansthat, if a, b, and c are any numbers, then

a (b+c)=a b+a c:
Howewer, addition is not distributiv e over multiplication:
a+(b ¢c6(a+b (a+0:

For set union and set intersection, unionis distributive over intersection AND
intersectionis distributive over union.

Thus, for any setsA, B, and C:
Al (B\ C)

(AL B)\ (AL C);

and A\ (B[ C) = (A\ B)[ (A\ C):

More generally for seweral everts A andB4;B»;:::;Bp;,

A[ (Bi\ By\ :::\ Bn) = (A[ B\ (A[ By)\ :::\ (A[ By)
\n | \n
ie. AJ Bi = (A Bi);
i=1 i=1

and

A\ (B1[ Ba[ :::[ Bn)

I
[ n

Ie. A\ Bi = (A\ Bi)Z
i=1 i=1

(A\ By) [ (AN Bo)[ :::[ (AN Bp)
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1.4 Partitioning sets and events

The idea of a partition is fundamertal in probability manipulations. Later in
this chapter we will encourter the important Partition Theorem. For now, we
give somebadkground de nitions.

De nition: Two events A and B are mutually exclusiv e, or disjoin t, if A\ B =

This meanseventsA andB cannothappertogether If A happensit excludesB
from happeningandvice-versa.

O C

Note: Doesthis meanthat A and B are independen?

No: quitetheopposite A EXCLUDESB from happeningsoB dependstrongly
onwhetheror notA happens.

De nition:  Any number of events Ay; Ay;:::; Ax aremutually exclusiv e if every
pair of theeventsis mutuallyexclusie: ie. Ai\ A; = ; foralli;j withi 6 j.

A Ay Az

QOO

De nition: A partition of the samplespace isa collectionof mutuallyexclusive
eventswhoseunionis

That is, setsB1;By;:::; Bk form a partition of if
Bi\ B; = ; forall i;j withi6 j;

[k
and Bi = Bi[ B[ :::[ Bk =



Examples:

B1; By; Bs; B4 form apartition of

B

Bs

B2

B4

Imp ortan t: B andB partition for ary eventB:

Partitioning

an event A
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o

Any setor eventA canbe partitioned.:it doesnt have to be

B

Ba

Bs

We will seethat this is very usefulfor nding the probability of evernt A.

This is becauseit is often easierto nd the probability of small “chunks' of A
(the partitioned sections)than to nd the whole probability of A at once. The
partition idea shows us how to add the probabilities of these chunks together:

seelater.
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1.5 Probabilit y: a way of measuring sets

Remenber that you are given the job of building the scienceof randomness.
This meanssomehav ‘measuringchance’.

If | sert you away to measureheighs, the rst
thing you would askis what you are supposed
to be measuringthe heights of. \ %
People?Trees?Mountains?

We have the samequestionwhen setting out to measurechance.
Chanceof what?

The answer is sets.

It was clewver to formulate our notions of events and samplespacesn terms of
sets: it givesus somethingto measure. Probability’, the namethat we give to
our chance-measureis away of measuringsets.

You probably already have a good idea for a suitable way to measurethe size
of a setor evert. Why not just countthe numberof elementsn it?

In fact, this is often what we do to measureprobability | (although courting
the number of elemerts can be far from easy!) But there are circumstances
wherethis is not appropriate.

What happens, for example,if one setis far mor e likely than another, but
they have the samenumber of elemens? Shouldthey be the sameprobability?

First set: f Lionswing:
Second set: fAll Blackswing.

Both setshave just one elemen, but
we de nitely needto give themdi erentprobabilities!

More problemsarise when the setsare in nite
or continuous.

Should the intervals [3;4] and [13; 14] be the same probability, just because
they are the samelength? Yesthey should, if (say) our random experimert is
to pick a random number on [0; 20]| but no they shouldn't (hopefully!) if our
experimert wasthe time in yearstaken by a studert to nish their degree.
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Most of this courseis about probabilit y distributions.

A probability distribution is aruleaccordingo which probabilityis apportioned,
or distributed,amongthedi erentsetsin thesamplespace.

At its simplest, a probability distribution just lists every elemer in the sample

spaceand allots it a probability between0 and 1, suchthat the total sum of

probabilitiesis 1.

In the rugby example,we could usethe following probability distribution:
P(Lionswin)= 0.01, P(All Blackswin)= 0:99:

In general,we have the following de nition for discrete samplespaces.

Discrete probabilit y distributions

De nition: Let = fs;y;Sy;:::9 be a discretesamplespace.
A discrete probabilit y distribution on isa setofrealnumbers p.;p;;:::g
associateavith the samplepointsf s,; s,; : : :g suchthat:

1.0 p 1foralli;
X
2. pPi = 1.
i

pi is calledthe probabilityof the eventthatthe outcomess;.

We write: pi = P(sj).

The rule for measuringthe probability of any set, or event, A , isto sum
the probabilitiesof the elementof A:
X
P(A)=  p:
i2A

E.g.if A = fs3;s5; 8140, then P(A) = pz3+ ps+ pua.
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Contin uous probabilit y distributions
On a corntinuous samplespace, e.g. = [0;1], we can not list all the ele-

ments and givethem an individual probability. We will needmore sophisticated
methods detailed later in the course.

Howewer, the sameprinciple applies. A cortinuousprobability distribution isa
rule underwhich we cancalculatea probability betweerO and1 for any set,or
event, A

Probabilit y Axioms

For any samplespace,discreteor cortinuous,all of probability theory is based
on the following three de nitions, or axioms.

Axiom1: P() =1

Axiom2: 0 P(A) 1forall eventsA.

Axiom 3: If A Ay Ay aremutually  exclusiv e events,(nooverlap),then

P(A1[ Az [ An) = P(A1) + P(A2) + 111+ P(Ay):

If our rule for 'measuringsets'satis es the three axioms, it is a valid probability
distribution.

It shouldbeclearthat the de nitions givenfor the discretesamplespaceon page
16 will satisfy the axioms. The challengeof de ning a probability distribution
on a cortinuoussamplespaceis left till later.

Note: The axiomscan newer be “proved': they are de nitions.
Note: P(;) = 0:

Note: Remenberthat anEVENT isaSET. aneventis asubsebf thesamplespace.
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1.6 Probabilities of combined events

In Section 1.3 we discussedunions, intersections,and complemers of evens.
We now look at the probabilities of these conbinations. Everything below
appliesto events (sets)in eithera discreteor a continuoussamplespace.

1. Probabilit y of a union

Let A and B be ewernts on a samplespace . There are two casesfor the
probability of the union A[ B:

1. A andB aremutuallyexclusve (nooverlap):i.e.A\ B = ;.

2. A andB arenotmutuallyexclusve: A\ B 6 ;.

For Casel, we get the probability of A[ B straight from Axiom 3:

If A\ B=:; thenP(A[ B) = P(A) + P(B):

For Case2, we have the following formula;

For ANY eventsA,B, P(A[ B)=P(A)+ P(B) P(A\ B).

Note: The formula for Case?2 appliesalsoto Casel: just substitute
P(A\ B) = P(;) = 0:

For three or more evens: e.g.for any A, B, and C,

P(A[ B[ C) = P(A)+ P(B)+ P(C)
P(A\ B) P(A\ C) P(B\ C)
+ P(A\ B\ C):
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Explanation

For any evenis A andB, P(A[ B)=P(A)+ P(B) P(A\ B).

The formal proof of this formula is in Section1.9 (non-examinable).
To understandthe formula, think of the Venn diagrams:

A W A W
B B\ (AnB)
When we add P(A) + P(B), we Alternativ ely, think of A[ B as
addtheintersectiortwice. two disjoint sets:all of A,
Sowe have to subtracthe {?mdthebi?sof B withoutthe
intersectioronceto getP(A [ B): intersectionSoP(A [ B) =
P(A[ B) = P(A)+ P(B) P(A\ B): P(A)+ P(B) P(A\ B) :

2. Probabilit y of an intersection

There is no easyformula for P(A\ B). A

We might be able to use statisticalindependence
(Section1.16).

If A and B are not statistically independen,
we often use conditionalprobability
(Section1.10.)

3. Probabilit y of a complemen t

PA)=1 P(A):

>

This is obvious, but a formal proof is givenin Sec.1.9.
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1.7 The Partition Theorem

The Partition Theoremis one of the most useful tools for probability calcula-

tions. It is basedon the fact that probabilities are often easierto calculate if
we breakdown a setinto smallerparts.

Recallthat a partition of is acollection Bi B>
of non-aserlappingsetsB1;:::; By which
togethercover everythingin . Bs B4

partitionof thesetor eventA.

A\ Bl A\ BZ
B A B AN ?Aﬁﬂ-
.. .. GWD

A\ Bj; A\ By

The probability of evert A is therefore thesumof its parts:

P(A) = P(A\ By)+ P(A\ B,)+ P(A\ Bs)+ P(A\ B):

The Partition Theoremis a mathematical way of saying the wholeis the sum
of its parts.

Theorem 1.7: The Partition Theorem. (Proof in Section1.9.)

X
P(A)=  P(A\ B)).
i=1

Note: Recallthe formal de nition of a partition.SSetsBl; Bo;:::;Bm form a par-
tition of if Bj\ B;j=; forall i6j;and =, B;=
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1.8 Examples of basic probabilit y calculations

300 Australians were asked about their car preferencesn 1998. Of the respon-
dents, 33% had children. The responderts were asked what sort of car they
would like if they could chooseany car at all. 13% of responderts had children
and chosea large car. 12% of responderts did not have children and chosea
large car.

Find the probability that a randomly chosenrespondert:
(a) would choosea large car;
(b) either has children or would choosea large car (or both).

First formulateevents:
Let C = “haschildren” C = “no children”
L = “choosedargecar”.

Next write down all theinformationgiven:

P(C) = 0:33
P(C\ L) = 0:13
P(C\ L) = 012

(a) Askedfor P(L).
P(L) = P(L\ C)+ P(L\ C) (Partition Theorem)
= P(C\ L)+ P(C\ L)
= 013+ 0:12
= 0:25 P(choosedargecar)= 0:25:

(b) Askedfor P(L [ C):
P(LT C)

P(L)+ P(C) P(L\ C) (Sectionl.6)
= 0:25+ 0:33 0:13
= 0:45:
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Responderts werealsoasked their opinionson car reliabilit y and fuel consump-
tion. 84% of responderts consideredreliability to be of high importance, while
40% consideredfuel consumptionto be of high importance.

Formulate events: R = \considersreliability of high importance;
F = \considersfuel consumptionof high importance™

(c) What is P(R)?
(d) What is P(R\ F)?
Informationgiven: P(R) = 0:84 P(F) = 0:40.

(c) PR) = 1 P(R)
= 1 084
= 0:16:

(d) We cannot calculateP(R\ F) from theinformationgiven.

(e) Given the further information that 12% of responderts consideredneither
reliability nor fuel consumptionto be of high importance, nd P(R[ F) and
P(R\ F).

Informationgiven: P(R][ F) = 0:12

Thus PR[F) = 1 P(R[F)
= 1 012
= 0:88

Probability that respondentonsiderseither reliability or fuel consumption,or
both, of highimportance.

P(R\ F) P(R)+ P(F) P(R[ F) (Sectionl.6)
0:84+ 0:40 0:88
= 0:36:
Probability that respondentonsidersBOTH reliability AND fuel consumption
of highimportance.
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(f) Find the probability that a respondert consideredreliability, but not fuel
consumption, of high importance.

P(R\ F) = P(R) P(R\ F) (Partition Theorem)
= 0:84 0:36
= 048

1.9 Formal probabilit y pro ofs: non-examinable

If you are a mathematician, you will be interestedto seehow properties of
probability are proved formally. Only the Axioms, together with standard set-
theoretic results, may be used.

Theorem : The probability measureP hasthe following properties.

() PG)=0.
(i) P(A) =1 P(A) for any evert A.

even A,
xn
P(A) = P(A\ Bj):

i=1

(iv) P(A[ B) = P(A)+ P(B) P(A\ B) for any everts A, B.

Pro of:

i) Forany A, wehaveA=AJ[ ;; and A\ ; = (mutually exclusiw).
SoP(A) = P(A[ ;)=PA)+ P(;) (Axiom 3)
) P()=0.
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i) =A[A; and A\ A=; (mutually exclusiw).
SO ﬂj{EQ = P(A[ A) = P(A) + P(A).  (Axiom 3)
Axiom 1

i) SupposeBi;:::;Bnm areapartiéion of :

thenBi\ B =; ifi6j,and =, Bj=
Thus, (A\ Bij)\ (A\ Bj)= A\ (Bj\ B;)=A\; =, fori6]j,
ie. (A\ Bq);:::;(A\ Bp) are mutually exclusiwe also.
!
xn [m
So, P(A\ Bj)) = P (A\ Bj) (Axiom 3)
i=1 i=1
!
m
= P A\ Bi (Distributiv e laws)
i=1
= P(A\ )
= P(A):

A[ B = }(1A\ ) [ (B )h (Set theory)
i |
= A\ (B[ B) [ B\ (A[ A) (Settheory)

= (A\ B)[ (A\ B)[ (B\ A)[ (B\ A) (Distributiv e laws)
= (A\ B)[ (A\ B)[ (A\ B):

These3 ewvents are mutually exclusive:
eg. (A\ B)\ (A\ B)=A\ (B\ B)= A\ ; =, etc.

So, P(A[ B) E(A\ B) + P(A\ B)i+ F;](A\ B) (Axiom 3)i

P(A) PA\B) + P(B) P(A\B) +P(A\B)

from (iii) usingB and B from (iii) using A and A

P(A)+ P(B) P(A\ B):
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1.10 Conditional Probabilit y

Conditioning is another of the fundamenal tools of probability: probably the
most fundamenal tool. It is especially helpful for calculating the probabilities
of intersections,such as P(A\ B), which themsehesare critical for the useful
Partition Theorem.

Additionally, the whole eld of stochastic processe¢Stats 320and 325)is based
on the ideaof conditional probability. What happensnext in a processdepends,
or is conditional, on what has happenedbeforehand.

Dep endent events

SupposeA and B are two everts on the samesamplespace. There will often
be dependencéetweenA and B. This meansthat if we know that B has
occurred, it changesour knowledgeof the chancethat A will occur.

Example: Tossa die once.

Let evert A = “getab”
Let evert B= “getanevennumber”

If the die is fair, then P(A) = £ andP(B) = 3.

Howewer, if we know that B has occurred, then there is anincreasedthance
that A hasoccurred:

P(A occursgiventhat B hasoccurred) = % resuﬁezs%lﬁgore

We write
P(A givenB) = P(AjB) =

Wl

Question: what would be P(B j A)?

P(BjA) P(B occurs,giventhatA hasoccurredl
P(getanevennumbey giventhatwe know we got a 6)

= 1
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Conditioning as reducing the sample space

The car survey in Section 1.8 also asked responderts which they valued more
highly in a car: easeof parking, or style/prestige. Here are the responses:

Male Female| Total

Prestigemore important than parking 79 51| 130
Prestigelessimportant than parking 71 99| 170
Total | 150 150| 300

Supposewe pick a respondert at random from all thosein the table.

Let evert A = \respondert thinks that prestigeis more important".

#A's 130

= = = 0:43
total # respondents 300

P(A)

Howeer, this probability di ers betweenmalesand females.Supposewe reduce
oursamplespacdrom

= f all peoplein tabley

to
B = f all malesin tabley:

P(respondert thinks prestigeis moreimportant, giventhat respondert is male)

# maleswho favour prestige
total # males

#maleA's
# males

PAY AND
DISPLAY

_ 19 A
150

= 053

We write: P(AjB) = 0:53
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We could follow the sameworking for any pair of everts, A and B:
#B 'swho areA
total#B's
#in tablewho areBOTH B andA
#B's
(#inB AND A)=(#in )
(#IinB)=(#in )

P(AjB) =

P(A\ B)
P(B)

This is our de nition of conditional probability:

De nition: Let A andB betwo events. The conditional probabilit y that event
A occurs, given that event B has occurred , is written P(AjB),

and is given by
P(A\ B)

P(AIB) = —55

ReadP(AjB) as “probability of A, givenB”.

Note: P(A|B) givesP(A andB , from within thesetof B's only).
P(A\ B) givesP(A andB , from thewhole samplespace ).

Note: Follow the reasoningabove carefully. It is important to understand why
the conditional probability is the probability of the intersectionwithin the new
samplespace.

Conditioning on evert B meanschanging the sample space to B.

Think of P(AjB) asthe chanceof getting an A, from the setof B's only.
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The symbol P belongs to the sample space

Recallthe rst of our probability axiomson pagel7:
P() =1

This indicatesthat the symbol P is de ned with resgct to . That is,
P BELONGSto thesamplespace .

If we changethe samplespace,we needto changethe symbol P. This is what
we do in conditional probability:

to changethe samplespacefrom  to B, say we changefrom the symbolP to
thesymbolP( jB).

The symbol P( jB) should behae exactly lik e thesymbolP.

For example:
P(C[ D)= P(C)+ P(D) P(C\ D);
SO
P(C[ DjB)=P(CjB)+ P(DjB) P(C\ D|B):

Trick for checking conditional probabilit y calculations:

A usefultrick for chedking a conditional probability expressionis to replacethe
conditionedsetby , andseewhetherthe expressions still true.

For example,is P(AjB) + P(AjB) = 1?
Answer: ReplaceB by : thisgives

P(Aj) +P(Aj) = P(A)+ P(A)= L
So,yes,P(AjB) + P(AjB) = 1 for ary othersamplespaceB .
IsP(AjB)+ P(AjB) = 1?

Try to replacethe conditioningsetby : we cant! Therearetwo conditioning
sets:B andB.

The expressionis NOT true, andin factit doesnt make sensedo try to addto-
gethemrobabilitiesfrom two di erentsamplespaces.
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The Multiplication  Rule

For any everts A and B,

P(A\ B) = P(AjB)P(B) = P(BjA)P(A).

Pro of:

Immediatefrom thede nitions:

P(A]B) = % ) P(A\ B)= P(A]B)P(B):;
and
P(BjA) = % ) P(B\ A)= P(A\ B)= P(BjA)P(A):

New statement of the Partition Theorem

The Multiplication Rule givesus a new statemern of the Partition Theorem:

X xn
P(A) = P(A\ Bj) = P(A ] B;)P(B;):
i=1 i=1

Both formulations of the Parti{ion Theoremare very widely used,but especially
the conditional formulation = 2, P(AjB;)P(B;).

W arning:

Be careful to usethis new versionof the Partition Theoremcorrectly:
itis P(A)=PAjB)P(B.) + :::+ P(AjBn)P(Bnm),
NOT P(A)=P(AjBy) + :::+ P(AjBn).
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1.11

When Peter Pan was hungry but had nothing to eat,
he would pretendto eat.
(An excellen strategy, | have always found.)

Conditional probability is the Peter Pan of Stats 210. When you don't know
somethingthat you needto know, pretendyou know it.

Conditioning on an ewvert is like pretending that you know that the event has
happened.

For example,if you know the probability of getting to work on time in di erent
weather conditions, but you don't know what the weather will be like today,
pretendyou do— andaddupthedi erentpossibilities.

P(work ontime) = P(work ontimej ne) P(ne)
+ P(work ontimej wet) P(wet).

Examples of conditional probabilit y and partitions

Tom getsthe bus to campusewery day. The busis on time with probability
0.6, and late with probability 0.4.

The sample spacecan be written as = fbusjourneysy. We can formulate
ewvers asfollows:

T = \on time"; L = \late".

From the information given, the evernts have probabilities:

P(T) = 0:6; P(L) = O:4:

(a) Do the everts T and L form a partition of the samplespace ? Explain why

or why not.

Yes: they cover all possiblegjourneys (probabilitiessumto 1), andthereis no
overlapin the eventsby de nition.
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The busesare sometimescrowded and sometimesnoisy, both of which are
problemsfor Tom as he likesto usethe bus journeysto do his Stats assign-
mens. When the busis on time, it is crowded with probability 0.5. When it

Is late, it is crowded with probability 0.7. The bus is noisy with probability
0.8 whenit is crowded, and with probability 0.4 whenit is not crowded.

(b) Formulate everts C and N corresppndingto the busbeingcrowdedand noisy.
Do the everts C and N form a partition of the samplespace?Explain why
or why not.

Let C = “crowded”, N =*“noisy”.
C andN do NOT form a partitionof . It is possiblefor the busto be noisy
whenit is crovded,sotheremustbe someoverlapbetweerC andN .

(c) Write down probability statemers correspnding to the information given
above. Your answer should involve two statemerts linking C with T and L,
and two statemerts linking N with C.

P(CjT) = 05; P(CjL) = 0:7:
P(NjC) = 08; P(NjC) = 0:4:

(d) Find the probability that the busis crowded.

P(C)

P(CjT)P(T) + P(CjL)P(L) (Partition Theorem)
05 06+ 07 04
0:58

(e) Find the probability that the busis noisy.

P(N) P(N jC)P(C) + P(N jC)P(C) (Partition Theorem)
0:8 058+ 04 (1 0:58)

= 0:632
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1.12 Bayes' Theorem: inverting conditional probabilities

ConsideiP(B\ A) = P(A\ B): Apply multiplicationrule to eachside:

P(BjA)P(A) = P(A]B)P(B)

P(AIB)P(B) .

Thus | P(BA) = ——ps

(?)

This is the simplestform of Bayes' Theorem, named
after Thomas Bayes(1702{61), English clergyman
and founder of Bayesian Statistics.

Bayes' Theoremallows usto “invert” theconditioning,
I.e.to expressP(B jA) in termsof P(AjB).

This is very useful. For example,it might be easyto calculate,
P(latereventearliereven);

but we might only obsene the later evert and wish to deducethe probability
that the earlier evert occurred,

P(earliereventj latereven):.

Full statemern of Bayes' Theorem:

Theorem 1.12: Let By;By;:::;By form a partitionof . Then for any event A,

o P(A]Bj)P(B;)

P B (AIB)P(B) (Bayes'Theorem)
i=1 I I

P(BjJA) =

Pro of:

mediatefrom (?) (putB = B;), andthe Partition Rule which givesP(A) =
i1 P(AjB;)P(B)):
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Special caseof Bayes' Theoremwhenm = 2: useB andB asthe partition of

then | P(BjA) = PAIB)P(B)
P(AjB)P(B) + P(AjB)P(B)

Example: The caseof the Per dious Gardener.
Mr Smith owns a hystericalrosebush.It will die with

probability 1/2 if watered, and with probability 3/4 if | M

not watered. Worsestill, Smith employs a per dious & ﬁ%
gardenerwho will fail to water the rosebushwith __
probability 2/3. Sy ;

Smith returns from holiday to nd the rosebush... DEAD!!!
What is the probability that the gardenerdid not water it?

Solution:

First step:formulateevents

Let : D = “rosehlushdies”
W = “gardenemwatersroselish”
W = ‘“gardeneffailsto waterroselish”

Secondstep:write down all informationgiven

P(DjW) = 1 P(DjW) =3 P(W) = £ (soP(W) = 1

Third step:write dowvn whatwe're looking for

P(W D)

Fourthstep:comparehis to whatwe know

Needto invertthe conditioning,souseBayes'Theorem:

P(D j W)P(W) B 3=4 23

"WIP) = S TWir(W) + PDjWIP(W) | 3 28+ 12 13

3
4

Sothegardeneiffailedto waterthe roselushwith probability 3.



Example: The caseof the Defective Ketchup Bottle.

Ketchup bottles are producedin 3 di erent factories,accouring

for 50%, 30%, and 20% of the total output respectively. i)
The percenage of defective bottles from the 3 factoriesis gsym?

respectively 0.4%,0.6%,and 1.2%. A statistics lecturer who
eatsonly ketchup nds a defective bottle in her wig.
What is the probability that it camefrom Factory 1?

Solution:

1. Events:

letF; = “bottle comesfrom Factoryi” (i=1,2,3)
letD = “bottle is defective”

2. Informationgiven:

P(F1) = 05 P(F,) = 0:3 P(F3) = 0:2
P(DjFy) = 0004 P(DjFy) = 0006 P(DjF3) = 0:012

3. Lookingfor:

P(F1jD) (soneedto invertconditioning).

4. BayesTheorem:
P(D jF1)P(F1)
P(D jF1)P(F1) + P(D j F2)P(F2) + P(D j F3)P(F3)
0:004 05
0:004 05+ 0:006 0:3+ 0:012 02

0:002
0:0062

P(F1jD) =

= 0:322
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1.13 Chains of events and probabilit y trees

The multiplication rule is very helpful for calculating probabilities when events
happenn sequence.

Example: Two balls are drawn at random without replacememn from a box con-
taining 4 white and 2 red balls. Find the probability that:
(a) they are both white,
(b) the secondball is red.

Solution
Solutior O .Q
@“0/

LeteventW; = “ith ball is white” and R; = “ith ball is red”.

Q. /\QV\A
U e)

b) Lookingfor P(2ndball is red. Wecant nd thiswithoutconditioningonwhat
happeneadh the rst draw.

a)P(Wi\ W,) = P(W2\ W;) = P(W,jW1)P(W,)

Now P(W,) = g and P(W2jW,y) = g:

3 4
6

SoP(bothwhite) = P(W,\ W,) = z g

Event“2nd ball is red” is actuallyeventf W,R5; R1R>g = (W1\ Ry)[ (R1\ Ry):
SoP(2ndballis red

P(W1\ Ry) + P(R1\ Ry) (mutuallyexclusve)
P(R2j W1)P(Wy) + P(R2j R1)P(R1)

2 4 L, 12
5 6 5 6

N

O® O O O/\.Rl
\LOOJ \LOO]

Wl
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Probabilit y trees

Probability treesare a graphical way of represeting the multiplication rule.

allw

(S21F

First Draw Second Drav

Write conditionalprobabilitieson the branchesand multiply to get probability

. . 4 3 2
of anintersectioneg. P(W1\ W,) = 6 B; or P(R1\ W) = 6 &

More than two events

To nd P(A1\ A\ Ajz) we canapply the multiplication rule successiely:

P(Al\ Az\ A3) = P(Ag\ (A]_\ Az))

P(A3jA1\ A)P(AL\ Ay)  (multiplicationrule)

P(A3zjA1\ A)P(A2jA1)P(AL)  (multiplicationrule)
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Remenber as:| P(A1\ Ax\ A3z) = P(A)P(A2jA)P(A3j AL\ Ay):

On the probability tree:

P(Aszj A2\ Ay)

P(AL\ A\ A)

P(Al\ Ao\ o\ An) = P(A]_)P(Azj A]_)P(A3j Ao\ A]_) cas P(Anj An 1\ o\ A]_)

Example: A box cortains w white balls and r red balls. Draw 3 balls without
replacemen What is the probability of getting the sequencavhite, red, white?

Answer:

P(W1\ R\ Wy) P(W1)P(R2] W1)P(W3jR2\ W)

W r w 1
W+ r w+r 1 w+r 2
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Soyou're better off with AntiCough
...or alfeyou???

Have alook at the gur es:

AntiCough  Other Medicine
Givento: 25 75
Cured: 20 58

%Cured:  80% () 77%

AntiCough  Other Medicine
Givento: 75 25
Cured: 50 16

%Cured: 67% @ 64%

Combinethe studies. .. What happens?

Newer believe what you read.. . This is Simpson'sParada. . . Newer believe what you read.. . This is Sim
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1.14 Simpson's parado X

It is possiblefor onetreatmente.g. Anticough)to be betterthananothenOther
Medicine)in every one of a set of categories (e.g.Studyl andStudy?2), but
worseoverall!

Combining the results overleaf:

AntiCough Other Medicine
Givento: 100 100
Cured: 70 74
%Cured: 70% 74%

Overall, AntiCough hasa 4%lower curepercentag¢’70%),
despite being about 3% higher in both Study1 andStudy?2.

This e ect is known as Simpson's Parado x.
It occursbecause

P(CJA) = P(CJA\ $))P(S1]A) + P(CJAN $)P(S:)A);

P(CjA) = P(CjA\ S;)P(S1jA) + P(CjA\ S)P(S:jA):

C = fcured A = f Anticoughy A = f OtherMediciney
S, = f Study1g S, = f StudyZg

Although P(CjA\ S;) > P(CjA\ Sy), andP(CjA\ Sy) > P(CjA\ S,), the
other terms can changethe overall outcome:

P(S1jA), P(S1jA), P(S:jA), P(SjA).
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1.15 Probabilites from combinatorics: equally lik ely outcomes

Sometimesall the outcomesin a discrete nite samplespaceare equally likely.
This makesit easyto calculate probabilities. If:

) = fsg;:i0;s0;

then 4 out A
r outcomesn

P(A) = - = —
(A) k  #outcomesn

Example: For a 3-child family, possibleoutcomesfrom oldestto youngestare:

= fGGG;GGB;GBG;GBB;BGG;BGB;BBG;BBBg
= f5S1;S; S3; Sa; Ss; S6; S7; Ss0

Let fpy;p2;:::; psg be a probability distribution on . If every baby is equally
likely to be a boy or a girl, then all of the8 outcomesn areequallylikely, so

PL= P2= 11i= pPg= 3.

Let evert A be A = “oldestchildis agirl”.

Then A = fGGG; GGB; GBG; GBBg.

Event A contains 4 of the 8 equally likely outcomes,so evert A occurs with

probability P(A) = 3= 3.

Counting equally lik ely outcomes

To court the number of equally likely outcomesin an ewvernt, we often need
to usepermutations or combinations . Thesegive the number of ways of
choosingr objects from n distinct objects.

For example,if we wish to select3 objectsfrom n = 5 objects(a, b, ¢, d, €), we
have choicesabg abd abe acd ace ....



41
1. Num ber of Permutations, "P,

The number of permutations, "P,, is the numberof waysof selectingQ: objects
fromn distinctobjectswhendi erentorderingsconstitutedi erentchoices.

That is, choice(a;b;c) countsseparatelyrom choice(b;a;c).

Then

n!

#permutations "P, = n(n 1)(n 2):::(n r+1)= 0 ;

(n choicesfor rst object,(n 1) choicesfor secondegetc.)

2. Num ber of Combinations, "C, =

The number of combinations, "C,, is the numberof waysof selecting: objects
fromn distinctobjectswhendi erentorderingsconstitutethe samechoice.

That is, choice(a; b;c) andchoice(b;a;c) arethesame.

Then

n _"P _ n! _
ot (nonir!”

#combinations: "C, =

(becaus@P, countseachpermutation! times,andwe only wantto countit once:
sodivide"P; byr!)

Use the same rule on the numerator and the denominator

When P(A) = ’z gﬂiggmggm A ; we can often think about the problem

either with di erent orderings constituting di erent choices,or with di erent
orderings constituting the samechoice. The critical thing is to usethe same
rule for bothnumeratomanddenominatar
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Example: (a) Tom has v e elderly great-aurts who live togetherin a tiny bunga-

low. They insist on ead receiving separateChristmas cards, and threaten to
disinherit Tom if he sendstwo of them the samepicture. Tom has Christmas
cards with 12 di erent designs. In how many di erent ways can he select5
di erent designsfrom the 12 designsavailable?

Orderof cardsis notimportant,sousecombinations Numberof waysof select-
ing 5 distinctdesigndrom 12is

12 12!

12 —_ _ '
Ce = - _ =
>~ 5 T (12 5)!5

= 792

b) The next year, Tom buys a pad of 40 Christmas cards,featuring 10di erent
pictures with 4 cardsof ead picture. He selects5 cardsat random to sendto
his great-aurts. What is the probability that at least two of the great-aurts
receive the samepicture?

Looking for P(atleast2 cardsthesame)= P(A) (say).
Easiesto nd P(all 5 cardsaredi erent)= P(A).

Numberof outcomesn A is
(# waysof selectingb di erentdesignsy 40 36 32 28 24:

(40 choicesfor rst card;36 for secondpecausehe4 cardswith the
rst designareexcluded;etc.

Notethatordermatters:e.g.we arecountingchoicel2345separately
from 23154.)

Total numberof outcomess
(total # waysof selecting5 cardsfrom 40)= 40 39 38 37 36:

(Note: ordermatterecabase, sowe needorderto matterheretoo.)

So
. 40 36 32 28 24
P(A) = 40 39 38 37 36'0'392

Thus
P(A) = P(atleast? cardsarethesamedesign = 1 P(A)=1 0:392= 0:608
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Alternativ e solution if order does not matter on numerator and denominator:

(much harder method)

10
5
40

5

This works becauseahere are 150 ways of choosing5 di erent designsfrom 10,

and there are 4 choicesof card within ead of the 5 chosengroups. Sothe total

number of ways of choosing 5 cards of di erent designsis 150 4°. The total

number of ways of choosing5 cardsfrom 40is § .

45
P(A) =

Exer cise: Ched that this givesthe sameanswer for P(A) as before.

Note: Problemslike thesebelongto the branch of mathematicscalled
Combinatorics: the scienceof courting.

1.16 Statistical Indep endence

Two ewvents A and B are statistically independern if theoccurrencef onedoes
nota ecttheoccurrencef theother

This means P(AjB) = P(A) and P(BjA) = P(B).

P(A\ B)
P(B)

soif P(AjB)= P(A) then P(A\ B)= P(A) P(B).

Now P(AjB) =

We usethis asour de nition of statistical independence.

De nition: Events A and B are statistically indep endent if

P(A\ B) = P(A)P(B):
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For more than two ewerts, we say:

De nition: Events Aj;Ay;:::; Ay are mutually indep endent if

P(AL\ Ao\ i\ Ap) = P(ADP(AL) ::P(An), AND

the samemuiltiplicationrule holdsfor every subcollectiorof the eventstoo.
Eg. eventsA1; Ay; As; A4 aremutuallyindependenif
1) P(Ai\ Aj) = P(A)P(A)) foralli; j withi 6 j;
AND

i) P(Ai\ Aj\ Ay) = P(A)P(A)P(Ay) for alli; j; k thatareall di erent;
AND

li) P(A1\ Ax\ Az\ Ay) = P(A1)P(A)P(A3)P(AY).

Statistical indep endence for calculating the probabilit y of an intersection

In section1.6 we said that it is often hard to calculate P(A\ B).

We usually have two choices.

1. IF A andB arestatisticallyindependentthen
P(A\ B) = P(A) P(B):

2. If A andB arenotknown to be statisticallyindependentye usuallyhave to
useconditionalprobabilityandthe multiplicationrule:

P(A\ B)= P(AjB)P(B):

This still requiresusto be ableto calculate P(AjB):

Note: If everts are physially independen, then they will alsobe statistically
independernt.
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Example: Tossa fair coin and a fair die together. The coin and die are physically
independernt.

Samplespace: =fH1,H2,H3;H4,H5HG6,T1, T2, T3, T4, T5; T6g
- all 12 items are equally likely.

Let A= \heads" and B= \six".

Then P(A)= P(fHL,H2,H3;H4;H5H6g) = £ =
P(B) = P(fH6;T6g) =5 = 3

Now P(A\ B)= P(Headsand 6) = P(fH 6g) =
But P(A) P(B)=3 1= & also,

So P(A\ B) = P(A)P(B) and thus A andB arestatisticallyindept.

Nl

Pairwise indep endence does not imply mutual indep endence

Example: A jar contains 4 balls: onered, onewhite, oneblue, and onered, white
& blue. Draw one ball at random.

Let A =\ball hasred on it",
B =\ball haswhite onit",
C =\ball hasblue on it".

Two balls satisfy A, soP(A) = 2= 2:  Likewise,P(B) = P(C) = 3:

Pairwise indep endent:

Consider P(A\ B) = (one of 4 balls hasboth red and white on it).

1
4
But, P(A) P(B)=3 1=1; so P(A\ B)=P(A)P(B):
Likewise,P(A\ C) = P(A)P(C); and P(B\ C) = P(B)P(C).
SoA, B and C are pairwiseindependent.

Mutually indep endent?

Consider P(A\ B\ C)= % (oneof 4 balls)
while P(A)P(B)P(C)=1 1 1=16PA\ B\ C).

So A, B andC areNOT mutually independentdespitebeingpairwiseindepen-
dent.
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1.17 Random Variables

We have onemorejob to do in laying the foundationsof our scienceof random-
ness.Sofar we have comeup with the following ideas:

1. "Things that happen' are sets,alsocalledevents.

2. We measurechanceby measuringsets,usinga measurealledprobability

Finally, what are the setsthat we are measuring?It is a nuisanceto have lots
of di erent samplespaces:

= fhead, tailg; = fsame,di erentg; = fLions win, All Blacks wing:

All of these sample spacescould be represeted more conciselyin terms of
numbers:
= f0; 10:

On the other hand, there are many random experimernts that geruinely produce
randomnumbersastheir outcomes.

For example,the number of girls in a three-aild family; the number of heads
from 10 tossesof a coin; and soon.

When the outcomeof a randomexperiment is anumbeyit enablesusto quartify
many new things of interest:

1. quantify the averagevalue (e.g.the averagenumber of headswe would get
if we made 10 coin-tossesagain and again);

2. quantify how much the outcomestend to divergefrom the averagevalue;

3. quartify relationshipsbetweendi erent randomquartities (e.g.is the num-
ber of girls related to the hormonelevels of the fathers?)

The list is endless. To give us a framework in which theseinvestigationscan
take place,we give a specialnameto randomexperimerts that producenumbers
astheir outcomes.

A randomexperimentwhose possibleoutcomesare real numbersis called a
random variable .
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In fact, any random experimernt can be made to have outcomesthat are real

numbers, simply by mappingthesamplespace ontoasetof realnumbersising
afunction.

For example: functionX : ! R
X (\Lions win") = 0; X (\All' Blacks win") = 1:

This givesus our formal de nition of a random variable :

De nition: A random variable (r.v.) is afunctionfrom asamplespace to the
realnumberR.
WewriteX : ! R.

Although this is the formal de nition, the intuitiv e de nition of a random vari-
able is probably more useful. Intuitiv ely, remenber that a randomvariable
equateso arandomexperimentwhoseoutcomesarenumbers.

A random variable producesrandom real numbers
asthe “outcome'of a random experimert.

De ning random variablessernesthe dual purposesof:

1. Describingmany di erent samplespacesn the sameterms:
e.g. = f0;1gwithP(1) = pandP(0) = 1 p describe€VERY possible
experimentwith two outcomes.

2. Giving a nameto a large classof random experimerts that geruinely pro-
ducerandom numbers, and for which we want to dewelop generalrules for
nding averagesyariances,relationships,and soon.

Example: Tossa coin 3 times. The samplespaceis

= fHHH, HHT, HTH, HTT, THH, THT, TTH, TTT ¢

One exampleof arandomvariableis X : ! R suchthat,for samplepoints;,
we have X (sj) = # headsn outcomes;.

SoX (HHH) = 3; X(THT) = 1, etc.
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1 if 2ndtossis a head,
O otherwise.

ThenY(HTH) =0, Y(THH)=1, Y(HHH) = 1, etc.

Another exampleis Y : ! R suchthatY (s;) =

Probabilities for random variables

By cornvertion, we use CAPITAL LETTERSfor random variables(e.g. X ), and
lower caselettersto represemn the valuesthat the random variable takes (e.qg.
X).

For asamplespace andrandomvariableX : ! R, andfor areal number X,

P(X = x) = P(outcomes is suchthatX (s) = x) = P(fs: X (s) = xg).

Example: tossa fair coin 3 times. All outcomesare equally likely:

P(HHH) = P(HHT) = ...= P(TTT) = 1/8.
Let X : ! R, sud that X(s) = #headsn s.
Then P(X =0) = P(fTTTg) = 1=8;

P(X =1) = PEHTT;THT;TTHg) = 3=8:
P(X =2) = PEHHT;HTH:THHg) = 3=8:

P(X = 3)

PfHHHg) = 1=8

Notethat P(X = 0)+ P(X = 1)+ P(X = 2)+ P(X = 3)= 1.

Indep endent random variables

RandomvariablesX and Y are indep endent if eachdoesnota ecttheother

Recallthat two eventsA and B are independent if P(A\ B) = P(A)P(B):
Similarly, randomvariablesX and Y are de ned to be independent if
P(fX = xg\ fY =vyg) = P(X = xX)P(Y =)

for all possiblevaluesx andy.
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We usually replacethe cumbersomenotation P(f X = xg\ fY = yg) by the

simpler notation P(X = x; Y = y).
From now on, we will usethe following notations interchangeably:

PfX =xg\ fY=yg) = P(X =xANDY =y)=P(X =xY =y):

Thus X andY areindependenif andonly if

PX =x;Y=y)= P(X = x)P(Y =y) forALL possiblevaluesx,y.
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1.18 Key Probabilit y Results for Chapter 1

1. If A and B are mutually exclusive (i.e. A\ B =;), then

P(A[ B) = P(A) + P(B):

2. Conditional probability: P(AjB) = % for any A, B.
Or: P(A\ B) = P(AjB)P(B):
3. For any A, B, we can write
. P(B jA)P(A

This is a simpli ed versionof Bayes' Theorem. It shovs how to “invert' the conditioning,
i.,e.howto nd P(AjB) whenyou know P(B jA).

4. Bayes' Theoremslightly more generalized:
forany A, B,

P(BJA)P(A)

PAIB) = BEIAPM) + PB | MPEA) |

This works becauseA and A form a partition of the samplespace.

5. Complete versionof Bayes' Theorem:

If setsAq;:::;An form a partition of the sample space,i.e. they do not overlap
(mutually exclusiw) and collectiv ely cover all possible outcomes (their union is the
samplespace),then

P(B j Aj)P(A;)
P(BjA1)P(A1) + :::+ P(BjAn)P(An)

P(A; jB)

P P(B j A))P(A;)
o P(BjA)PA)
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P(B) = P(B\ A))+ P(B\ Ay +:::+ P(B\ An):

This can alsobe written as:
P(B) = P(BjA1)P(A1) + P(BjA2)P(A2) + i+ P(B jAn)P(An):

Theseare both very useful formulations.

. Chains of ewerts:

P(A1\ A2\ Ag) = P(A1) P(A2j A1) P(Asj A\ Ag):

. Statistical independence:

if A and B are indep endent, then
P(A\ B) = P(A)P(B)

and
P(AjB) = P(A)

and
P(BjA) = P(B):

. Conditional probability:

If P(B) > 0, then we cantreat P( |B) just like P:

e.g.if A; and A, are mutually exclusiwe, then P(A; [ A2jB) = P(A1]jB) + P(A;]B)
(comparewith P(A1[ Az) = P(A1) + P(AR));

if Aq;::An partition the samplespacethen P(A1jB)+ P(A;jB)+:::+ P(AnjB) = 1;
andP(AjB)=1 P(AjB) for any A.
(Note: it is not generallytrue that P(AjB) =1 P(AjB).)

The fact that P( jB) is a valid probability measureis easily veri ed by cheding that it
satis es Axioms 1, 2, and 3.

Unions: For any A, B, C,

P(A[ B)=P(A)+ P(B) P(A\ B);

P(A[ B[ C) = P(A)+ P(B)+ P(C) P(A\ B) P(A\ C) P(B\ C)+ P(A\ B\ C):

The secondexpressions obtained by writing P(A[ B[ C) = P A[ (B[ C) andapplying
the rst expressionto A and (B [ C), then applying it againto expandP(B [ C).
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Chapter 2: Discrete Probabilit vy
Distributions

Intro duction

In the next two chapters we meet se\eral important concepts:

. Probability distributions, and the probability function f x (x):

the probability function ofarandomvariable lists the valuesthe random
variable can take, and their probabilities.

. Hypothesistesting:

| tossa coin ten times and get nine heads. How unlikely is that? Can we
cortinue to believe that the coin is fair whenit producesnine headsout
of ten tosses?

Likelihood and estimation:

what if we know that our random variable is (say) Binomial(5; p), for some
p, but we don't know the value of p? We will seehow to estimate the
value of p using maximum likelihood estimation.

Expectation and variance of a random variable:

the expectation of a random variable is the value it takesonaverage.

the varianc e of arandomvariable measuresrow much the randomvariable
variesaboultits average.

. Changeof variable procedures:

calculating probabilities and expectations ofrg(_x ), where X is a random
variable and g(X ) is a function, e.g.g(X) = X or g(X) = X2

Modelling:

we have a situation in real life that we know is random. But what does
the randomnesdook like? Is it highly variable, or little variability? Does
it sometimesgive results much higherthan average,but never give results
much lower (long-tailed distribution)? We will seehow di erent probability
distributions are suitable for di erent circumstances.Choosinga probabil-
ity distribution to t a situation is called modelling.
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2.2 The probabilit y function, fx (x)

The probability function f x (x) lists all possiblevaluesof X,
and givesa probability to eat value.

Recall that a random variable, X, assignsa real number to ewery possible
outcome of a random experimert. The random variable is discretaf the setof
realvaluesit cantakeis nite or countablegg.f0,1,2,..9.

Random experiment: whichcar?
: Random variable: X.

X givesnumbergo the possibleoutcomes.

8

< Ferrari ) X =1
If hechooses..  Porsdie ) X =2

MG ) X =3

De nition: The probabilit y function, fx(x), for adiscreterandomvariableX , is
givenby,

fx(x) = P(X = x); | forall possibleoutcome of X .

Example: Which car?

Outcome: | Ferrari Porsche MG
X 1 2 3
Probability function, fx (x) = P(X = x) | : : 2

We write: P(X = 1) = fx (1) = : theprobabilityhe makeschoicel (a Ferrari)
is z.
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3 1=6 ifx=1;
_1=6 ifx=2
XM= a6 ifx= 3
O otherwise

We can alsowrite the probability function as: f

Example: Tossa fair coin once,and let X =number of heads. Then

X = 0 with probability 0.5,
~ 1 with probability 0.5.

The probability function of X is given by:

8

< 05 Iifx=0
or fx(x)=_ 05 ifx=1

" 0 otherwise

X | 0 1
fx)=PX=x)| 05 05

We wrrite (eg.) fx (0) = 0:5; fx (1) = 0:5; fx (7:5) = 0, etc.

fx (x) isjust alist of probabilities.

Prop erties of the probabilit y function

) 0 fx(x) 1forallx; probabilitiesarealwaysbetweerDandl.
P
i) fx(xX)=1; probabilitiesaddto 1 overall.

X

iy P(X 2 A) = P fy (X);
X2A

e.g.in the car example,

P(X 2f1;29)= P(X = 1or2)= P(X = 1)+ P(X = 2)= 1+ 1=

[2]1\N]

1
6

This is the probability of choosingeithera Ferrarior a Porsche.
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2.3 Bernoulli trials

Many of the discreterandomvariablesthat we meet
are basedon courting the outcomesof a seriesof
trials calledBernoulli trials. JacquesBernoulli was
a Swissmathematician in the late 1600s. He and
his brother Jean,who werebitter rivals, both stud-
ied mathematicssecretlyagainsttheir father's will.
Their father wanted Jacquesto be a theologistand
Jeanto be a merchant.

De nition: A random experimert is calleda set of Bernoulli trials if it consists
of severaltrials suchthat:

i) Eachtrial hasonly 2 possibleoutcomegusuallycalled“Success’and“Fail-
ure”);

ii) Theprobability of successp, remainsconstanfor all trials;

iil) Thetrials areindependente. the event“successn trial i” doesnot depend
onthe outcomeof ary othertrials.

Examples: 1) Repeatedtossingof a fair coin: eachtossis a Bernoulli trial with
P(success= P(head = 3:

2) Repeatedtossingof a fair die: success: “6”, failure= “not 6”. Eachtossis
a Bernoullitrial with P(success= .

De nition: The random variable Y is called a Bernoulli random variable if it
takesonly 2 values,0 and1.

Theprobabilityfunctionis,
P ify=1
= p ify=0

Thatis,
P(Y = 1)
P(Y = 0)

P(“success) = p;
P(“failure’) = 1 p:



56
2.4 Example of the probabilit y function: the Binomial Distribution

The Binomial distribution courts the number of successes
in a xed number of Bernoulli trials.

De nition: LetX bethe numberof successes n independenBernoullitrials each
with probability of success= p. ThenX hasthe Binomial distribution with
parametera andp. Wewrite X Bin(n; p), orX  Binomialn; p).

ThusX  Bin(n; p) if X is the numberof successesut of n independent
trials, eachof which hasprobabilityp of success.

Probabilit y function

If X Binomial(n; p), then the probability function for X is

fx(x)= P(X = x) = pr(l p" * for x=0;1:::;n

Explanation:

An outcomewith x successeand(n x) failureshasprobability

& (L@

(1) (2)

where:
(1) succeeds times,eachwith probabilityp
(2) fails(n  x) times,eachwith probability(1 p).
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n : : ]
Thereare y possibleoutcomeswith x successeand(n x) failuresbecause
we mustselecix trials to beour “successes’putof n trialsin total.

Thus,
P(#successesx) = (#outcomesvith x success@s (proh of eachsuchoutcomé
—_ n X n X
= 1
L, Paop
Note:

fx(xX)=0 if xZf0;1,2;:::;ng:

Xh
Ched that fx(x) =1
x=0
X X' n : :
fx(x) = y pP‘@ p" * = [p+ @ p)]" (Binomial Theorem)
x=0 x=0

= 1”:1

It is this connectionwith the Binomial Theoremthat givesthe Binomial Dis-
tribution its name.
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Example 1: Let X Binomial(n = 4;p = 0:2). Write down the probability
function of X.

X | 0 1 2 3 4
fx(x) = P(X = x) | 0.4096 0.4096 0.1536 0.0256 0.0016

Example 2: Let X bethe number of times | geta "6' out of 10rolls of a fair die.

1. What is the distribution of X ?
2. What is the probability that X  27?

1. X  Binomialn = 10, p = 1=6):

2,
PX 2) = 1 P(X<?2)
= 1 P(X=0) P(X=1)
0 10 O 1 10 1
-, W0 1° .1 0 1°, 1
0 6 6 1 6 6
= 0515

Example 3: Let X be the number of girls in a three-dild family. What is the
distribution of X ?

Assume:

(i) eachchild is equallylikely to beaboy or agirl;
(i) all childrenareindependenof eachother

ThenX  Binomialn = 3;p= 0:5):
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Shape of the Binomial distribution

The shape of the Binomial distribution dependsupon the valuesof n and p. For
small n, the distribution is almost symmetrical for valuesof p closeto 0.5, but
highly skewed for valuesof p closeto 0 or 1. As n increasesthe distribution
becomesmore and more symmetrical, and there is noticeableskew only if p is
very closeto O or 1.

The probability functions for various valuesof n and p are shavn below.
n=10,p= 05 n=10,p= 09 n= 100,p= 0:9

0.25
0.4

0.15 0.20
0.2 0.3

0.10

0.05
0.1

0.0 0.02 0.04 0.06 0.08 0.10 0.12

0.0
0.0

0123 456 7 8 910 0123456 7 8 910 80 90 100

Sum of indep endent Binomial random variables:

If X andY are independentand X  Binomial(n;p), Y  Binomial(m; p),
then

X +Y Bin(n+ m;p).

This is becauseX courts the number of successesut of n trials, and Y courns
the number of successesut of m trials: sooverall, X + Y couns the total
number of successesut of n + m trials.

Note: X andY must both sharethe samevalueof p.
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2.5 The cumulativ e distribution function, Fyx (x)

We have de ned the probabilityfunction,fx (x), as fx (x) = P(X = x).
The probability function tells us everything there is to know about X .

The cumulatie distribution function or just distribution function written as
Fx (X), is an alternative function that alsotells us everything there is to know
about X.

De nition:  The (cumulatve) distribution function(c.d.f.) is

Fx(X) = P(X x) for 1 <x<1

If you areaskedto "givethe distribution of X', you could answer by giving either
the distribution function, Fx (x), or the probability function, fx (x). Ead of
thesefunctions encapsulateall possibleinformation about X .

The distribution function Fx (x) as a probabilit y sweeper

The cumulativ e distribution function, Fy (x),

sweepsaup all the probabilityup to andincludingthe pointx.
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Example: Let X

ThenFx(x) = P(X x)=

f(x)

NI

Binomial(2; 3).

2 0
2 0:25

X

|
fx(x) = P(X = x) |

~ 3 0:25+ 0:5= 0:75

0
1
2

if x<0O

if 0
if 1

0:25+ 05+ 0:25=1 If x

0 1
F(x)
1 + o
3 1 e O
4
i 1
2
1+ L —
4
| | |
W W W
0 2

x<1
X< 2
2

Fx (x) givesthe cumulatve probabilityup to andincludingpointx.

So

Note that Fx (x) is a step function

Fx (X) =

X

y

X

fx (y)

y with positive probability.

Nl | =

INTNEN
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. it jumps by amourt f x (y) at every point
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Reading o probabilities from the distribution function

As well as using the probability function to nd the distribution function, we
can alsousethe distribution function to nd probabilities.

fx (x) = P(X = x)

P(X x) P(X x 1) (if X takesintegervalues)

Fx(X) Fx(x 1)

This is why the distribution function Fx (x) contains as much information as
the probability function, f x (x), becausenve canuseeither oneto nd the other.

In general:

Pla< X b =Fx() Fx(@ Iifb>a

Proof: P(X b=PX a+Pla<X b

So

Fx(a) + P@a< X D)
Pa< X D)

Fx (b)
) Fx () Fx(a)



Warning: endp oints

Be careful of endpoints and the di erence between and<.
For example,
P(X <10)= P(X 9)= Fx(9):

Examples: Let X  Binomial(100; 0:4). In terms of Fx (x), what is:

1. P(X 30)? Fy (30):
2. P(X < 30)? Fx (29):
3. P(X 56)?
1 P(X<56)=1 P(X 55)=1 Fx(55)

4. P(X > 42)?
1 P(X 42)=1 Fy(42).

5.P(50 X 60)?
P(X 60) P(X 49)= Fy(60) Fy (49):

Prop erties of the distribution function

DF(1 )=P(X 1 )=0.
F+1)=P(X +1)=1
(Theseare true becausevaluesare strictly between1 and1 ).

2) Fx (x) is a non-decreasindunction of x: that is,

if X1 < Xo, then Fy (Xl) Fx (Xz):

3) Pla< X b =Fx(b) Fx(a)if b> a.

4) F is right-continuous: that is, limnu F (X + h) = F(x).
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2.6 Hyp othesis testing

You have probably comeacrossthe idea of hypothesistests, p-values,and sig-
ni cance in other courses. Common hypothesistests include t-tests and chi-
squaredtests. Howewer, hypothesistests can be conductedin much simpler
circumstanceghan these. The conceptof the hypothesistest is at its easiestto
understandwith the Binomial distribution in the following example. All other
hypothesistests throughout statistics are basedon the sameidea.

Example: Weird Coin?

| tossa coin 10 times and get 9 heads. How weird is that?

What is "weird" ?

Getting 9 headsout of 10 tosses:we'll call this weird.
Getting 10 headsout of 10 tosses:evenmoreweird!
Getting 8 headsout of 10 tosses:lessweird.

Getting 1 head out of 10 tosses: sameasgetting 9 tails out of 10 tosses:
justasweird as9 headsf thecoinis fair.

Getting 0 headsout of 10 tosses:sameasgetting10tails: moreweirdthan
9 headsf thecoinis fair.

Set of weird outcomes

If our coinis fair, the outcomesthat are as weir d or weir der than 9 heads
are:

9 heads]10heads1 head,0 heads.

So how weird is 9 heads or worse, if the coin is fair?

We can add the probabilities of all the outcomesthat are at least as weird
as 9 headsout of 10 tosses,assumingthat the coin is fair.

Distribution  of X , if the coin is fair. X  Binomialn = 10,p= 0:5):
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Probabilit y of observing something at least as weird as 9 heads,

if the coin is fair:

P(X = 9)+P(X = 10)+P(X = 1)+P(X = 0) where X  Binomial10; 0:5):

Probabilities for Binomial( n = 10, p= 0:5)

0.25

:x)
0.15

P(X

0.0 0.05

For X  Binomial(10; 0:5), we have:
PX =9+ PX =10+ P(X =1)+ P(X = 0) =

10 , _ 10 , _
o (0:5)%(0:5) + 10 (0:5)1°(0:5)° +

1 0905°+ ] 05/05)"

0:00977+ 0:00098+ 0:00977+ 0:00098
= 0:.021

Is this weird?

Yes,it is quite weird. If we had a fair coin and tossedit 10times, we would only
expect to seesomethingas extreme as 9 headson about 2.1%of occasions.
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Is the coin fair?

Obviously, we can't say. It might be: after all, on 2.1% of occasionsthat you
tossa fair coin 10 times, you do get somethingasweird as 9 headsor more.

Howewer, 2.1%is a small probability, soit is still very unusualfor a fair coin to
produce somethingas weird as what we've seen. If the coin really was fair, it
would be very unusualto get 9 headsor more.

We can deducethat, EITHER we have obsereda very unusuakventwith afair
coin, OR thecoinis notfair.

In fact, this givesus someevidencethatthe coinis notfair.

The value 2.1% measureshe strengthof our evidence. The smallerthis proba-
bility, the moreevidencewe have.

Formal hyp othesis test

We now formalize the procedureabove. Think of the steps:

We have a questionthat we want to answer: Is thecoinfair?

There are two alternatives:
1. Thecoinis fair.
2. Thecoinis notfair.

Our obsened information is X , the number of headsout of 10 tosses.We
write down the distribution of X if the coin is fair:
X Binomial10; 0:5):

We calculate the probability of observingsomething AT LEAST AS EX-
TREME asourobsenration,X = 9, if thecoinis fair: prob=0.021.

The probability is small (2.1%). We concludethat this is unlikely with a
fair coin, so we have obsened someevidencethatthe coinis NOT fair.
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Null hyp othesis and alternativ e hyp othesis

We expressthe stepsabove astwo competing hypotheses.

Null hypothesis: the rst alternatyve, thatthecoin IS fair.

We expectto believe the null hypothesisunlesswe seecorvincing evidencethat
it is wrong.

Alternativ e hyp othesis: thesecondalternatve, thatthe coinis NOT fair.

In hypothesistesting, we often usethis sameformulation.

The null hypothesisis speci c.
It speci esanexactdistribution for our obsenation: X  Binomial10; 0:5):

The alternative hypothesisis general.
It simply statesthat the null hypothesisis wrong. It doesnot say what

the right answer is.

We useHq andH to denotethe null and alternative hypothesesrespectively.

The null hypothesisis Hy : thecoinis fair.
The alternative hypothesisis H, : thecoinis NOT fair.

More precisely we write:
Numberof headsX  Binomial10; p);
and

Ho : p= 05
Hy : p6 05

Think of "null hypothesis' as meaning the “default: the hypothesis we will
acceptunlesswe have a good reasonnot to.
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p-values

In the hypothesis-testingframework above, we always measurevidenceAGAINST
the null hypothesis.

That is, we beliewe that our coin is fair unlesswe seecorvincing evidence
otherwise.

We measurethe strength of evidenceagainstHg usingthe p-value.
In the exampleabove, the p-valuewasp = 0:021L
A p-value of 0.021represeis quitestrongevidenceagainstthe null hypothesis.

It statesthat, if the null hypothesisis TRUE, we would only have a2.1%chance
of observingsomethingasextremeas9 headr tails.

Many of us would seethis as strong enoughevidenceto decidethat the null
hypothesisis nottrue

In general,the p-valueis the probabilityof observingsomethingAT LEAST AS
EXTREMEAS OUR OBSER/ATION, if Hg is TRUE.

This meansthat SMALL p-valuesrepresenSTRONG evidenceagainstH .

Smal Ip-valuesmean Stro NQevidence.

Large p-valuesmeantitle evidence.

Note: Be careful not to confusethe term p-value, which is 0:021 in our exam-
ple, with the Binomial probability p. Our hypothesistest is designedto test
whether the Binomial probability is p = 0:5. To test this, we calculate the
p-value of 0.021as a measureof the strength of evidenceagainst the hypoth-
esisthat p= 0:5.
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Interpreting the hyp othesis test

Therearedi erent schoolsof thought about how a p-valueshouldbeinterpreted.

Most peopleagreethat the p-valueis a usefulmeasureof the strength of
evidenc e against the null hypothesis. The smaller the p-value, the
strongerthe evidenceagainstHy.

Somepeople go further and use an accept/r eject framework. Under
this framework, the null hypothesisH should be rejected if the p-value is
lessthan 0.05(say), and acceptel if the p-value is greaterthan 0.05.

In this coursewe use the strength of evidenc e interpretation. The
p-value measureshow far out our obsenation lies in the tails of the dis-
tribution specied by Ho. We do not talk about accepting or rejecting
Ho. This decisionshould usually be takenin the context of other scierii ¢
information.

Howewer, it is worth bearing in mind that p-valuesof 0.05and lessstart
to suggestthat the null hypothesisis doubtful.

Statistical signi cance

You have probably encourtered the idea of statistic al signic ance in other
courses.

Statisticalsigni cancerefersto thep-value.

The result of a hypothesistest is signic ant at the 5% level if the p-value
is lessthan0.05.

This meansthat thechanceof seeingwhatwe did see(9 heads)or more,is less

than5% if the null hypothesiss true.

Saying the test is signi ¢ ant is a quick way of saying that there is evidence
againstthe null hypothesis,usually at the 5% level.
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In the coinexample,we cansay that ourtestofHy : p= 0:5againstH, : p6 05
Is signi cant atthe 5% level, becausehep-valueis 0.021whichis < 0:05.

This means:
we have someevidencethatp 6 0:5.

It doesnot mean:

the di erence betweenp and 0.5 s large, or

the di erence betweenp and 0.5 is importantin practicalterms.

Statistically signi cant meansthat we have evidencethat
therelS adi erencelt saysNOTHING aboutthe SIZE,
or theIMPORTANCE, of thedi erence.

Bew are!

The p-value givesthe probability of seeingsomethingasweird aswhatwe did
see,if Hg is true.

This meansthat 5% of thetime, we will getap-value< 0:05 EVEN WHENH
IS TRUE!!

Indeed, about oncein ewery thousandtests, we will geta p-value< 0:001,even
though Hg is true!

A smallp-valuedoesNOT meanthatH is de nitely wrong.

One-sided and two-sided tests

The test above is a two-sidedtest. This meansthat we consideredit justas
weirdto get9 tails as9 heads.

If we had a good reason,befor e tossingthe coin, to beliewe that the binomial
probability could only be = 0:5 or > 05, i.e. that it would be imp ossible
to have p < 0.5, then we could conduct a one-sidedtest: Hg : p = 0:5 versus
Hi:p> 0:5.

This would have the e ect of halving the resultant p-value.
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2.7 Example: Presidents and deep-sea div ers

Men in the class: would you like to have daughters? Then becomea deep-sea
diver, a ghter pilot, or a heary smoler.

Would you prefer sons?Easy!
Just becomea US presider.

Numbers suggestthat menin di erent

professiondend to have more sonsthan

daughters, or the reverse. Presideris have

sons, ghter pilots have daughters. But is it real, or just chance? We can use
hypothesistests to decide.

The facts

The 43 US presiderts from GeorgeWashingtonto GeorgeW. Bush have
had a total of 151 children, comprising 88 sonsand only 63 dauglters: a
sexratio of 1.4 sonsfor every daugher.

Two studies of deep-sealivers revealedthat the men had a total of 190
children, comprising65sonsand 125daughers: a sexratio of 1.9daughers
for every son.

Could this happ en by chance?

Is it possiblethat the menin eat group really hada 50-50chanceof producing
sonsanddaughters?

This is the sameasthe questionin Section2.6.

For the presidents: If | tossedacoinl151timesandgotonly 63 headscould
| continueto believe thatthe coin wasfair?

For the divers: If | tosseda coin 190times and got only 65 heads,could |
cortinue to believe that the coin wasfair?
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Hyp othesis test for the presidents

We set up the competing hypothesesas follows.
LetX bethenumberof daughter®utof 151 presidentiathildren.

ThenX  Binomial151; p), wherep is theprobabilitythateachchild is a daugh-
ter.

Null hyp othesis: Ho:p= 0:5.

Alternativ e hyp othesis: H.i:p6 05.

p-value: We needthe probability of gettinga resultAT LEAST
AS EXTREME asX = 63 daughtersif Hy is true
andp reallyis 0.5.

Whic h results are at least as extreme as X = 63?

X = 0;1,;2;:::;63, for evenfewer daughters.

X = (151 63);:::;151, for too mary daughtersbecauseve would be just as
surprisedf wesav 63 sonsj.e. (151 63)= 88daughters.

Probabilities for X Binomial (n = 151;p = 0:5)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
1

o

20 40 60 80 100 120 140
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Calculating the p-value

The p-value for the presiden problemis given by

P(X 63)+ P(X 88)whereX Binomia[151;0:5).

In principle, we could calculatethis as
P(X=0)+P(X =1)+ :::+ P(X = 63)+ P(X = 88)+ :::+ P(X = 151)

1 1

= gl (0:5)0(0:5)151_'_ :‘?1 (0:5)1(0:5)150+ fe

This would take a lot of calculator time! Instead, we use a computer with a
padkagesud asR.

R command for the p-value

The R commandfor calculating the lower-tail p-valuefor the
Binomialh = 151, p = 0:5) distribution is

pbinom(63, 151, 0.5) .
Typing this in R gives:

> pbinom(63, 151, 0.5)
[1] 0.02522393

This givesus the lower-tail p-valueonly:
P(X 63)= 0:0252

To get the overall p-value, we have two choices:

1. Multiply thelower-tail p-valueby 2:
2 0:0252= 0:0504

In R:

> 2 * pbinom(63, 151, 0.5)
[1] 0.05044785
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This works becausethe upper-tail p-value, by de nition, is always going

to be the same as the lower-tail p-value. The upper tail gives us the
probability of nding somethingequaly surprising at the opposite end of
the distribution.

2. Calculate the upper-tail p-value explicitly:
Theuppertail p-valueis

P(X 88) = 1 P(X < 88)
= 1 P(X 87)

1 pbinom(87, 151, 0.5):

In R:

> 1-pbinom(87, 151, 0.5)
[1] 0.02522393

The overall p-valueis the sum of the lower-tail and the upper-tail p-values:
pbinom(63, 151, 0.5) + 1 - pbinom(87, 151, 0.5)

= 0:0252+ 0:0252= 0:0504 (Sameasbefore.)

Note: The R commandpbinomis equivalert to the cumulatize distributionfunction
for the Binomial distribution:

pbinom(63, 151, 0.5) P(X 63) whereX Binomia[151;0:5)

= Fx(63) for X Binomia[151; 0:5):
The overall p-value in this exampleis 2  Fx (63).
Note: In the R commandpbinom(63, 151, 0.5), the order that you erter the
numbers63,151,and0.5isimportant. If youenter themin adi erent order,you

will getanerror. An alternativeis to usethe longhandcommandpbinom(gq=63,
size=151, prob=0.5) , in which caseyou can ener the terms in any order.
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Summary: are presidents more likely to have sons?

Back to our hypothesistest. Recallthat X wasthe number of daughers out of
151 presiderial children, and X  Binomial(151; p), wherep is the probability
that ead child is a daughter.

Null hyp othesis: Ho:p= 05.

Alternativ e hypothesis: H;:p6 0:5.

p-value: 2 Fx(63) = 0:0504

What does this mean?

The p-value of 0.0504meansthat, if the presidentseally wereaslikely to have
daughtersassons,therewould only be 5.04%chanceof observingsomethingas
unusuaksonly 63 daughterut of thetotal 151 children.

This is unusual, but not extremely unusual.

We concludethat thereis someevidencethatpresidentaremorelik ely to have
sonsthandaughtersHowever, the obserationsarealsoconsistentvith the pos-
sibility thatthereis norealdi erence.

Hyp othesis test for the deep-sea divers

For the deep-sealivers, there were 190 children: 65 sons,and 125 daughters.
Let X be the numberof sonsoutof 190diver children.

Then X Binomial190; p), wherep is the probabilitythateachchild is a son.

Note: We could just as easily formulate our hypothesesin terms of daughers
instead of sons. Becausepbinomis de ned as a lower-tail probability, however,
it is usually easiestto formulate them in terms of the low result (sons).



Null hyp othesis: Ho:p= 0:5.

Alternativ e hyp othesis: H.i:p6 05.

p-value: Probabilityof gettinga resultAT LEAST
AS EXTREME asX = 65sons,f Hy is true
andp reallyis 0.5.

Results at leastasextremeas X = 65 are:

X =0;1;2;:::; 65, for evenfewer sons.

X = (190 65);:::;190 for theequallysurprisingresultin theoppositedirection

(toomary sons).

Probabilities for X Binomial (n = 190;p = 0:5)

L
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R command for the p-value

p-value=2 pbinom(65, 190, 0.5) .

Typing this in R gives:

> 2*pbinom(65, 190, 0.5)
[1] 1.603136e-05

This is 0.0000160r a little more than onechancan 100thousand.
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We concludethat it is extremely unlikely that this obseration could have oc-

curredby chance|f the deep-sealivers had equalprobabilitiesof having sons
anddaughters.

We have very strongevidencethatdeep-sedaliversaremorelik ely to have daugh-
tersthansons.

What next?

p-valuesare often badly usedin scienceand business.They areregularly treated
as the end point of an analysis, after which no more work is needed. Many
scieri ¢ journals insist that scierists quote a p-value with every set of results,
and often only p-valueslessthan 0.05areregardedas ‘interesting'. The outcome
Is that somesciertists do every analysisthey canthink of until they nally come
up with a p-value of 0.05o0r less.

A good statistician will recommenda di erent attitude. It is veryrarein science
for numbersandstatisticgo tell usthefull story

Results like the p-value should be regardedas an investigative starting point,
rather than the nal conclusion. Why is the p-value small? What possible
mechanismcould there be for producing this result?

If you were a medical statistician and you gave me a p-value, |
would ask you for amechanism.

Don't acceptthat Drug A is better than Drug B becausethe p-value says so:
nd a biochemist who can explain what Drug A doesthat Drug B doesn't.
Don't acceptthat sun exposureis a causeof skin canceron the basis of a
p-value: nd a medanism by which skin is damagedby the sun.

Why might divers have daughters and presidents have sons?

Deep-seadivers are thought to have more daughters than sonsbecausethe
underwater work at high atmosphericpressurelowersthe level of the hormone
testosteronein the men'sblood, which is thought to make them more likely to
conceie dauglters. For the presiders, your guessis asgood asmine ...



2.8 Example: Politicians and the alphab et

What do the following peopleall have
in common: Bush, Blair, Clinton, Clark?

They are all electedpresideris or prime
ministers ... and their namesare all
right at the beginning of the alphabet!

Is it true that political candidateswith namesat
the beginning of the alphabet have an advantage
over other candidates,becauseheir namescomeat
the top of the list on the ballot cards?

The appropriate tool to useis
anotherypothesigest.

For the 2001 UK general election, namesof all candidatesand the winning
candidate can be found on the internet for 590 constituency seatsin England,
Wales, and Northern Ireland. (Resultsfor Scotland did not include candidate
names.) Candidatesare listed on the voting paper in alphabetical order.

Eadh seat had three candidates. Candidatesfrom minor parties sud as the
Monster Raving Loony Party were excludedfor this analysis.

Of the 590 winning candidates,207 were alphabetically rst of the three can-
didatesin their constituency

Is there any evidencethat there is an alphabetical advantage in the voting
process?

Hyp othesis test

Let X bethenumberof the 590winnerswho arealphabeticallyrst.
We needto set up hypothesesof the following form:

Null hypothesis: Hg: thereis no alphabeticabdwantage.

Alternativ e hypothesis: H; : thereis analphabeticahdwantage.
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What is the distribution of X under Hg and under H,?

UnderH, thereis no alphabeticak ect. Sothe probability thateachwinneris
alphabeticallyrst shouldbe1=3.

(Threecandidatedor eachseat,eachwith the sameprobability of beingalpha-
betically rst.)

Thus the distribution of X underHgis X  Binomia(590; 1=3):

Under H4, there is an alphabetical e ect, sop 6 1=3.
Our formulation for the hypothesistest is therefore as follows.
Numberof alphabet- rstwinners,X  Binomial590; p).

Null hyp othesis: Ho:p= 1=8.

Alternativ e hyp othesis: Hi:p6 1=3.

Our observation:

The obsened proportion of winnerswho werealphabet- rst is 20/590= 0:351
This is alittle morethanthe1=3 predictedby H.
Is it su ciently greaterthan 1=3 to provide evidenceagainstHj?

Just usingour intuition, it is very hard to guess.We needthep-valueto measure
the evidenceproperly

p-value: Probabilityof gettinga resultAT LEAST
AS EXTREME asX = 207 alphabet- rstwinners,if Hy is true
andp reallyis 1/3.

Resultsat leastasextremeas X = 207 are:
Uppertail: X = 207,208 :::; 590, for evenmorealphabet- rstwinners.

Lower tail: anequalprobability in the oppositedirection, for too few alphabet-
rst winners.
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Note: We do not needto calculate the valuescorrespnding to our lower-tail p-

value. It is more complicatedin this examplethan in Section2.7, becausewe
do not have Binomial probability p = 0:5. In fact, the lower tail probability is
from 0 to somewherdbetween185and 186, but it cannot be speci ed exactly.

We get round this problem for calculating the p-value by just multiplying the
uppertail p-valueby 2.

Probabilities for X Binomial (n = 590; p = 1=3)

0.020 0.030
1 1

0.010
1

0.000

140 160 180 200 220 240 260

R command for the p-value

We needtwice the UPPER-taip-value:

p-value=2 (1 pbinom(206, 590, 1/3)).
(RecallP(X 207)=1 P(X 206))

Typing this in R gives:

2*(1-pbinom(20 6, 590, 1/3))
[1] 0.3897671

This p-valueis large.

It meansthat if therereally wasno alphabeticahdwantagewe would expectto
seeresultsasunusualas207 out of 590 alphabet- rstwinnersabout39% of the
time.

We concludethat thereis no evidencethattherewasan alphabeticabhdwantage
in the2001UK election.
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Note: This does not mean that the alphabetical advantage does not exist! It

2.9

simply meansthat, from the evidencegiven, if analphabeticabdwantagedoes
exist, we cannotdistinguishit from purechance.

The evidences consisten with both the possibility that thereis no alphabetical
advantage, and that there is an alphabetical advantage that is too small to
distinguish from sampling variabilit y.

Lik eliho od and estimation

Sofar, the hypothesistestshave only told uswhetherthe Binomial probability p
might be, or probably isn't, equalto the value speci ed in the null hypothesis.
They have told us nothing about the size,or potential importance, of the de-
parture from Hy.

For example,for the deep-sealivers, we found that it would bevery unlikely to
obsene asmary as125daughtersout of 190 childrenif the chanceof having a
daughtereally wasp = 0:5.

But what doesthis say about the actual value of p?

Remenber the p-value for the test was 0.000016.Do you think that:

1. p could be asbig as0.87?
No idea! Thep-valuedoesnottell us.

2. p could be ascloseto 0.5 as, say, 0.517

The testdoesnt even tell us this much! If therewas a huge samplesize
(numberof children),we COULD geta p-valueassmallas0.000016even
if thetrue probabilitywas0.51.

Common sense howewer, givesus a hint. Becausethere were almost twice as
many daughters assons,my guesss that the probability of a having a daugher
is somethingcloseto p = 2=3. We needsomeway of formalizing this.
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Estimation

The processof using obsenations to suggesta value for a parameteris called
estimation

The value suggesteds called the estimateof the parameter.
In the caseof the deep-seaivers, we wish to estimate the probability p that

the child of a diver is a daughter. The common-sensestimate to useis

numberof daughters _ 125 _
total numberof children” 190

0:658

Howewer, there are many situations where our common sensefails us. For
example,what would we do if we had a regression-mdel situation (seeother
courses)and wishedto specify an alternative form for p, suc as

p= + (diver age)

How would we estimate the unknown intercept and slope , given known
information on diver ageand number of daughers and sons?

We needa generalframework for estimation that can be applied to any situ-
ation. Probably the most useful and generalmethod of obtaining parameter
estimatesis the method of maximumlik elihoodestimation.

Lik eliho od

Likelihood is one of the most important conceptsin statistics.
Return to the deep-sealiver example.

X is the numberof daughteroutof 190children.

We know that X  Binomial190; p),

and we wish to estimate the value of p.

The available data is the obsened value of X : X = 125
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Suppose for a momert that p = 0:5. What is the probability of observing
X = 125?

WhenX  Binomial19G; 0:5),

19

P(X = 125) 1

g (0:5)125(1 0:5)190 125

3:97 10 ¢

Not verylikely!!

What about p = 0:6? What would be the probability of observingX = 125if
p= 0:6?

WhenX  Binomial19G; 0:6),

19

P(X = 125) 1

g (0:6)125(1 0:6)190 125

= 0016

This still looks quiteunlikely, but it is almost4000timesmorelik ely thangetting
X = 125whenp = 0:5.

So far, we have discovered that it would be thousand®f timesmorelikely to
obsere X = 125if p= 0:6 thanit would beif p = 0:5.

This suggestghat p = 0:6 is a betterestimatehanp = 0:5.

You can probably seewherethis is heading. If p= 0:6is a better estimatethan
p = 0:5, what if we move p even closerto our common-sensestimate of 0.6587?

WhenX  Binomial190; 0:658),

1
122 (0:658)!>(1 0:658)!%° 12°

= 0:061

P(X = 125)

Thisis evenmorelikely thanfor p = 0:6. Sop = 0.658is the bestestimateyet.
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Can we do any better? What happensif we increasep a little more, say to
p= 0:77?

WhenX  Binomial19G; 0:7),

1

122 (0:7)125(1 0:7)190 125

P(X = 125)

= 0:.028
This hasdecreasedrom the resultfor p = 0:658 so our obseration of 125is
LESSIikely undemp = 0:7 thanundermp = 0:658

Overall, we can plot a graph showving how likely our obsenation of X = 125
Is under ead di erent value of p.

0.03 0.04 0.05 0.06
] ] ] ]

125) when X~Bin(190, p)

P(X=
001 0.02
| |

0.00
]

| | | | | | |
0.50 0.55 0.60 0.65 0.70 0.75 0.80

p

The graphreadesa clearmaximum.Thisis avalueof p atwhichtheobseration
X = 125is MORE LIKELY thanatary othervalueof p.

This maximum likeliho od value of p is our maximumlik elihoodestimate.

We can seethat the maximum occurs somewherecloseto our common-sense
estimate of p= 0:658
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The lik eliho od function

Look at the graph we plotted overleaf:

Horizon tal axis: Theunknavn parameterp.

Vertical axis: Theprobability of our obseration, X = 125 underthis value
of p.

This function is called the lik elihoodfunction.
It is a function of theunknavn parametep.

For our xed obsenation X = 125, the likelihood function shovs how LIKELY
theobsenation125is for every di erentvalueof p.

The likelihood function is:

L(p) = P(X = 125)whenX  Binomial190; p);
— 190 125, 190 125
= 15 P P
— 190 125, 65.
= s P P

This function of p is the curve shaovn on the graph on page84.

In general,if our obsenation were X = x rather than X = 125, the likelihood
function is afunctionof p givingP(X = x) whenX  Binomia[190; p).

We write:

L(p;x) P(X = x) whenX  Binomial190; p);

190 X 190 x.
X Pl p :
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Di erence between the lik eliho od function and the probabilit y function

The likelihood function is a probability of x, but it isa FUNCTION of p.
The likelihood givestheprobabilityof a FIXED obserationx, for every possible
valueof the parametep.

Compare this with the prohkability function, which is the probability of every
di erentvalueof x, for a FIXED valueof p.

P(X=125) when X~Bin(190, p)

0.00 0.01 002 003 004 005 0.06
|

000 001 002 003 004 005 006
1
P(X=x) when p=0.6

050 055 060 065 070 075  0.80 100 120 140

p X

Likelihoodfunction,L(p; x). Probabilityfunction,f x (x):
Functionof p for x edx. Functionof x for x edp.
GivesP(X = x) asp changes. GivesP(X = x) asx changes.
(x = 125here, (p = 0:6 here,
but it couldbe arything.) but it couldbe arything.)

Maximizing the lik eliho od

We have decidedthat a sensibleparameter estimate for p is the maximum
likelihood estimate: the valueof p at which the obserationX = 125is more
likely thanat ary othervalueof p.

We can nd the maximum likelihood estimate using calculus.
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The likelihood function is

0
p125( 1 p) 65:

L(p;125)= i

We wishto nd the value of p that maximizesthis expression.

To nd the maximizing value of p, di erentiatehelik elihoodwith respecto p:

dL 190 N °
o - 125 125 P @ pTHpT 65 @ p™ ()
(ProductRule)
— 190 124 64n 0
= s P71 P 1250 p) 6%
— 190 124 64n 0.
= e PP P 125 190

The maximizing value of p occurswhen

dL
dp - 0:
This gives:
dL _ 190 124, 64n ° —
i 125p a p) 125 190 = O
n 0

) 125 19 = O

125
) P = o= 01658
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For the diver example,the maximum likelihood estimate of 125=190is thesame

asthecommon-sensestimatgpage82):
numberof daughters _ 125
total numberof children 190

This givesus con dencethat the method of maximum likelihood is sensible.

The “hat' notation for an estimate

It is corvertional to write the estimatedvalue of a parameterwith a "hat', like
this: p.
For example,
b= 125
190

The correct notation for the maximization is:

dL 125
W, 0 P

Summary of the maxim um lik eliho od pro cedure

1. Write down the distribution of X in terms of the unknown parameter:
X Binomial190; p):

2. Write down the obsened value of X :
Obsereddata:X = 125

3. Write down the likelihood function for this obsened value:

L(p;125)

P(X = 125)whenX  Binomial190; p)

190 125 65
= 1 :
125 . 2
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4. Di erentiate the likelihood with respect to the parameter,and setto O for

the maximum:

dL _ 190 0. e °_ . -
ap> 125 P (1 p° 125 19 = 0, whenp= p:

This is the LikelihoodEquation.

5. Solwe for p: 195

~ 190’

This is the maximumlik elihoodestimateg MLE) of p.

Verifying the maxim um

Strictly speaking,whenwe nd the maximum likelihood estimate using

_ = O’
dp p=p

we should verify that the result is a maximum (rather than a minimum) by
shawing that
d’L

— < 0:
dp* e

In Stats 210, we will be relaxedabout this. You will usually be told to assume
that the MLE exists. Where possible,it is always best to plot the likelihood
function,ason page84.

This con rms that the maximum likelihood estimate existsandis unique.

In particular, caremustbe takenwhenthe parametehasa restrictedrangelik e
0< p< 1(seelater).
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Estimators

For the exampleabove, we had obsenation X = 125,and the maximum likeli-

hood estimate of p was
_ 125

~190°

It is clearthat we could follow through the sameworking with any value of X,
which we can write as X = x, and we would obtain

p:

X
190°

Exer cise: Ched this by maximizing the likelihood using x instead of 125.

This meansthat evenbefore we have madeour obsenation of X , we canprovide
a RULE for calculatingthe maximumlik elihoodestimateonceX is obsered:

Rule: Let
X Binomia(19G; p):

Whatever valueof X we obsere, the maximumlik elihoodestimateof p will be

X

P= 190

Note that this expressionis now a randomvariable: it dependn the random
valueof X .

A randomvariable specifying how an estimateis calculatedfrom an obsenation
is called anestimator

In the exampleabove, the maximumlik elihoodestimaTR of p is
_ X
~190°
The maximumlik elihoodestimaTEof p, oncewe have obseredthatX = x, is

X
b= 190
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General maxim um lik eliho od estimator for Binomial( n; p)

Take any situation in which our obsenation X hasthe distribution
X Binomialn; p);

wheren is KNOWN andp is to be estimated.

We make a single obsenation X = x.

Follow the stepson page88to nd the maximum likelihood estimator for p.

1. Write down the distribution of X in terms of the unknown parameter:
X Binomialn; p):
(n is known.)

2. Write down the obsened value of X :
Obsereddata:X = x.

3. Write down the likelihood function for this obsened value:

L(p;x) = P(X = x) whenX  Binomialn; p)

—_ n n X.
= X|ox(1 p)" X

4. Di erentiate the likelihood with respect to the parameter,and setto O for
the maximum:

n 0

(;_:: )r: p {1 p"*t x np =0; whenp= p:
(Exercise)
5. Solwe for p:

©
1
S| X

This is the maximumlik elihoodestimateof p.
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The maximum likelihood estimator of p is

X

n

(Justreplacethe x in the MLE with an X, to corvert from the estimateto the
estimator)

By deriving the general maximum likelihood estimator for any problem of
this sort, we can plug in valuesof n and x to get an instant MLE for any
Binomial(n; p) problem in which n is known.

Example: Recall the alphabetic advantage problem in Section 2.8. Out of 590
winners, 207 were alphabetically rst of the candidatesin the seat. Let p be
the probability that a winning candidate is alphabetically rst. What is the
maximum likelihood estimate of p?

Solution:  Plugin thenumbersh = 590, x = 207:

the maximumlik elihoodestimatas

x 207
b= - = Za0 (0:351):
Note: We showved in Section 2.8 that p wasnotsigni cantly di erentfrom 1=3 =
0:333in this example.
Howewer, the MLE of p is de nitely di erent from 0:333.
This comesbad to the meaningof signi cantly di er entin the statistical sense.
Sayingthatp is not signi cantly di erentfrom 0:333 just meansthat we cant
DISTINGUISH ary di erencebetweerp and0:333 from routinesamplingvari-
ability.

We expect that p probably IS di erent from 0:333,just by a little. The maxi-
mum likelihood estimate givesus the “best'estimate of p.

Note: We haveonly consideredhe classof problemsfor which X  Binomial(n; p)
and n is KNOWN. If n is not known, we have a harder problem: we have two
parameters,and one of them (n) should only take discretevaluesl; 2;3;:: ..
We will not considerproblemsof this typein Stats 210.
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2.10 Random numbers and histograms

We often wish to generaterandom numbers from a given distribution. Statis-
tical padkageslike R have custom-madecommandsfor doing this.

To generate(say) 100 random numbers from the Binomial(n = 190 p = 0:6)
distribution in R, we use:

rbinom(100, 190, 0.6)
or in long-hand,
rbinom(n=100, size=190, prob=0.6)

Caution: the R inputs n and size arethe oppositeto what you might expect:
n givesthe required samplesize,and size givesthe Binomial parametern!

Histograms

The usual graph usedto visualisea set of random numbersis the histogram.

The height of ead bar of the histogram shonvs how many of the randomnumbers
fall into the interval represeted by the bar.

For example,if ead histogram bar covers an interval of length 5, and if 24 of
the random numbersfall between105and 110,then the height of the histogram
bar for the interval (105, 110) would be 24.

Hereare histogramsfrom applyingthecommanabinom(100, 190, 0.6) three
di erenttimes. o -

0 —

frequency of x
frequency of x
frequency of x

I T T T T T 1 I T T T T T 1 I T T T T T 1
80 90 100 120 140 80 90 100 120 140 80 90 100 120 140

Eadh graph shavs 100 randomnumbersfrom the Binomialn = 19Q p = 0:6)
distribution.
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Note: The histogramsabove have beenspecially adjusted sothat ead histogram

bar covers an interval of just one integer. For example, the height of the bar

plotted at x = 109 showvs how mary of the 100 randomnumbersare equalto
109.

Histogram of rbinom(100, 190, 0.6)

30

25

Usually, histogram bars would cover a larger
interval, and the histogram would be smoother. - ]
For example,on the right is a histogramusing £

the default settingsin R, obtained from the
commandhist(rbinom(100 , 190, 0.6)) . ] J

Ead histogram bar coversan interval of B

5 in t@ers. rbinom(100, 190, 0.6)

20

15

10

5

In all the histogramsabove, thesumof the heightsof all the barsis 100,because
thereare1000bserations.

Histograms as the sample size increases

Histogramsare useful becausethey shav the approximateshapeof the underly-
ing probability function.

They are alsousefulfor exploring the e ectof increasingsamplesize.

All the histogramsbelown have bars covering an interval of 1 integer
They shav how the histogram becomesmoothemlandlesserraticassamplesize
increases.

Evertually, with alargeenoughsamplesize,thehistogranstartsto look identical
to the probability function.

Note: dierence between a histogram and the probabilit y function

The histogram plots OBSER/ED FREQUENCIESof a setof randomnumbers.
The probability function plots EXACT PROBABILITIES for thedistribution.

The histogram shouldhave the sameshapeasthe probabilityfunction,especially
asthesamplesizegetslarge.



08

00T

0zt

orT

‘abte|s19bazisajdwes se uonouny

Aupgegoud ayr jo adeys ayy wpreoudde pue

0.00

adeys uiajgeisswodagswelbolsiy ay

"10BX9pUB PA X
S| uonouny Ayjigeqoud ayl

P(X=x) when X~Bin(190, 0.6)

0.01
1

0.02
1

0.03
1

0.04
1

0.05
1

‘06T)lelwoulg oy uonouny A Njigeqoid

(90

0.06
]

08

ozt 00T 06

orT

00T 06 08

ozt

orT

08

ozt 00T 06

ovT

0
L

1000 2000 3000 4000

frequency of x

5000

6000

0
L

1000 2000 3000 4000 5000 6000

frequency of x

0
L

1000 2000 3000 4000 5000 6000

frequency of x

:000'00T 9zIs 8|dwes

(9°'0 ‘06T ‘00000T)woulgl

08

ozt 00T 06

orT

00T 06 08

ozt

orT

08

ozt 00T 06

ovT

frequency of x

0 100 200 300 400 500 600

L | | | | | |
frequency of x

0 100 200 300 400 500 600

L | | | | | |
frequency of x

0 100 200 300 400 500 600

:000'0T 9zIs a|dwes

(9°'0 ‘06T ‘0000T)woulgd

08

ozt 00T 06

ovT

08

ozt 00T 06

ovT

00T 06 08

(r4%

ovT

frequency of x

frequency of x

60

0 10 20 30 40 50

L | | | | | |
frequency of x

0 10 20 30 40 50 60

:000T 9zIs ajdwes

‘000T)Woulg

(9'0 ‘06T

G6



2.11 EXxp ectation

Given a random variable X that measuressomething, we often want to know
whatis theaverage valueof X ?

For example,here are 30 random obsenations taken from the distribution
X Binomial(n = 190 p = 0:6):

R command: rbinom(30, 190, 0.6)

116 116 117 122 111 112 114 120 112 102
125 116 97 105 108 117 118 111 116 121
107 113 120 114 114 124 116 118 119 120

P(X=x) when p=0.6
0.00 001 002 0.03 0.04 0.05 0.06

T T T
100 120 140

The average,or mean, of the rst ten valuesis:

116+ 116+ :::+ 112+ 102

10 = 1142
The meanof the rst twenty valuesis:
116+ 116+ :::+ 116+ 121: 1138
20
The meanof the rst thirty valuesis:
116+ 116+ :::+ 119+ 120: 1147

30

The answers all seemto be closeto 114 What would happen if we took the
averageof hundredsof values?

100 values from Binomial(190, 0.6):

R command: mean(rbinom(100, 190, 0.6))
Result: 114.86

Note: You will get a di erent result every time you run this command.
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1000 values from Binomial(190, 0.6):

R command: mean(rbinom(1000, 190, 0.6))
Result: 114.02

1 million values from Binomial(190, 0.6):

R command: mean(rbinom(1000000, 190, 0.6))
Result: 114.0001

The averageseemso be converging to thevaluell14.
The larger the samplesize, the closerthe averageseemso getto 114.

If we kept goingfor largerand larger samplesizeswewould keepgetting answers
closerand closerto 114. This is becausell4is the DISTRIBUTION MEAN:
themeanvaluethatwe would getif we wereableto drav anin nite samplefrom
the Binomial(190,0.6) distribution.

This distribution meanis calledthe expectationor expectedvalue,of the Bino-
mial(190,0.6)distribution.

It is a FIXED propertyof the Binomial(190,0.6) distribution. This meanst is a
x edconstantthereis nothingrandomaboutit.

De nition: The expected value, also called the expectation or mean, of a
discrete random variable X, canbe written as eitherE(X), or E(X), or x,
andis givenby

X X
x = E(X) = Xfx (X) = XP(X = Xx):

X X

Theexpectedvalueis ameasuref thecentre or average of thesetof valuesthat
X cantake, weightedaccordingto the probability of eachvalue.

If we took a very large sampleof randomnumbersfrom the distribution of X ,
their averagewould be approximatelyequalto .
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Example: Let X Binomial(n = 190 p= 0:6): What is E(X)?

X
E(X) = XP(X = Xx)
%90
= X 130 (0:6)*(0:4)190 x:
x=0

Although it is not obvious, the answer to this sumisn p= 190 0:6= 114
We will seewhy in Section2.14.

Explanation of the form ula for exp ectation

We will move away from the Binomial distribution for a momert, and usea
simpler example.

1 with probability 0.9,

Let the random variable X bede ned asX = 1 with probability 0.1.

X takesonly the valuesl and 1. What is the "average'value of X ?

Using 02 = 0 would not be useful, becauset ignoresthe fact that usually

X = 1, andonly occasionallyis X = 1.

Instead, think of observingX many times, say 100times.

Roughly 90 of these100times will have X = 1.
Roughly 10 of these1l00timeswill have X = 1

Theaverageof the 100valueswill beroughly
90 1+10 ( 1)
100 ’
= 09 1+01 ( 1)
(= 08 )

We could repeat this for any samplesize.



As thesamplegetslarge, the averageof the samplewill getever closerto

09 1+01 ( 1)

This is why thedistribution meanis givenby

EX)=PX=1) 1+PX= 1) ( 1)

or in general, X
E(X) = P(X = x) x:

X

E(X) isa x edconstangiving the
averagevaluewe would getfrom alarge sampleof X .

Linear prop erty of exp ectation

Expectation is a line ar operator:

Theorem 2.11: Leta andbbeconstantsThen

E(aX + b) = aE(X) + b:

Pro of:

Immediate from the de nition of expectation.
X
E(aX + b) = (ax + b)f x (x)
X X
= a Xxftxy(xX)+b fx(x)

X

X
aE(X)+b 1

99
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Example: nding expectation from the probabilit y function

Example 1: Let X Binomial(3;0:2). Write down the probability function of X
and nd E(X).

We have: 2
P(X = x) = y (0:2)%(0:8)% * for x = 0;1;2;3:

X \ 0 1 2 3
fx(X) = P(X = x) | 0512 0384 0:096 0.008

Then

x3
E(X)=  Xxfx(x)
x=0

0O 0512+ 1 0:384+ 2 0:096+ 3 0:008

0:6:

Note: Wehave: E(X)=06=3 0:2forX Binomial3;0:2).
We will provein Section2.14that whenewer X  Binomial(n; p), then
E(X) = np.

Example 2: LetY be Bernoulli(p) (Section2.3). That is,

1 with probabilityp;

Y= 0 with probabilityl p:
Find E(Y).
y| 0 1
PY=y)[1 p p

E(Y)=0 (1 p+1 p=p
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Exp ectation of a sum of random variables: E(X + Y)

E(X1+ Xo+ 110+ X)) = E(X) + E(Xp) + .+ E(X)):

In particular, E(X + Y) = E(X) + E(Y) for ANY X andY .

This result holds for any random variables X 1;:::; X,,. It doesNOT require

We can summarizethis important result by saying:

The expectationof asum
Is the sumof the expectations- ALWAYS.

The proof requiresmultiv ariate methods, to be studied later in the course.

Note: We can conbine the result above with the linear property of expectation.
E(a1X1 + aXo+ i+ aan) = alE(X]_) + azE(Xz) + i+ aﬂE(Xn)

Exp ectation of a product of random variables: E(X Y)

There are two casesvhen nding the expectation of a product:

1. General case:

ForgeneraK andY, E(XY) isNOT equaltoE(X)E(Y):

We haveto nd E(XY) either using their joint probability function (see
later), or using their covariance (seelater).

2. Special case: whenX andY are INDEPENDENT

WhenX andY areINDEPENDENT E(XY) = E(X)E(Y):




2.12 Variable transformations

We often wish to transformrandom variablesthrough a function. For example,
given the random variable X, possibletransformations of X include:

p_

X2, X ; 4x3;
We often summarizeall possiblevariable transformations by referring to
Y = g(X) for somefunctiong.

For discreterandomvariables,it is very easyto nd the probability function for
Y = g(X), giventhat the probability function for X is known. Simply change
all the valuesandkeepthe probabilitiesthe same.

Example 1. Let X Binomial(3;0:2), and let Y = X?2. Find the probability
function of Y.

X \ 0 1 2 3
P(X = X)‘ 0:512 0:384 0:096 0:008

The probability function for X is:

Thus theprobabilityfunctionforY = X2 is:

y| 0 12 22 <5
P(Y=y)| 0512 0:384 0:096 0:008

This is becauseY takesthevalue0? wheneerX takesthevalueO, andsoon.
Thus theprobabilitythatY = 0? is thesameasthe probabilitythatX = 0.

Overall, we would write the probability function of Y = X ? as:

y| 0O 1 4 9
P(Y =y) | 0512 0:384 0:096 0:008

To transform a discreterandom variable, transformthe values
andleave theprobabilitiesalone.




Example 2: Mr Chancehiresout giant helium balloonsfor
advertising. His balloonscomein three sizes:heights 2m, 3m,
and 4m. 50% of Mr Chance'scustomerschooseto hire the
cheapest 2m balloon, while 30% hire the 3m balloon and
20% hire the 4m balloon.

The amourt of helium gasin cubic metresrequiredto Il the balloonsis h3=2,
where h is the height of the balloon. Find the probability function of Y, the
amourt of helium gasrequired for a randomly chosencustomer.

Let X bethe heightof balloonorderedby a randomcustomer The probability
functionof X is:

height,x (m) | 2 3 4
PX=x)| 05 03 02

LetY betheamountof gasrequired:Y = X 3=2. The probability function of Y
IS:

gasy (m°) | 4 13.5 32
PY=y)| 05 03 02

Transform the values,and leave the probabilities alone.

Exp ected value of a transformed random variable

Wecan nd the expectation of atransformedrandomvariablejust likeany other

random variable. For example,in Examplelwehad X  Binomial(3;0:2), and
Y = X2,

. : - X 0 1 2 3
The probability function for X is: P(X = x) | 0.512 0.384 0.096 0:008
w2 y 0 1 4 9
andfor Y = X*= P(Y = y)| 0512 0:384 0.096 0.008
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Thus the expectation of Y = X 2 is:

0O 0512+ 1 0384+ 4 0096+ 9 0:008
0:84:

E(Y) = E(X?)

Note: E(X?2) is NOT thesameasf E(X )g*: Checkthatf E(X )g* = 0:36.

To make the calculation quicker, we could cut out the middle step of writing
down the probability function of Y. Becausewe transform the valuesand keep
the probabilities the same,we have:

E(X? = 0° 0512+ 12 0:384+ 2> 0:096+ 3* 0:008

If we write g(X) = X?, this becomes:

Efg(X)g= E(X?) = g(0) 0512+ g(1) 0:384+ g(2) 0:096+ g(3) 0:008

Clearly the sameargumerts can be extendedto any function g(X) and any
discreterandom variable X :

X
Efg(X)g= g(x)P(X = x):

X

Transform the values,and leave the probabilities alone.

De nition: For any function g and discreterandom variable X , the expectedvalue
of g(X) is given by

X X
Efg(X)g= g)P(X =x)= gx)fx(x):

X X
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Example: Recall Mr Chance and his balloon-hire businessfrom page 103. Let

X be the height of balloon selectedby a randomly chosencustomer. The
probability function of X is:
height, x (m) | 2 3 4
PX=x)|] 05 03 02

(a) What is the averageamourt of gasrequired per customer?

GasrequiredwasX 3=2 from page103.
Averagegaspercustomeiis E(X 3=2).

E — = — =
> > P(X = x)
X
23 33 43
= — 05+ — 03+ — 02
2 2 2
= 1245 m? gas.

(b) Mr Chance charges$400 h to hire a balloon of height h. What is his
expected earning per customer?

Expectedearningis E(400X).
E(400X) = 400 E(X) (expectationss linear)
= 400 (2 05+3 03+4 02)
= 400 27

= $1080percustomer

(c) How much doesMr Chanceexpectto earnin total from his next 5 customers?

1080by part(b). Thetotal expectedearningis

E(Z1+ Zo+ 11+ Zs) E(Z) + E(Zy) + ...+ E(Zs)
= 5 1080

= $5400
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Getting the expectation.. .

3 with probability 3=4;

S X =
HPPOSE 8 with probability 1=4:

Then 3=4 of the time, X takesvalue 3, and 1=4 of the
time, X takesvalue 8.

so E(X) = 3 3 + 1 8

add up the values
times how often they occur

What about E( P X )7

P < = P 3 with probability 3=4;
8 with probability 1=4:
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add up the values
times how often they occur

Common mistakes
D___ g

i)E(pX_): EX = 3 3 + 7 8
L q _— q —
e
L q q
i) E(pX): $ 3+ L1 3

q — q —
_ 3 Pxz 1 Pg
= 3 3 + 8

&



2.13 Variance

Example: Mrs Tractor runs the Rational Bank of Renuera. Every day shehopes
to Il her cashmadine with enoughcashto seethe well-heeledcitizens of Re-
muera through the day. Sheknows that the expected amourt of money with-

drawn ead day is $50,000.How much moneyshould sheload in the madcine?
$50,0007?

No: $50,000is the average hearthe centre
of thedistribution. About half thetime,
themone requiredwill be GREATER
thanthe average.

How much money should Mrs Tractor put in the
madine if shewants to be 99% certain that there
will be enoughfor the day's transactions?

Answer: it dependshow much the amourt withdrawn variesabose andbelov
its mean.

For questionslik e this, we needthe study of variance.

Varianceis the averagesquaredlistanceof arandonwvariablefrom its own mean.

De nition:  The variance of arandomvariable X is writtenaseitherVanX) or %,
andis givenby

2=VaX)=E (X x)? =E (X EX)?:

Similarly, the varianceof a function of X is

Va(g(X)) = E  g(X) E@(X))

Note: The variance is thesquareof the standardieviation of X, so

p 49—
sdX) =" VarX) = 2= x:
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Variance as the average squared distance from the mean

The varianceis a measureof how spreadout are the valuesthat X can take.
It is the averagesquaredlistancebetweera valueof X andthe central(mean)

value, «.

Possible values of X

X1 X2 X3 Xa X5 X6
| @ | L ® *—

X
(central value)

VaX) = E [(X  x)°]

Hz} |—{z—}
@) 1)

(1) Take distancefrom obseredvaluesof X to the centralpoint, x. Squaret
to balancepositve andnegative distances.

(2) Thentaketheaverageoverall valuesX cantake: ie. if we obseredX mary
times, nd whatwould betheaveragesquaredlistancebetweerX and .

Note: Themean, x,andthe variance, %, of X arejust numbersthereis nothing
randomor variableaboutthem.

3 with probability 3/4,

Example:  LetX = g \ith probability 1/4.

X
1

Then _ 3. 1_,
E(X) 3 S+8 ;=425
3 o, 1 2
VanX) = — (3 425+ 3 (8 4:25)

XN

4:6875

When we obsene X, we get either 3 or 8: thisis random.
But x is xedat4.25,and % is x edat4.6875,regardlessof the outcomeof

X.
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For a discreterandom variable,

X X
VaX)=E (X x)* = (x x)fx(x)= (x x)*P(X = Xx):

X X

This usesthe de nition of the expectedvalue of a function of X :

Var(X) = E(g(X)) whereg(X)= (X  x)*

Theorem 2.13A: (important)

VarX) = E(X?) (EX)?= E(X?) %

Pro of: Var(X) E (X x)? by denition

=R 218 @t |

+ constan constart
= E(X?) 2 xE(X)+ % byThm 2.11
= E(X?) 2%+ %

= E(X%) %

2 P 2 P 2 ic i 2
Note: E(X?9) = xHx(X)= x“P(X = x). This is not the sameas (EX)*:

% = 3 with probability 0.75,
€.g. ~ 8 with probability 0.25.

Then x = EX = 425 so 2 = (EX)2= (4:25)2 = 180625.

But

3 1
E(X%)= 3 Z+8 = =2275
(X9) 2 7

Thus E(X?) 6 (EX)?in general.
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Theorem 2.13B: If a and b are constarts and g(x) is a function, then

i) VaraX + b) = a?Varx).
i) Varag(X)+ b) = a?Varf g(X)g:

Pro of:
(part(i)
h i
VaaX + b) = E f(aX + b E(aX + bg?
h i
= EfaX+b aE(X) by byThm2.11
h i
= E faX aE(X)g?
h i
= E afX EX)g?
h i

= a’E fX E(X)g*> byThm2.11
= a?VarnX):

Part (ii) follows similarly.

Note: Thesearevery di erent from the corresppnding expressiongor expectations
(Theorem 2.11). Variancesare more di cult to manipulate than expectations.

Example: nding expectation and variance from the probabilit y function

Recall Mr Chance'sballoonsfrom page103. The random
variable Y is the amourt of gasrequired by a randomly
chosencustomer. The probability function of Y is:

gas,y (m?3) | 4 13.5 32
P(Y=y)| 05 03 02

Find Var(Y).
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We know that E(Y) = y = 1245from pagel05.

First metho d: useVanY) = E[(Y v)?:

vary)

(4 1245 05+ (135 1245¢ 03+ (32 12457 02
= 11247

Second metho d: useE(Y?)  2: (usuallyeasier)

E(Y?) = 4% 05+ 135° 0.3+ 32 02
= 267475
SoVanY) = 267475 (12:45) = 11247 asbefore.

Variance of a sum of random variables: Var(X + Y)

There are two caseswvhen nding the varianceof a sum:

1. General case:

For generaK andy,
VarX + Y) is NOT equalto Var(X) + VarY):

We haveto nd Var(X + Y) usingtheir covariance (seelater).

2. Special case: whenX andY are INDEPENDENT

WhenX andY areINDEPENDENT
Var(X + Y) = VanX) + vanY):
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Interlude:

or

Guesswhether eat of the
following statemerts is true or false.

777

. Tossa fair coin 10 times. The probability of getting 8 or more headsis less
than 1%.

. Tossa fair coin 200times. The chanceof getting a run of at least 6 headsor 6
tails in a row is lessthan 10%.

. Considera classramm with 30 pupils of age5, and one teacher of age50. The
probability that the pupils all outlive the teacher is about 90%.

. Openthe BusinessHerald at the pagesgiving shareprices, or open an atlas at
the pagesgiving courntry areasor populations. Pick a column of gures.

share last sale

A Barnett 143
Advantage | 23
AFFCO 18

Air NZ 52

The gures are over 5 times more likely to beginwith the digit 1 than with the
digit 9.

Ao il elow sawp g9 are sy 10wy Ul AN ML v %0S noqe s A wigqeqoid eyl ZN Ul ISTVA € '%L6 SI Wi ISTVH T %S'S SI U IASTVH T Slemsuy
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2.14 Mean and variance of the Binomial( n; p) distribution

Let X  Binomial(n; p). We have mertioned se\eral times that E(X) = np.
We now prove this and the additional result for Var(X).

If X Binomial(n; p), then:

E(X)= x=np
VaX)= § =npl p):

We oftenwriteq= 1 p, soVanX) = npg.

Easy proof: X as a sum of Bernoulli random variables

If X  Binomial(n; p), then X is the numberof successesut of n independent
trials, eachwith P(success= p.

This meansthat we can write:
X =Y+ Yo+ i+ Yy
whereeach _ N
1 with probabilityp;
0 with probabilityl p:
That is, Y; countsasal if trial i is asuccessandasao if triali is afailure.

Overall, Y1 + :::+ Y, isthetotalnumberof successesutof n independentrials,
whichis thesameasX .

Note: Ead Y; is a Bernoulli(p) random variable (Section 2.3).

E(X) = E(Y1)+ E(Yo) + :::+ E(Y,) (doesNOT requireindependence),

Var(X) = VarY;) + VanY,) + :::+ Vany,) (DOESrequireindependence).



The probability function of ead ; is:

Thus,

Also,

So

Therefore:

And:

Thus we have provedthat E(X) = npand Var(X) = np(1 p):

0
PYi=y) |1 p

E(Y)=0 (1 p+1 p=p:

E(Y)=0 (1 p+1° p=p:

E(X)

VanX)

var(Yi)

E(Y?)  (EY)?

p p°
p(l  p):

E(Y1) + E(Y2) + 111+ E(Yn)
p+p+iii+p

n p:

VanY,) + VanYo) + ...+ VanY,)

n pl p):

115
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We shawv belowv how the Binomial mean and variance formulae can be derived

directly from the probability function.

xXn xXn X n!

n !
EX)=  xfx(x)=  x _ p@1 p" "= x  ——— pQ
0 o X 0 (n  x)x!
X 1 .
But — = and alsothe rst term xf x (x) is 0 whenx = 0.
x' (x 1)

So, cortinuing,
X n!

E(X):X:1 GG

p‘r p"

Next:. maken'sinto (n 1)'s, x'sinto (x 1)'s, wherewer possible:

e.g.
n x=(n 1) (x 1); p‘=pp?
nl = n(n 1)! etc:
This gives,
E(X) — X n(n 1)| p p(X 1)(1 p)(n 1) (x 1)
1 [(n 1) (x D](x 1)
X' n 1
— |{}8 y 1 px 1(1 p)(n 1) (x 1)
what we want 21 {z 1

needto show this sum= 1

Finally welety=x landletm=n 1.
n

Whenx = 1;y = 0; andwhenx = n; y = 1=m.
xn

So E(X) = np L p@ pm Y
y=0 Y

np(p+ (1 p)™ (Binomial Theorem)

E(X)

np; asrequired.

p)n X
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For Var(X), usethe sameideasagain.
For E(X), we used J; = (X—ll), soinstead of nding E(X?), it will be easier

to nd E[X(X 1)]= E(X? E(X) becausethen we will be able to cancel
x(x 1) _ 1

xI T (x 2)!:
Here goes:
X n
EX(X 1) = xx 1) P p'’
x=0

X x(x 1n(n 1)(n 2)!
ol 2) (x 2Ix  2)x(x 1)

ppx 21 p)n 2 &2

First two terms (x = O and x = 1) are 0 dueto the x(x 1) in the numerator.
Thus

X' n 2
E[X (X 1)] = pzn(n 1) 5 px 2(1 p)(n 2) (x 2)
X=2
X m . m=n 2
= 2 m'y ’
n(n 1)p Ly PPl p if y=x 2
f {z }

sum=1 by Binomial Theorem

So E[X(X 1) n(in 1)p?:

Thus Var(X)

E(X?)  (E(X))?

= E(X?) E(X)+E(X) (E(X))?
= EX(X 1)]+EXX) (E(X))?
= n(n 1p’+np n*p’

= np(l p):

Note the steps:takeout x(x 1) andreplacen by (n  2),x by (x 2) wherewer
possible.
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Variance of the MLE for the Binomial p parameter

In Section2.9 we derived the maximum likelihood estimator for the Binomial
parameterp.

Reminder : Take any situation in which our obsenation X has the distribution
X Binomial(n; p); wheren is KNOWN and p is to be estimated.

Make a single obsenation X = x.

The maximum likelihood estimatorof pis p= %:

In practice, estimatesof parametersshouldalways be accompaniediy estimates
of their variability.

For example,in the deep-sealiver exampleintroducedin Section2.7, we esti-
mated the probability that a diver hasa daughter is

X 125
b= "= 15,= 0:658

What is our margin of error on this estimate? Do we beliew it is 0:658 0:3
(say), in other words almost uselesspr do we beliewe it is very precise,perhaps
0:658 0:02?

We assesshe usefulnesof estimators using their variance.

. X
Givenp = Py we have:

Vap) = Var %

1
= Varx)

= n_12 np(1 p) forX  Binomialn; p)

_ p(1 p
n

: (?)
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In practice, howewver, we do not know thetrue valueof p, sowe cannotcalculate

theexactVarnp).

Instead, we have to ESTIMATE Var(p) by replacingthe unknavn p in equation
(?) bybp.

We call our estimated variance 0?l’ar(p) :

dar(py = PP,

n

The standard error of p is:

q
s€p) = Yar(p):

We usually quote the margin of error assaiated with p as

r

Margin of error= 1:96 s€p) = 1.96

)
n

This result occursbecausdhe Certral Limit Theoremguararteesthat p will be
approximately Normally distributed in large samples(large n). We will study
the Certral Limit Theoremin later chapters.

The expressionb 1:96 se() givesan approximate 95% con denceinterval
for p underthe Normalapproximation.

Example: For the deep-sealiver example,with n = 190,

b = 0:658
r

0:658 (1 0:658)
190

So: sdp) =

= 0:034
For our nal answer, we should therefore quote:
b= 0:658 196 0:034= 0:658 0:067 or p= 0:658 (0:591;0:725).
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Chapter 3: Mo delling with Discrete

Probabilit y Distributions

In Chapter 2 we introducedse\eral fundamenal ideas: hypothesistesting, like-
lihood, expectation, and variance. Each of thesewasillustrated by the Binomial
distribution. We now introducese\eral other discretedistributions and discuss
their properties and usage. First we revise Bernoulli trials and the Binomial

distribution.

Bernoulli Trials
A set of Bernoulli trials is a seriesof trials sud that:

i) ead trial hasonly 2 possibleoutcomes: Suaessand Failure;
i) the probability of successp, is constart for all trials;
i) the trials are independen.

Examples: 1) Repeatedtossingof a fair coin: ead tossis a Bernoulli trial with
P(successy P(head) = 3:
2) Having children: ead child can be thought of as a Bernoulli trial with
outcomesf girl, boyg and P(girl) = 0:5.

3.1 Binomial distribution

Description: X  Binomial(n; p) if X is the numberof successeeutof a x ed
numbem of Bernoullitrials, eachwith P(success= p.

Probability function: fx(x)=P(X = x) = Q p*(1 p)" *forx=0;1;:::;n.
Mean: E(X) = np.

Varianc e: VarX)=np(1l p).

Sum of indep endent Binomials: If X Binomial(n;p)andY  Binomial(m; p),

andif X andY areindependent andif X andY both sharethe sameparameter
p, then X + Y  Binomialn + m; p):
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Shape: Usually symmetrical unlessp is closeto O or 1.
Peaksat approximately np.
n=10,p= 0:5 n=10,p= 09 n=100,p= 0:9
(symmetrical) (skewed for p closeto 1) (lessskew for p= 0:9if n is large)

0.25
0.4

0.15 0.20
0.2 0.3

0.10

0.05
0.1

0.0 0.02 0.04 0.06 0.08 0.10 0.12

0.0
0.0

0123 456 7 8 910 0123456 7 8 910 80 9 100

3.2 Geometric distribution

Like the Binomial distribution, the Geometric distribution is de ned in terms
of a sequenceof Bernoulli trials.

The Binomial distribution cournts the numberof successeoutof a x ed
numberof trials.

The Geometric distribution courts the numberof trials beforethe rst
succes®ccurs.

This meansthat the Geometricdistribution courts the numberof failuresbefore
the rst success.

If every trial hasprobability p of successye write: X  Geometri€p):

Examples: 1) X =number of boys beforethe rst girl in a family:
X  Geometri¢p = 0:5):

2) Fish jumping up a waterfall. On ewery jump the sh
has probability p of reading the top.

Let X be thenumberof failedjumpsbefore

the sh succeeds.

Then X  Geometri¢p):
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Prop erties of the Geometric distribution

1) Description

X Geometridp) if X is the numberof failuresbeforethe rst successn a
seriesof Bernoullitrials with P(success= p.

i) Probabilit y function

For X  Geometridp),

fx(X)=PX=x)=(1 p*p forx=012:::

Explanation: P(X = x) = fl_{zp_)x I{Q}

need x failures nal trial must be a success

Dier ence between Geometric and Binomial: For the Geometric distribu-
tion, the trials must always occur in the order F£{32'3_ S.

X failures

For the Binomial distribution, failures and successesan occur in any order:
eg.FF:::FS, FSF:.:F, SF::.F, etc.

This is why the Geometricdistribution has probability function
P(x failures, 1 success¥F (1 p)*p;

while the Binomial distribution has probability function

, X+ 1 N
P(x failures, 1 succesp= y 1 p)p:

i) Mean and variance 1 p
E(X) = e

T o

For X  Geometridp),
1

©

a
p? p?

Var(x ) =
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Iv) Sum of indep endent Geometric random variables

If Xq;:::; Xk are independentand eath X; Geometridp), then
X1+ :::+ Xx  Negative Binomialk;p). (seelater)
v) Shape

Geometric probabilities are always greatestat x = 0.
The distribution always hasa long right tail (positve skew).

The length of the tail dependson p. For small p, there could be many failures
beforethe rst successsothe tail is long.

For large p, a successs likely to occur almost immediately, sothe tail is short.
p= 0:3 (small p) p = 0.5 (moderate p) p= 0:9 (large p)

0.4 0.5
0.6 0.8

0.3

0.2
0.4

0.1
0.2

00 005 010 0.15 0.20 025 0.30

0.0
0.0

01 2 3 45 6 7 8 910 01 2 3 45 6 7 8 9 10 01 2 3 45 6 7 8 9 10

vi) Lik eliho od

For any random variable, the likelihood function is just the probability function
expresseds a function of the unknown parameter. If:

X Geometridp);
p is unknawvn;
the obsened value of X is x;

then the likelihood functionis: L(p;x)=p(1 p)* for 0< p< 1

Example: we obsene a sh making 5 failed jumps before reading the top of a
waterfall. We wish to estimate the probability of succesdor eat jump.

Then L(p;5)=p(l p)° for 0<p< 1
MaximizelL with respectop to nd the MLE, p.
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We wish to provethat E(X) = 2 and Var(X) = %2 whenX  Geometridp).
We usethe following results:
. xq¢ 1 = 1 (for jgj < 1) (3.1)
x=1 (1 q)2 ’ -
and
. X(x g 2= —2 (orjg<1) (3.2)
T il . .

x=2

Pro of of (3.1) and (3.2):

Considerthe in nite sum of a geometricprogression:

X
qQ = (for jgj < 1):
1
x=0
Di erentiate both sideswith respectto g
!
4 ® 4 1
dqg <=0 dg 1 q
¥l L
., dg (1 9?2
. gt b= as stated in (3.1)
@A -

Note that the lower limit of the summation becomesx = 1 becausethe term

for x = 0 vanishes.

The proof of (3.2) is obtained similarly, by di erentiating both sidesof (3.1)

with respectto q (Exercise).
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Now we can nd E(X) and Var(X).

X
E(X) = XP(X = Xx)

= Xpq (whereg=1 p)

= p xg (lower limit becomes< = 1 becauseterm in x = 0 is zero)

(by equation (3.1))

_ 1
- pq (1 q)2

= pq (becausel q= p)

p?
= g; asrequired.

For Var(X), we use
Var(X) = E(X?) (EX)?2= EfX(X 1)g+ E(X) (EX)%: (?

Now

X
EfX(X 1)g = x(x 1)P(X = x)
x=0
X
= x(x 1)pg (whereg=1 p)
x=0
X
= pd x(x 1)g° ? (notethat termsbelow x = 2 vanish)
X=2
2 .
pcf E (by equation (3.2))
_ 27,
= 5
2
Thus by (?), VarX) - 2_q2+ qa q 2 g+ p) q.
) - 2 T2’
Y p P Y Y

asrequired, becauseg+ p= 1.




126
3.3 Negativ e Binomial distribution

The Negative Binomial distribution is a generalisedorm of the Geometricdis-
tribution:

the Geometric distribution couns the number of failuresbeforethe rst
success;

the Negative Binomial distribution courts the number of failuresbefore
thek'th success.

If every trial hasprobability p of successwe write: X  NegBin(k; p):

Examples: 1) X =number of boys beforethe secondgirl in a family:
X NegBin(k = 2; p= 0:5):

2) Tom needsto pass24 papersto completehis degree. @
He passesad paper with probability p, independerily

of all other papers. Let X be thenumberof papers
Tom fails in his degree. @
Then X NegBin(24; p):

Prop erties of the Negativ e Binomial distribution

1) Description

X NegBin(k; p) if X is the numberof failuresbeforethek'th successn a
seriesof Bernoullitrials with P(success= p.

i) Probabilit y function

For X NegBin(k; p),

fx(x)= P(X = x) = k+))§ 1p"(l p)* for x=0;1;2:::
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Explanation:
For X = x, we need x failuresand k successes.
The trials stop whenwe read the k'th successsothe last trial must be a
success.
This leaves x failuresand k 1 successeto occurin ary order:
atotal of k 1+ x trials.

For example,if x = 3 failuresand k = 2 successesye could have:

FFFSS FFSFS FSFFS SFFFS

So:
k sugcesses
k+x 1 LZI?@
A ¢ f {zp)
frv failur
(k 1) successeandx failures X faliures
outof (k 1+ x) trials.
i) Mean and variance kA p
E(X) = kg
For X NegBin(k; p),
k(1 p) _ kq
VanX) = il

Theseresults can be proved from the fact that the Negative Binomial distribu-
tion is obtained asthe sum of k independen Geometricrandom variables:

X = Yi+:::+Y whereeahY; Geometridp); Y, indept,

) EX) = kE(Y)= S,
Var(X) = kVar(y;) = %‘:

Iv) Sum of indep endent Negativ e Binomial random variables

If X andY are independent,
and X  NegBin(k; p), Y NegBin(m; p), with the samevalue of p, then

X +Y NegBin(k + m;p).
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v) Shape

The Negative Binomial is exible in shape. Below are the probability functions
for various di erent valuesof k and p.

k=3,p=05 k=3,p=038 k=10,p= 05

0.5

0.05 0.10 0.15
0.1 0.2 0.3 0.4
0.02 0.04 0.06 0.08

0.0
0.0
0.0

01 2 3 45 6 7 8 9 10 01 2 3 45 6 7 8 9 10 0 2 4 6 8 1012141618 202224

vi) Lik eliho od

As always, the likelihood function is the probability function expressedas a
function of the unknown parameters. If:

X NegBin(k; p);

k is known;

p is unknawvn;
the obsened value of X is x;

then the likelihood function is:
k+x 1

L(p;x) = § ‘(1 p)* for 0< p< L

Example: Tom fails a total of 4 papers before nishing his degree. What is his
passprobability for ead paper?

X =#failedpapersdefore24 passegapersX  NegBin(24;p).

Obsenation: X = 4 failedpapers.
Likelihood:

L(p;4) = 24+ 4 1 ! p?%1 p?* for 0< p< 1

4 4
MaximizelL with respectop to nd the MLE, p.

Y1 p)t=
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3.4 Hyp ergeometric distribution: sampling without replacement

The hypergeometricdistribution is usedwhenwe aresamplingwithoutreplace-
mentfrom a_nite population.

1) Description
Supposewe have N objects:

M of the N objects are special;
the other N M objects are notspecial.

We remove n objects atrandomwithout replacement.

Let X = numberof then remorsedobjectsthatarespecial.

Then X  Hypemgeometri¢N; M; n):

Example: Ron hasa box of Chocolate Frogs. There are 20 chocolate frogsin the
box. Eight of them are dark chocolate, and twelve of them are white chocolate.

Ron grabsa random handful of 5 chocolate frogsand stu s them into his mouth
when he thinks that nooneis looking. Let X be the number of dark chocolate

frogs he picks.
ThenX  Hypegeometri¢(N = 20, M = 8, n = 5):

i) Probabilit y function

For X  Hypergeometri¢N; M ;n),

M N M
fx(x) = P(X = x) = ———

=)

forx = max(O;n+ M N) to x = min(n;M):




130

Explanation:  We needto choose x special objectsand n x other objects.
Number of ways of selectingx special objectsfrom the M availableis: '\)’(' :

Number of ways of selectingn x other objectsfromthe N M available

i« N M
is: L
Total number of ways of choosingx specialobjectsand (n x) other objects
; M N M
is:
X n X

N

Overall number of ways of choosingn objects from N is: ' .

Thus: M N M
numberof desiredways ', |, &

P(X = x) = B
( X) total numberof ways ﬂ

Note: Weneed0 x M (number of special objects),
and0 n x N M (number of other objects).
After someworking, this givesus the stated constraint that

Xx=max(O;n+ M N)tox = min(n;M):
Example: What is the probability that Ron selects3 white and 2 dark chocolates?

X =# dark chocolates.ThereareN = 20 chocolatesjncludingM = 8 dark
chocolatesWe need
> 5 _ 28 220

P(X =2)= 2 15504

Sameansweras Tutorial 3 Q1(e),but di erentmethod.

= 0:397:

lii) Mean and variance

For X  Hypergeometri¢N; M ;n),

E(X)=np

wherep= M.
Var(X) = np(l p) N2 N
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iv) Shape

The Hypergeometricdistribution is similar to the Binomial distribution when
n=N is small, becauseremoving n objects doesnot changethe overall compo-
sition of the population very much whenn=N is small.

For n=N < 0:1 we often approximate the Hypergeometric(N ; M ; n) distribution
by the Binomialn; p= ) distribution.

Note:

Hypergeometri¢30; 12; 10) Binomial(10; £2

0.10 0.15 0.20 0.25

0.05

0.0 0.05 010 0.15 020 0.25 0.30

0.0

01 2 3 456 7 8 910 01 2 3 456 7 8 910

The Hypergeometricdistribution can be used for opinion polls, because

theseinvolve sampling without replacemen from a nite population.

The Binomial distribution is usedwhenthe population is sampled with replace-
ment.

As noted above, Hypergeometri¢N;M:n) ! Binomial(n; M) asN! 1 :

A note about distribution names

Discrete distributions often get their namesfrom mathematical power series.

Binomial probabilities sumto 1 becauseof the Binomial Theorem:
n
p+ (1 p = <sumofBinomial probabilites> = 1:

Negative Binomial probabilities sumto 1 by the Negative Binomial expan-
sion: i.e. the Binomial expansionwith a negative power, k:

k
K1 (1 p = <sum of NegBin probabilities> = 1:

Geometric probabilities sumto 1 becausehey form a Geometric series:
X
p (1 p)*= <sumof Geometricprobabilities> = 1:
x=0




3.5 Poisson distribution _

)

—2

s
When is the next volcanodue to erupt in Auckland? 3

Any momentnow, unfortunately!
(give or take 1000yearsor so...)

A volcanocould happenin Auckland this afternoon, or it might not happen for
another 1000years. Volcancesare almost impossibleto predict: they seemto
happen completely at random.

A distribution that courts the numberof randomeventsin a x edspaceof time
Is the Poissordistribution.

How many carswill crossthe Harbour Bridge today? X  Poisson
How many road acciders will there be in NZ this year? X  Poisson
How many volcanceswill erupt over the next 1000years?X  Poisson

The Poissondistribution arosefrom a mathematical
formulation called the PoissonProcess published
by Simeon-DenisPoissonin 1837.

Poisson Pro cess

The Poissonprocesscourts the numberof eventsoccurringin a x edtime or
spacewheneventsoccurindependentlandat a constantveragerate.

Example: Let X be the number of road acciderts in a year in New Zealand.
Supposethat:

i) all accidens are independenof eachother;
i) accidens occur at a constantveragerateof peryear;
iii) accidenis cannotoccursimultaneously

Then the number of acciderts in a year, X, hasthe distribution

X  Poissof ):
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Num ber of accidents in one year

Let X be the number of accideris to occur in oneyear: X  Poissofl ).

The probability function for X Poissorf ) is

X
P(X = x)= —e for x=0;1,2;:::
x!

Num ber of accidents in t years

Let X; be the number of accidens to occur in time t years.

Then X; Poissofit ),

and (t)*

P(X{ = X) = v el forx=012:::

General de nition of the Poisson pro cess

Take any sequencef random everts sud that:

i) all events are independent;

i) everts occur at a constantveragerateof perunittime;
iil) ewverts cannotoccursimultaneously

Let X bethe numberof eventsto occurin timet.

Then X; Poissofit ),

and (t)*
P(X = X) = v el forx=0212:::

Note: For a Poissonprocessin space,let X o = # eventsin areaof sizeA.
Then X5  PoissofA ):

Example: Xa = number of raisinsin a volume A of currant bun.
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Where does the Poisson form ula come from?

(Sketch idea, for mathematicians;non-examinable).
The formal de nition of the Poissonprocessis as follows.

De nition: The random variablesf X:t > 0Og form a Poissonprocesswith rate if:

I) events occurring in any time interval are independen of those occurring
in any other disjoint time interval;

i)
im P(exactly oneewert occursin time intervallt; t + t])
t#0 t -
i)
im P(more than oneewert occursin time intervallt; t + t]) _ 0-
t#0 t -

Theseconditions can be usedto derive a partial di erential equationon a func-
tion known asthe prokability geneating function of X,. The partial di erential
equationis solved to provide the form P(X; = x) = {le t.

X!

Poisson distribution

The Poissondistribution is not just usedin the context of the Poissonprocess.
It is alsousedin many other situations, often asa subjetive model (seeSection
3.6). Its properties are as follows.

1) Probabilit y function

For X  Poissorf ),

X

fx(x):P(X:x):Fe for x=0;1,2;:::

The parameter is calledthe rateof the Poissondistribution.
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i) Mean and variance

The meanand variance of the Poisson( ) distribution are both

E(X) = VarX) = when X  Poissof ):

Notes:
1. It makessensdor E(X) = : by de nition, isthe avelmagenumber of everts
per unit time in the Poissonprocess.

2. The variance of the Poissondistribution increaseswith the mean (in fact,
variance= mean). This is often the casein real life: there is more uncertainty
assaiated with larger numbersthan with smaller numbers.

i) Sum of indep endent Poisson random variables

If X andY are independentand X  Poissor{ ), Y Poissorf{ ), then

X +Y Poissofi + ):
iv) Shape

The shape of the Poissondistribution dependsupon the value of . For small

, the distribution has positive (right) skew. As increasesthe distribution
becomeamore and more symmetrical, until for large it hasthe familiar bell-
shaped appearance.

The probability functions for various are showvn below.
-1 = 35 = 100

0.2 0.3
0.15 0.20
0.03 0.04

0.10
0.02

0.1
0.05
0.01

0.0
0.0
0.0

0123 4586 78 910 0123 4586 78 910 60 80 100 120 140
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v) Lik eliho od

As always, the likelihood function is the probability function expressedas a
function of the unknown parameters. If:
X  Poissorf );

is unknown;
the obsened value of X is x;

then the likelihood function is:
X

L(;x):ge for 0< < 1:

Example: 28 babieswereborn in Mt Roskill yesterdy. Estimate

LetX =#babiesbornin adayin Mt Roskill. AssumethatX  Poissof ).

Obsenation: X = 28 babies.

Likelihood:
28

L( ;28)= 2—8le for 0< < 1:

MaximizeL with respecto to nd theMLE, ".

For mathematicians: pro of of Poisson mean and variance form ulae

(non-examinable)

We wish to provethat E(X) = Var(X) = for X Poissorf ).

X
For X  Poisson( ), the probability functionisf x (x) = Fe forx=0;1;2;:::
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S0 X x
E(X): XfX(X) = X _Ie
x=0 x=0 X!
X X |
B L (x 1) e (note that term for x = 0 is 0)
A x 1 N o
- - X 1) e (writing ewerything in termsof x 1)
Xy
= o € (putting y= x 1)
y=0 V"

= ; becausehe sum=1 (sum of Poissonprobabilities) :

SoE(X) = , asrequired.

For Var(X), weuse:  var(X) E(X?) (EX)?
E[X (X 1]+ E(X) (EX)?

E[X(X 1)+ 2:

X X
But E[X(X 1)] = X (X 1);6
x=0 )
ps X
= e (termsfor x = 0Oand x = 1 are0)
o (X 2)!
2)4 X 2
= e (writing ewerything in termsof x  2)
- (x 2)!
X oy
= 2 e (putting y = x  2)
y=0 V"

— 2.

So
Var(X) = E[X(X 1)+ 2

- 24 2

= ; asrequired
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3.6 Subjectiv e modelling

Most of the distributions we have talked about in this chapter are exactmodels
for the situation descrilted. For example,the Binomial distribution descrikes
exactlythe distribution of the number of successem n Bernoulli trials.

Howewer, there is often no exact model available. If so,we will usea subjectve
model.

In a subjective model, we pick a probability distribution to descrike a situation
just becauset haspropertiehatwe think are appropriatdo the situation,such
asthe right sort of symmetryor skew, or the right sort of relationshipbetween
varianceandmean.

Example: Distribution of word lengths for English words.
Let X = numberof lettersin anEnglishword choserat randomfrom thedictio-

nary

If we plot the frequencieson a barplot, we seethat the shapeof the distribution
is roughly Poisson.

English word lengths: X 1  Poissor{6:22)

Word lengths from 25109 English words

7‘}

0.15
L

0.10
L

probability

0.05
L

o/ @ | | 1 1 ] ] ]l /]l || Mesessseae
s{] +—H  4—\11 1 eeeeese

The Poissonprobabilities (with  estitffatetdby maximum likelihood) are plotted
as points overlaying the barplot.

We needto useX 1+ PoissonbecauseX cannottake the value 0.

The t of the Poissondistribution is quitegood.
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In this example we can not say that the Poissondistribution represeis the

number of everts in a xed time or space:insteadjt is beingusedasa subjectve
modelfor word length.

Can a Poissondistribution t any data? The answer is no: in factthe Poisson
distributionis veryin e xible.

Best Poisson fit

0.10

Here are stroke courts from 13061
Chinesecharacters. X is the number
of strokesin a randomly chosen
character. The best- tting Poisson
distribution (foundby MLE)

is overlaid.

0.08

0.06

probability

0.04

The t of the Poissondistribution is
awful.

0.02

0.0

It turns out, howewer, that the Chinese number of sirokes
stroke distribution is well-descriked by

a Negative Binomial model.

Stroke counts from 13061 Chinese characters

The best- tting Negative
Binomial distribution
(foundby MLE)

is NegBin(k = 23.7;p = 0:64).
The t is verygood.

0.08

0.06
i

probability

0.04
I

Howewer, X doesnot
represem the number
of failures before

the k'th success:

‘ ‘ ‘ | the NegBinis a

0 T ot N subjective model.

0.02
I

0.0
|
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Chapter 4: Contin uous Random Variables

Intro duction

When Mozart performed his opera Die Entfuhrung aus dem
Seiail, the Emperor Josephll respondedwryly, "Too many
notes, Mozart!'

In this chapter we meeta di erent problem: too mary numbers!

We have met discr ete random variables, for which we can list all the values
andtheir probabilities,evenif thelist is in nite:

X‘O 1 2

eg.forx  Geomelidp): £y =PX=x)| p pq pF

But supposethat X takesvaluesin a continuousset,e.g.[0;1 ) or(0;1).

We can't even beginto list all the valuesthat X can take. For example, how

would you list all the numbersin the interval [0; 1]?
the smallest number is 0, but what is the next smallest? 0:01? 0:0001?

0:0000000001e just end up talking nonsense.

In fact, there are so many numbers in any continuous set that eachof them
musthave probability 0.

If there wasa probability > 0 for all the numbersin a cortinuous set, however
“small’, there simply wouldn't be enoughprobability to go round.

A continuougandomvariabletakesvalues
in acontinuoudnterval (a; b).

It describes continuouslyarying quantitysuchastime or height.
WhenX is continuousP(X = x) = 0 for ALL x.
Theprobability functionis meaningless.

Although we cannotassigna probability to any valueof X , we are ableto assign
probabilities to intervals:
eg. P(X = 1)= 0, butP(0:999 X  1.001)canbe> O.

This meanswe should use thedistribution function,Fy (x) = P(X  X).
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The cumulativ e distribution  function, Fyx (x)

Recallthat for discr ete random variables:
Fx(X) = P(X x); Fx (X)

Fx (X) is astepfunction -
probabilityaccumulates discrete
steps; X

Pa< X b=PX2(ahb)=F(b F(a).

For a continuous random variable: g (x)
Fx(x) = P(X  x);

Fx (X) is acontinuoudunction
probabilityaccumulatesontinuously

1 ............................................................................................. .

AsbeforeP(a< X b =P(X 2 (a;h)=F(b F(a).

Howewer, for a continuous random variable,
P(X =a) = 0:

Soit makesno di er ene whetherwesay P(a< X b orP(a X b).

For a continuousandomvariable,
Pla<s X <b=Pla X b=Fx(b Fx(a:

This is not true for a discreterandom variable: in fact,

For adiscreterandomvariablewith valueso; 1; 2; : : :,
P@a< X <b=Pla+1l X b 1)=Fx(b 1) Fx(a):

Endpointsarenotimportantfor continuous.v.s.
Endpointsarevery importantfor discreter.v.s.
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4.2 The probabilit y density function

Although the cumulativ e distribution function givesus an interval-basedtool
for dealing with continuousrandom variables, it is not very good at telling us
what the distribution lookslike.

For this we usea di erent tool called the probabilitydensityfunction.

The probability density function (p.d.f.) is the bestway to describe and recog-
nisea cortinuousrandom variable. We useit all the time to calculate probabil-
ities and to gain an intuitiv e feel for the shape and nature of the distribution.

Using the p.d.f. is like recognisingyour friends by their faces.You can chat on
the phone,write emailsor sendtxts to ead other all day, but you newer really
know a personuntil you've seentheir face.

Just like a cell-phonefor keepingin touch, the cumulativ e distribution function
Is a tool for facilitating our interactions with the continuousrandom variable.
Howewer, we never really understandthe random variable until we've seenits
‘face’'| the probability density function. Surprisingly, it is quite dicult to
descrike exactly what the probability density function is. In this section we
take sometime to motivate and descrile this fundamenal idea.

All-time top-ten 100m sprint times

The histogram below shaws the best 10 sprint
times from the 168all-time top male 100m
sprinters. There are 1680times in total,
represeming the top 10 times up to 2002from
ead of the 168 sprinters. Out of interest,
here are the summary statistics:

Min. 1st Qu. Median Mean3rd Qu. Max.
9.78 10.08 10.15 10.14 10.21 10.41

frequency

0 100 200 300

9.8 10.0 10.2 10.4
time (s)
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We could plot this histogram using di erent time intervals:

0.1s intervals

o

o

o

o

o

<t

o

: -..

. R I

9.8 10.0 10.2 10.4
time
0.05s intervals

o

o

™

o

o

N

: IIII

o

—

o _—-.. ._

9.8 10.0 10.2 10.4

time

0.02s intervals

9.8 10.0 10.2 10.4
time

50 100 150

0

0.01s intervals

9.8 10.0 10.2 10.4
time

0 20 40 60 80

We seethat eachhistogramhasbroadlythe sameshapealthoughthe heightsof
the barsandtheinterval widthsaredi erent.

The histogramstell us the most intuitiv e thing we wish to know about the
distribution: its shape:

the most protabletimes are closeto 10.2seconds;
the distribution of times hasa long left tail (left skew);
times belowv 10.0sand above 10.3 secondshave low probability
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We could t a curve over any of these histogramsto shav the desiredshape,

but the problem s that the histogramsarenot standardized:
ewvery time we changethe interval width, the heightsof the barschange.

How can we derive a curve or function that capturesthe commonshape of the
histograms, but keepsa constart height? What should that height be?

The standardized histogram

We now focuson an idealized (smooth) versionof the sprint times distribution,
rather than using the exact 1680sprint times obsened.

We are aiming to derive a curve, or function, that capturesthe shape of the
histograms,but will keepthe sameheigh for any choiceof histogrambar width.

First idea: plot the probabilities instead of the frequencies.

The height of eachhistogrambar now representshe probability of getting an
obsenrationin thatbar

probability
<
o
N
o
o
o
9.8 10.0 10.2 10.4
time interval
probability
o
N
o
o
—
o
o
o
9.8 10.0 10.2 10.4
time interval
probability
[ee]
o
o
<
o
[S)
o
o
9.8 10.0 10.2 10.4

time interval

This doesn't work, becausethe height (probability) still dependsiponthe bar
width. Wider barshave higherprobabilities.
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Second idea: plot the probabilities divided by bar width.

The height of eachhistogrambar now representshe probability of getting an
obsenrationin thatbar, dividedby the width of the bar.

- _ 0O.1sintervals
probability / interval width

0 1 2 3 4

9.8 10.0 10.2 10.4
time interval

- _0.05s intervals
probability / interval width

0 1 2 3 4

9.8 10.0 10.2 10.4
time interval

— . 0.02s intervals
probability / interval width

0 1 2 3 4

9.8 10.0 10.2 10.4
time interval

- ~0.01sintervals
probability / interval width

.0 10.

9.8 10

1 2 3 4

0

2 10.4
time interval

This seemdo be exactly what we need! The samecurve ts nicely over all the
histogramsandkeepshe sameheightregardlessof the barwidth.

Thesehistogramsare called standardizedhistograms.
The nice- tting curve is the probability densityfunction.

But. ..what is it?!
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The probabilit y density function

We have seenthat there is a singlecurve that ts nicely over any standardized
histogram from a given distribution.

This curve is called the prokability density function (p.d.f.).
We will write the p.d.f. of a continuousrandom variable X asp:d:f: = fx (x).

The p.d.f. fx (x) is clearly NOT theprobabilityof x — for example,in the sprint
timeswe canhavef x (x) = 4, soit is de nitely NOT a probability

Howewer, as the histogram bars of the standardized histogram get narrower,
the bars get closerand closerto the p.d.f. curve. The p.d.f. is in fact the limit
of the standardizedhistogramasthe barwidth approachesgero.

What is the height of the standardized histogram bar?

For an interval from x to x + t, the standardizedhistogram plots theprobability
of anobserationfalling betweerx andx + t, dividedby thewidth of theinterval,
t.

Thus the height of the standardizedhistogram bar over the interval from x to
X+ tis:
probability — P(x X x+t)  Fx(x+t) Fx(x).
interval width t t ’
whereFx (x) is the cumulative distribution function.

Now considerthe limit asthe histogram bar width (t) goesto 0: thislimit is
DEFINED TO BE theprobability densityfunctionatx, f x (x):

Fx(x+1) Fx(x)
t

fx(X) = ung) by de nition.

This expressionshould look familiar: it is thedervative of Fy (x).
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The probability density function (p.d.f.) is therefore thefunction

fx(x) = FL(X):

It is de ned to be a single, unchangingcurve that describegshe SHAPE of ary
histogramdravn from thedistribution of X .

Formal de nition of the probabilit y density function

De nition: Let X beacontinuousrandomvariablewith distribution function Fx (x).
The probabilit y density function (p.d.f.) of X is de ned as

dF
fx(x) = = = FR(x):

It gives:
the RATE atwhich probabilityis accumulatingat ary givenpoint, FQ (x);

the SHAPE of thedistribution of X .

Using the probabilit y density function to calculate probabilities

As well asshowing us the shape of the distribution of X, the probability density
function hasanother major use:

it calculategprobabilitiesby integration.

Supposewe want to calculateP(a X b).
We already know that: P(a X Db = Fx(b Fx(a):

But we also know that:

dFyx _
o g
SO Fx(x) = fx (X) dx (without constants)
Zb
In fact: Fx(b) Fx(a) = fx (x) dx:

a
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This is a very important result:

Let X bea cortinuousrandom variable with probability density function f x (x).
Then

Z
P@ X b=PX?2[ab])= bfx(x)dx:

a

This meansthat we cancalculateprobabilitiesby integratingthep.d.f.
fx (x)

P(a X b isthe AREA under
the curve f x (X) betweena and b.

The total area under the p.d.f. curveis:
YA 1

total area = fx(X)dx=Fx(1) Fx(1 )=1 0=1
1

This says that the total areaunder the p.d.f. curve is equalto the total proba-
bility that X takesa valuebetween 1 and+1 , whichis 1.

fx (x)

total areaﬂnder the curve f x (x)

is1: | fx(x)dx= 1.




149
Using the p.d.f. to calculate the distribution function, Fx (X)

Supposewe know the probability density function, f x (x), and wish to calculate
the distribution function, Fx (x). We usethe following formula:

Z

X
Distribution function,| Fyx (x) = fx (u) du.
1

Pro of:

Z

X

) f(udu = Fx(xX) Fx(1 ) = Fx(xX) 0 = Fx(x):

Using the dumm y variable, u:

Z

X

Writing Fx (x) = fx (u) du means:
1
integratef x (u) asu rangedrom 1 tox.
fx (u)

Z X
Writing Fx (x) = fx (x) dxis WRONG andMEANINGLESS:youwill LOSE
1
A MARK everytime.

In words,
nonsense!

1 fx(x) dx means: integratef x (x) asx rangesrom 1 tox. It's

How canx rangefrom 1 to x?!
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Why do we need fx (x)? Why not stick with Fyx (x)?

Thesegraphsshow Fx (x) and f x (x) from the men's100msprint times (X is a
random top ten 100msprint time).

F(x) f(x)
<

00 04 038
01 2 3

98 10.0 10.2 104 98 10.0 10.2 104
X X

Just using Fx (x) givesus very little intuition about the problem. For example,
which is the region of highest probability?

Using the p.d.f., fx (x), we can seethat it is about 10.1to 10.2seconds.

Using the c.d.f., Fx (x), we would have to inspectthe partof the curve with the
steepesgradient:very di cultto see.

Example of calculations with the p.d.f. x)

ke % forO< x<1:

Let Tx(X)= otherwise.

(i) Find the constart k.
(i) Find P(1< X  3). 0 X

(i) Find the cumulativ e distribution function, Fx (x), for all x.

(i) Weneed:

Zl

fx(x)dx = 1
1
Z Z,

Odx + ke Zdx = 1
1 0

2x 1
k & =1
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k
7(e1 ) = 1
k
—0 1) = 1
50 1)
k = 2
(ii) Z 3
Pl< X 3) = fx (X) dx
1
Z3
= 2e Zdx
1
28 2x 3
= >,
- @234;p21
= 0132
(iii)
ZX
Fx(x) = fx (u) du
1
ZO Zx
= Odu+ 2e Xdu forx> 0
1 0
2u X
= 0+ 2e
2 0
— er+eO

1 e?® forx> 0

Odu= 0:

Whenx 0,Fx(X)=
Sooverall,
0 for x O

Fx(x) = 1 e for x>0
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Z,

Total area under the p.d.f. curveis 1: fx(x)dx= 1
1

The p.d.f. is NOT a probabilit y: fx(x) 0always,
but we do NOT requiref x (x) 1.

Calculating probabilities:

1. If you only needto calculate one probability P(a X  h): integratethe
p.d.f.: 7
b

Pa X b= fx (x) dx:
a
2. If you will needto calculate seveal probabilities, it is easiestto nd the

distribution function,Fy (x):
Z X

Fx (X) = fx (u) du:
1

Thenuse: P(a X b =Fx(b Fx(a) foranya,hb.

Endp oints: DO NOT MATTER for continuougandomvariables:

PX a=PX<a and P(X a)=PX>a):



4.3 The Exp onential distribution

When will the next volcanoerupt in
Auckland? We newer quite answered
this questionin Chapter 3. The Poisson
distribution wasusedto court the
numberof volcanoeghatwould occurin a x edspaceof time.

We have not said how long we have to wait for the next volcano: this is a
continuougandomvariable.

Auc kland Volcano es

About 50 volcanic eruptions have occurred in Auckland over the last 100,000
yearsor so. The rst two eruptions occurred in the Auckland Domain and
Albert Park | right underneath us! The most recen, and biggest, eruption

was Rangitoto, about 600yearsago. There have beenabout 20 eruptionsin the

last 20,000years,which hasled the Auckland RegionalCouncil to assessurrert

volcanicrisk by assumingthat volcaniceruptionsin Auckland follow a Poisson
processwith rate = %Oovolcanoesperyear. For badkground information, see:
www.arc.govt.n z/ arc/ envi ronmet/h azards/v ol canoes-of-a uckl and/ .

Distribution  of the waiting time in the Poisson pro cess

The length of time betweenewerts in the Poissonprocessis called the waiting
time.

To nd the distribution of a cortinuous random variable, we often work with
the cumulatie distribution function,Fyx (x).

This is becauseFy (x) = P(X X) givesus a prokability, unlike the p.d.f.
fx (x). We are comfortable with handling and manipulating probabilities.

Supposethat fN; : t > Og forms a Poissonprocesswith rate = ﬁ).

N is the numberof volcanoego have occurredby timet, startingfrom now.
We know that
(", <.

n!

N; Poissoft); SoP(N{=n)=
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Let X bea cortinuousrandomvariable giving the numberof yearswaitedbefore

the next volcano,startingnow. We will derive an expressionfor Fy (X).

() Whenx < 0O:

Fx(x) = P(X  x) = P( lessthan0 time beforenext volcang = 0:

(i) Whenx O:
Fx(x) = P(X x) = P(amountof time waitedfor next volcanois X)
= P(thereis atleastonevolcanobetweemow andtimex)

= P(#volcanoedetweemow andtimex is 1)

= P(Nx 1)
= 1 P(Ny = 0)
_ (x)°
= 1 70! e
=1 e*X
1 e X forx O
Overall: Fx(x)= P(X  x)= 0 forx < 0O:

The distribution of the waiting time X is called the Exponentialistribution
becauseof the exponertial formula for Fx (x).

Example: What is the probability that there will be a volcanic eruption in Auck-
land within the next 50 years?

Put = 135 WeneedP(X  50).

P(X 50)= Fx(50)= 1 e °%190= 0049

There is about a 5% chancehat there will be a volcanic eruption in Auckland
over the next 50 years. This is the gure given by the Auckland Regional
Council at the above web link (under "Future Hazards").
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The Exp onential Distribution

We have de ned the Exponertial( ) distribution to be the distribution of the
waiting time (time betweerevents)in a Poissorprocesswith rate .

We write X  Exponentigl ), orX  Exp( ):

Howewer, just like the Poissondistribution, the Exponertial distribution has
many other applications: it doesnot alwayshaveto arisefrom a Poissonprocess.

Let X  Exponertial( ). Note: > 0 always.

1 e * forx O

Distribution  function: Fx(X) = P(X x)= 0 for x < O

e X forx O

Probabilit y density function: fx(X) = Fo(x) = 0 forx < O:

Pd.f.,fx (X) C.df,Fx(x)= P(X  x).

Link with the Poisson pro cess

Let fN; : t > Og be a Poissonprocesswith rate . Then:
N. is the number of everts to occur by time t;
N; Poissorft); soP(N¢{=n)= %e t;

De ne X to be either the time till the rst ewvernt, or the time from now
until the next evernt, or the time betweenany two ewerts.

Then X Exponentid| ):
X is called the waiting time of the process.



MemO/J, .

asie,,e/;/re
Memorylessness
We have said that the waiting time of the
Poissonprocesscan be de ned either as " 22,

the time from the start to the rst ewen,
or the time from now until the next evert,
or the time betweenany two eerts.

All of thesequartities have the samedistribution: X  Exponentid] ):

The derivation of the Exponertial distribution wasvalid for all of them, because
everts occur at a constart averagerate in the Poissonprocess.

This property of the Exponertial distribution is called memorylessness:

the distribution of the time from now until the rst ewent is the sameas
the distribution of the time from the start until the rst ewen: thetime
from the starttill now hasbeenforgotten!

| time from start to first event

this time forgotten | time from now to first event

START NOW FIRST
EVENT

The Exponertial distribution is famousfor this memorylessproperty: it is the
only memorylesddistribution.

For volcances, memorylessnesmeansthat the 600 yearswe have waitedsince
Rangitotoeruptedhave countedor nothing.

The chancethat we still have 1000yearsto wait for the next eruption is the
sametoday asit was 600yearsagowhen Rangitoto erupted.

Memorylessnesspplies to any Poissonprocess. It is not always a desirable
property: you don't want a memorylesswaiting time for your bus!

The Exponertial distribution is often usedto modelfailure times of componerts:
for exampleX  Exponertial( ) isthe amount of time beforea light bulb fails.
In this case,memorylessnessneansthat "old is as good as new' | or, put
another way, newis asbad asold'! A memorylesdight bulb is quite likely to
fail almost immediately.
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For priv ate reading: pro of of memorylessness

Let X  Exponertial ( ) be the total time waited for an evert.

Let Y be the amournt of extra time waited for the event, given that we have
already waited time t (say).

We wish to prove that Y hasthe samedistribution as X, i.e. that the time t
already waited has been ‘forgotten'. This meanswe needto prove that Y
Exponertial ( ):

Pro of: We will work with Fy (y) and provethat it isequalto 1 e Y. This proves
that Y is Exponertial( ) like X .

First notethat X = t+ Y, becauseX is the total time waited, and Y is the time
waited after time t. Also, we must condition on the event f X > tg, becausewe
know that we have alreadywaited time t. SoP(Y y)=P(X t+y]jX >1t):

Fy(y) = P(Y y) P(X t+yjX >1)

P(X t+y AND X >1t)
P(X > t)
(de nition of conditional probability)

Pt< X t+y)
1 P(X 1)

Fx(t+y) Fx(t)
1 Fx(t)

1 e ™Yy (@ et)
1 (1 etl)

e t e (t+y)

e t

elt@ eV)
et

=1 e?: SoY Exponertial( ) asrequired.

Thus the conditional probability of waiting time y extra, given that we have
already waited time t, is the sameasthe probability of waiting time y in total.
The time t already waited is forgotten.
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4.4 Lik eliho od and estimation for contin uous random variables

For discreterandomvariables,we found the likelihood usingthe probability
function,f x (x) = P(X = x):

For cortinuous random variables,we nd the likelihood using the proba-

bility densityfunction,fx (x) = 9.

Although the notation f x (x) meanssomethingdi erentfor continuousand
discreterandomvariables,it is usedin exactly the sameway for likelihood
andestimation.

Note: Both discreteand corntinuousr.v.s have the samede nition for the cumula-
tive distribution function: Fx(x) = P(X  Xx).

Example: Exp onential lik eliho od

Supposethat:
X  Exponentid| );
Is unknawn;
theobseredvalueof X isx.

Then the likelihood function is:

L( ;x)=fx(X)= e * for0< <1

: . L
We estimate by settmg?j— = 0to nd theMLE, ".

Tw o or more indep endent observations

all theX s have thesamep.d.f.,f x (x);

then the likelihood is
fx (X0)fx (X2) 111 x (Xn):



Example: Supposethat X 1; X,;:::; X, areindependen, and X

for all i. Find the maximum likelihood estimate of

0.004

Likelihood graph shown

for = 2andn = 10. g
X1;::1; X10 generated 5 8
by R command = 3
rexp(10, 2).
0 2 4 6
lamby&l
Solution: L( ;X1::55%n) = fy (X))
i=1
= e X
=
= Na i=

P
Denex = %" . x; tobethesamplemeanofx;:::;

xn
=1
Thus
L( ;xy:i5xp)= "e "X for 0<
dL
Sol\,ed— = 0to nd the MLE of
d_L:nnlenx n nx e "X
d
n"l "Y1 x)
) = O, =1 :
TheMLE of is

X
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Exponertial ( )
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4.5 Hyp othesis tests

Hypothesistests for continuousrandom variablesare just like hypothesistests
for discreterandom variables. The only di erence is:

endpointsmatterfor discreterandomvariables,but not for continuousan-
domvariables.

Example: discr ete. SupposeHy : X  Binomial(n = 10, p = 0:5), and we have
obsened the value x = 7. Then the upper-tail p-valueis

PX 7)=1 P(X 6)=1 Fx(6):

Example: continuous. SupposeHg : X Exponertial (2), and we have ob-
sened the value x = 7. Then the upper-tail p-valueis

PX 7)=1 P(X 7)=1 Fx(7):

Other than this trap, the procedurefor hypothesistesting is the same:

UseHg to specify the distribution of X completely and o er a one-tailed
or two-tailed alternative hypothesisH ;.

Make obsenation x.

Find the one-tailed or two-tailed p-value as the probability of seeingan
obsenation at least as weird as what we have seen,if Hg is true.

That is, nd the probability underthe distribution speci ed by Hq of seeing
an obsenation further out in the tails than the value x that we have seen.

Example with the Exp onential distribution

A very very old personobsenesthat the waiting time from Rangitoto to the
next volcanic eruption in Auckland is 1500 years. Test the hypothesis that

= 155 againstthe one-sidedalternativethat < .

Note: If < =, we would expect to see BIGGER valuesof X, NOT smaller
This is becauseX is the time betweenvolcances,and is the rate at which
volcancesoccur. A smallervalue of meansvolcanoesccurlessoften, sothe

time X betweerthemis BIGGER.
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Hyp otheses: LetX  Exponentid] ).

1
Ho = = 10100
< —— -tai
Hq 1000 one-tailedtest

Observ ation: x = 1500yeatrs.

Values weirder than x = 1500 years: all valuesBIGGERthanx = 150Q

p-value: P(X 1500)whenX  Exponentidl = )
So

p value = P(X 1500)

1 P(X 1500)

1 Fx(1500) whenX Exponentidl = &)
1 (1 e 1500=100(>

0:223

R command: 1-pexp(1500, 1/1000)

In terpretation: Thereis no evidenceagainstH,. The obserationx = 1500
yearsis consistentvith the hypothesighat = 1=100Q i.e. thatvolcanoeserupt
onceevery 1000yearson average.

0.0010

0.0006

f(x)

0 0.0002

0 1000 2000 3000 4000 5000
X
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4.6 Exp ectation and variance

Remenber the expectation of a discr ete random variable is thelong-termav-

erage: X X
x = E(X) = XP(X = x) = Xf x (X):

X X

(For eath value x, we add in the value and multiply by the proportion of times
we would expect to seethat value: P(X = x).)

For a continuous random variable, relplacetlgg probability function with the
probability densityfunction,andreplace , by i ;

Z,

x = E(X) = ) Xf x () dx;

wheref x (x) = FQ(x) is theprobability densityfunction.

Note: There exists no conceptof a "probability function' fx (x) = P(X = x) for
cortinuous random variables. In fact, if X is continuous,then P(X = x) = 0
for all x.

The idea behind expectation is the samefor both discreteand cortinuousran-
dom variables. E(X) is:

the long-term averageof X ;

“sum’ of vgJuesmultiplied by how commonthey are:
xf (x) or xf (x)dx.

Expectation is alsothe
balancepoint of f x (x)
for both cortinuousand
discrete X .

Imagine f x (x) cut out of
cardboard and balanced
on a pencil.
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Discrete: Contin uous:

X Z,
E(X)= xfx(x) E(X) = Xf x (x) dx

1
X
X Z,
E(9(X)) = 9(x)fx(x) E(9(X)) = ) g(x)f x (x) dx
X

Transformthe values, Transform the values,
leave the probabilities alone; leave the probability density alone.
fx () =P(X = X) fx (x) =FR(x) (p.d.f)

V ariance

If X is continuous,its varianceis de ned in exactly the sameway asa discrete
random variable:

Vax)= Z=E (X x)* =EX?) §=EX?) (EX)*

For a cortinuousrandom variable, we can either compute the variance using

Z
Va x)=E (X x)* = l(X x ) °fx (x)dx,
1

or
Zl
VaX) = E(X? (EX)?= x%fx (x)dx  (EX)Z.
1

The secondexpressionis usually easier(although not always).
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Prop erties of expectation and variance

4.7

All properties of expectation and variance are exactly the samefor continuous
anddiscreterandomvariables.

for constarts a and b:

E(aX + b) =aE(X) + b,

E(ag(X) + b) =aE(g(X)) + b.

E(X + Y) =E(X) + E(Y).

E(X1+ 114 Xn) =E(Xq) + 111+ E(Xn).
Var(aX + b) =a?VarnX).

Var(ag(X) + b) =a?Varg(X)).

The following statemernts are generallytrue only whenX andY are
INDEPENDENT

E(XY) =E(X)E(Y) whenX,Y independent.

Var(X + Y) =VanX) + VanY) whenX,Y independent.

Exp onential distribution mean and variance

When X  Exponertial ( ), then:

E(XX)=1 VarxX) = 3:

Note: If X is the waiting time for a Poissonprocesswith rate ewens per year

(say), it makessensethat E(X) = 1. For example,if = 4 ewerts per hour,
the averagetime waited betweenewvens is %1 hour.
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Lxe X dx

R
Proof: E(X) = 0

T oxfx(x)dx =

R R
Integrationby parts:recallthat u®dx = uv v dx.

Letu=x, so $=1, andlet &¥=¢e *, sov= e *.

21 Z1 dv
Then E(X) = xe *dx = u— dx
0 o dx
h i]_ Zl du
= uv v— dx
0 0 dX
h 1 Zl
= xe * ( e *)dx
0 0
= 0+ le *
= _1 0 _1 eo
)  E(X) = 2:

Variance: Var(X) = E(X?) (EX)?= E(X? <.

Zl Zl
Now E(X?) = X2 x (X) dx = x2e X dx.
1 0
Let u=x% so ¥ =2x, andlet ¥=e X, so v= e X.
h in 21 g, h i1 Za
Then E(X?) = uv v-—dx = x%e X+ 2xe * dx
0 0 dx 0 0
Z
21 .
= 0+ — xe dx
0
2 2
= - EX)= =
S 2 17
(0] - 2 2 _
Var(X) = E(X?) (EX)® = 5 =
1
Var(X) = —:
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Interlude: Guess the Mean, Median, and Variance

For any distribution:

the mean is the average that would be obtained if a large number of
obsenations were drawn from the distribution;

the median is the half-way point of the distribution: ewvery obsenation
has a 50-50chanceof being above the median or below the median;

the varianc e is the average squared distanc e of an obsenation from
the mean.

Given the probability density function of a distribution, we should be able to
guessroughly the distribution mean, median, and variance. .. but it isn't easy!
Have a go at the examplesbelow. As a hint:

the mean isthe balanc e-point of the distribution. Imaginethat the p.d.f.
is madeof cardboard and balancedon a rod. The meanis the point where
the rod would have to be placedfor the cardboard to balance.

the median is the half-way point, soit divides the p.d.f. into two equal
areasof 0.5 ead.

the varianc e is the averagesquared distance of obsenations from the
mean;soto get arough guesgnot exact), it is easiestto guessan average
distancefrom the meanand squareit.

Guessthe mean, median, and variance.

(answers overleaf)

0.004 0.008 0.012 R

0.0

0 50 100 150 200 250 300
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A nswers:

median (54.6)

mean (90.0)

variance = (11§) =13924

0.004 0.008 0.012 R

0.0

0 50 100 150 200 250 300

Notes: The meanis larger than the median. This always happenswhen the dis-
tribution hasa long right tail (positive skew) like this one.
The varianceis huge ... but whenyou look at the numbersalongthe horizontal
axis, it is quite believable that the averagesquareddistance of an obsenation
from the meanis 11&. Out of interest, the distribution shown is a Lognormal
distribution.

Example 2: Try the sameagain with the example belown. Answers are written
below the graph.

f(x)

0.0 0.2 04 06 08 1.0

‘0’ T=90URLREA 0'T=UB3\:£69°'0 = UBIpPa|\ :Siomsuy
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4.8 The Uniform distribution

X hasa Uniform distribution on the interv al [a; b] if X isequallylikely
to fall anywherein theinterval [a; b].

Wewrite X  Uniform[a;b], or X Ula;h:
Equwalently X Uniform(a;b), or X  U(a;b):

Probabilit y density function, fyx (x)

If X UJa;b]; then 8
< i if a x b;
fx(x)= b a ’
' 0 otherwise.
fx (x)
1
b a
a X
Distribution  function, Fyx (x)
Z Z, 1
Fx (x) = fy(y)dy = —dy if a x b
1 a a
y X
- b a,
X a
= f
b a2 I a x b
Thus Fx (x)
8 _ 1l
2 0 if x<a;
Fx(x):> 5= if a x b
1 if x> b: 0 ‘ | X
a b




169

Mean and variance:
2
If X Uniformla; b E(X):%b; varx) = P 12a) :
Pro of : Z Z, , b
1 1 X
E(X) = 1xf(x)dx— ax b a dx = ﬁ?a
— 1 1 2
b a 2(b2 )
1 1
= 5 b ab+a)
_a+b
-2
Z b 2 3 b
_ 21 _ X  x) 1 (x )
VarX) = EIX )%= S ptdx = s S
— 1 (b x)* (@ x)°
b a 3

_ 1 (b a® (@ B> _ (b a*+(b a)’
varX)= 52 2 3 - T a 24
_ (b a)?,
12

Example: let X  Uniform[0;1]. Then

1if0 x 1

Ix)= 0 otherwise.
x = E(X) = &1 = 1 (half-way throughinterval [0; 1]):

Z=Va(X)= 31 0)2=23:
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4.9 The Change of Variable Technique: nding the distribution of g(X)

Let X be a continuousrandom variable. Suppose

thep.d.f.of X, fx (x), is known;
ther.v. Y isde nedasY = g(X) for somefunctiong;
wewishto nd thep.d.f.ofY.

We usethe Changeof Variabletechnique.

Example: Let X Uniform(0;1), andletY = log(X).
The p.d.f.of X isfx(X) = 1forO< x < 1.

What is the p.d.f. of Y, fy(y)?

Change of variable technique for monotone functions

Supposethat g(X) is amonotondunctionR! R.

This meansthat g is anincreasingunction,or g is adecreasing”.
When g is monotone, it is invertible or (1-1)("one-to-one’).

That is, for everyy thereis auniquex suchthatg(x) = y.

This meansthat the inversefunction, g (y), is well-de ned asa function for a
certain rangeof y.

Wheng : R! R, asit is here,then g canonly be (1{1) if it is monotone.

y = g(x) = x? x=g9y)=Py

00 02 04 06 08 10
00 02 04 06 08 10

00 02 04 06 08 10 00 02 04 06 08 10
X y



171
Change of Variable form ula

Let g : R! R beamonotonefunction andlet Y = g(X). Then thep.d.f. of
Y =g(X) is

fv(y) = fx(@ ") &9 *(¥) -

Easy way to remember

Write  y = y(X)(= g(x))
) X = x(Y)= g 1y)

Then | fv(y)="fx x(y) § -

Working for change of variable questions

1) Shav you have checkedg(x) is monotoneover therequiredrange.
2) Writey = y(x) for x in <rangeofx>, e.g.fora< x < h.

3) Sox = x(y) fory in <rangeofy>:
fory(a) < y(x) < y(b) ify isincreasing;
fory(a) > y(x) > y(b) if y is decreasing.

4) Theng—; = <expressionnvolvingy>.

5) Sof v (y) = fx (x(y)) g—); by Changeof Variableformula,

Quoterangeof valuesofy aspartof the FINAL answer

Refer back to the questionto nd fyx(x): you often have to deducethis from
informationlike X  Uniform(0;1) or X  Exponentid| ), or it maybe given
explicitly.
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Note: Thereshouldbenox's left in theanswer!

dx . .
x(y) and — areexpressionsnvolvingy only.
dy y = -log(x)

Example 1. Let X Uniform(0; 1), and let ®
Y = log(X). Find the p.d.f. of Y. ” o
1) y(x) = log(x) is monotonedecreasing, -

0

sowe canapplythe Changeof Variableformula.

00 02 04 06 08 1.0

X

2) Lety = y(x) = logx for 0O < x < L
3) Thenx = x(y)=e?Y for log(0) > vy > log(l); ie.0<y<1:

dx _d

- = __ Yy = y = yf 1:
dy dye) e e or 0<y<

dx
5) So fy(y) = fx(X(y) dy for 0<y<1

fx(e¥)e¥Y for O<y<1:

ButX  Uniform(0; 1), sofx(x) = 1 for 0< x < 1,
) fx(e¥Y)=1for O<y<1:

Thusfy(y) = fx(eY)e¥Y=¢e VY for 0<y< 1:SoY Exponentidl):

Note: In changeof variable questions, youlosea markfor:
1. notstatingg(x) is monotoneover therequiredrangeof x;

2. not giving the rangeof y for which the result holds, as part of the nal
answer(eg.fy(y)=:::for 0<y<1).
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Example 2: Let X be a cortinuousrandom variable with p.d.f.

(

a3 for0< x < 2
fx(x)=

0 otherwise
Let Y = 1=X. Find the probability density function of Y, fy (y).

LetY = 1=X. Thefunctiony(x) = 1=x is monotonedecreasindgor 0 < x < 2,
sowe canapplythe Changeof Variableformula.

Let y = y(x) = 1=x for 0< x < 2,
Then X = x(y) = 1=y for3>y> 32 iejg<y<1l.
3—?/2] y ’j=1=% fori<y<1.

Changeof variableformula:  fv (y) fx (x(y)) 2—);

_ 1 3 dx
= Z(X(Y)) @
11 1
1
= 2y forr —<y<1:
Thus 8 1
2 _— forl<y<1;
5 2 ’
fy(y) = S 4y
" 0 otherwise.
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For mathematicians: pro of of the change of variable form ula

Separateinto caseswhereq is increasingand whereg is decreasing.

1) g increasing

gisincreasingif u< w, g(u) < g(w): ~
Note that putting u= g (x), andw = g *(y), we obtain

g ')<g iy, 9(g'(x)<ag 'y)
) X<y,

sog !is alsoan increasingfunction.

Now
Fv@)=P(Y  y)=PEX) y) = PX g y) put 770, in~ toseetns
= Fx(g *(y)):
Sothe p.d.f. of Y is
d
fv(y) = @Fv(y)
- d 1
= @Fx(g (¥))

d :
= Fx(g () @(9 (y)) (Chain Rule)

=t (0 &) diy(g 1))

Now g is increasing,so g ! is alsoincreasing(by overleaf), so diy(g Yty)) > 0,
and thusfy(y) = fx(g 1(Y))J'd%(9 (y))j asrequired.

i) g decreasing, ie. u>w () g(u<gw). (?

(Putting u=g *(x) andw =g ‘(y) gives g '(x) > g *(y) () x<vy,
sog !is alsodecreasing.)

P(a(X) y)
PX g™y) (putu=X,w=g Yy)in(?)
1 Fx(g "(y):

Fy(y) = P(Y )

Thusthe p.d.f. of Y is
d d
fy(y) = ay . Fx(g '(y) = fx g'(y) =

dy ¢ Yy) :
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This time, g is decreasingsog ! is alsodecreasingand thus

d 1 — d 1
@ g (y) = @ g ~(y)
Soonceagain,

fv(y)=fx g *(y) g '(y)

dy

4.10 Change of variable for non-monotone functions

Supposethat Y = g(X) and g is not monotone. We wishto nd the p.d.f. of
Y. We can sometimesdo this by usingthedistribution functiondirectly.

Example: Let X have any distribution, with distribution function Fyx (x).
Let Y = X 2. Find the p.d.f. of Y.

ClearlyY 0,soFy(y)=0ify< 0.

Fory O:
Fv(y) = P(Y ) Y
= P(X? )
- p( Py x Py
= Py F( Py .
So
_ 0 if y<O0;
= Py R Py iy o
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Sothep.d.f.of Y is

fr(y) = diny - %(Fx(py)) %(Fx( P9

= yiRPy+ iy R Py

1 _
= ﬁ fx(pV)+fx( IOy) fory O

) fy(y) = Epl—y txPy) +tx( Py) fory 0 wheneery = X2.

Example: Let X Normal(O;1). This isthe familiar bell-shaped distribution (see
later). The p.d.f. of X is:

fX(X) = p]é:e X2:2:
Find the p.d.f. of Y = X2,

By theresultabose,Y = X 2 hasp.d.f.

1 1 - _
— y=2 y=2
fy(y) 3 P?(e +e V7
= plzzy 26 Y2 fory O
This is in fact the Chi-squareddistribution with = 1 degreesof freedom.

The Chi-squareddistribution is a special caseof the Gamma distribution (see
next section). This example has showvn that if X Normal(0; 1), then Y =
X2 Chi-squared(df=1).
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4.11 The Gamma distribution

The Gammalk; ) distribution is a very exible family of distributions.
It is de ned asthe sumofk independenExponentiak.v.s:

if X1;:::; Xk Exponentidl YandX 4;:::; X areindependent,
thenX,+ X+ :::+ X Gammék; ):

Special Case: Whenk = 1, Gammél; )= Exponentid] )
(the sumof a single Exponentiat.v.)

Probabilit y density function, fyx (x)

.

vk 14 x i .
For X Gammak: ). | fxey= (X €7 MTx 0

0 otherwise.

Here, ( k), calledthe Gamma function of k, is a constart that, einsuresfx(x)

integratesto 1, i.e. 01 fx(X)dx = 1. It isdened as ( k) = vk le Ydy:
0

When k is an integer, ( k) = (k 1)!

Mean and variance of the Gamma distribution:

For X Gammak; ), E(X)= ¥ and VarX) =%

Relationship with the Chi-squared distribution

The Chi-squareddistribution with  degreesf freedom, 2, is a special caseof
the Gammadistribution.

2= Gammak = 5; = 3).

Soif Y 2, then E(Y)= K= , and Var(Y)= £=2.
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Gamma p.d.f.s

k=1
N
k=2
Notice: right skew
(long right tail);
e xibility in shape
controlledby the2
\\ parameters
k=5

Distribution  function, Fyx (x)

Thereis no closedform for the distribution function of the Gammadistribution.
If X Gammak; ), then Fx(x) cancanonly be calculated by computer

k=5




Pro of that E(X ) = ¥ and Var(X ) = % (non-examinable)

Z, Z,

EX = xf x (X) dx X
o X o (K

Rol (x )ke * dx
. (k)
1
= 0 yk(e :)(1) dy (letting y = x; &=
1 (k+1)
(k)
1 k(K

kvk 1
X
e * dx

(k)

Z,

Var(x ) = E(X 2) (EX )2 = xf X (X) dx k—z
0

~ YA 1 X2 ka 1e X dx k_2
2 ( k) 2
o HOO)KTe X dx K
(k) 2
Rl
1 yKtle Ydy k2
= 5 2 0 —  wherey =
1 (k+2) K2
2 ( k) 2

1(k+ 1k (k) k2
"2 ( k) 2

ol =
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- N (property of the Gamma function),
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Gamma distribution arising from the Poisson pro cess

Recall that the waiting time betweeneerts in a Poissonprocesswith rate
hasthe Exponentidl ) distribution.

That is, if X; =time waited betweenevert i 1landewert i, then X; Ex ).

The time waited from time O to the time of the kth ewvert is
X1+ X+ 11+ X, thesumofk independenExponentid| ) r.v.s.

Thus the time waited until the kth evert in a Poissonprocesswith rate has
the Gammdk; ) distribution.

Note: There aresomesimilarities betweenthe Exponertial( ) distribution andthe
(discrete) Geometric(p) distribution. Both distributions descrilke the "waiting
time' beforean evert. In the sameway, the Gamma(k; ) distribution is similar
to the (discrete) Negative Binomial(k; p) distribution, asthey both describethe
‘waiting time' beforethe kth evert.

4.12 The Beta Distribution

The Beta distribution hastwo parameters, and . Wewrite X Beta( ; ).

P.d.f ( 1l x 11 x) ! for0<x<1;
Rl f(xy= B(;) ’
0 otherwise.

The function B( ; ) is the Beta function and is de ned by the integral
B(; )= x @ x) 'dx; for >0, >0

It canbe shown that B(; )= %:
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Chapter 5. The Normal Distribution

and the Central Limit Theorem

The Normal distribution is the familiar bell-shaped distribution. It is probably
the most important distribution in statistics, mainly becauseof its link with
the Certral Limit Theorem, which statesthat ary large sumof independent,
identicallydistributedrandomvariabless approximatelyNormal:

X1+ Xo+ :::+ X, approxNormal
if X1;:::; Xy arei.i.d. andn is large.

Beforestudying the Central Limit Theorem,we look at the Normal distribution
and someof its generalproperties.

5.1 The Normal Distribution

The Normal distribution hastwo parameters, themean, , andthevariance, 2.
and 2satisfy 1 < <1, 2>0:

Wewrite X  Normal; ?2), or X N(; 2.

Probabilit y density function, fx (x)

)?=2 2g

fx(x)=p%e(x forl1 <x<1.

Distribution  function, Fyx (x)

Thereis no closedform for the distribution function of the Normal distribution.
If X Normal(; 2), then Fx(x) cancanonly be calculated by computer
R command: Fx (x) = pnorm(x, mean=, sd=sqrt( ?)).



Probabilit y density function, fx (x)

4

AN

Distribution  function, Fyx (x)

—

Mean and Variance

For X  Normal(; ?2), E(X) = ;

Var(xX) = 2

Linear transformations

If X Normal(; ?2), then for any constarts a and b,

aX +b Normal a + b: a?

2 .

In particular,

X Normal ?) )

— Normal0; 1).

182
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Pro of:

Leta:} andb= —. LetZ =aX + b= L . Then

2

Z Normala +b;a®? Normal - —; — Normal0; 1):

Z Normal(0;1) is calledthe standardNormalrandomvariable.

General proof that aX + b Normal a + b; a® 2 :

Let X Normal(; ?2), andletY = aX + b:Wewishto nd the distribution
of Y. Usethechangeof variabletechnique.

1) y(x) = ax+ bis monotonesowe canapplythe Changeof Variabletechnique.
2) Lety=y(x)=ax+bfor 1 <x<1:

3) Then x=x(y)= X2 for 1 <y<1:

a

dx 1 1
Yy TaTE
dx y b 1
= — = z ?
5) So  fv(y) = fx(x(y)) dy fx — T (?)
ButX  Normal ; 2),sofx(x)= p%e (- )2=2 2
y b _ 1 (yTb )2:22
Thus f — - p—z se

1 29,2 2
- (v (a +b)>=2a? 2.
1972 28 .
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Returningto (?),
y b l_p 1 co@erig o<y

f =f A =
v(y) X a jaj > a2 2

Butthisis thep.d.f.of aNormala + b; a®> ?) randomvariable.

So,if X Normal; ?), then aX+b Normala + b;a® ? .

Sums of Normal random variables

If X andY are independentand X Normal( 1; 2),Y Normal( ,; 2),

then

X +Y Normal 1+ , 5+ 35:

More generally if X1; X5;:::; X, are independentand X;  Normal( ;; 2) for

X1+ aXo+ i+ apX, Normal (a; 1+:::+ay n); (a2 2+:::+a2 2)

For mathematicians: prop erties of the Normal distribution

Rl
1. Proof that [ fx(x)dx = 1

YA 1 YA 1 1
The full proof that fy (x) dx = pﬁef (x =2 99y = 1
1 1
relieson the following result: .
1
FACT: e Vdy = P o

1
This result is non-trivial to prove. SeeCalculus coursesfor details.

R
Using this result, the proof that i fx (x) dx = 1 follows by using the change

of variabley = Q(pé—) in the integral.
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2. Proof that E(X) =

1 _
E(X) = xf x (X) dx = Xxp——e * )2 °gx
1 1 2 2
Changevariable of integration: let z= *—: thenx= z+ and & =
Thus E(X) = (z+ ) P e 2 gz
1
z 1 Z 2 z 1 1 2
= P e ¥72dz + p?ezzzdz
| = {Z—nuo} | — =z }
this is an odd function of z p.d.f. of N(0;1) integratesto 1.
(.,e.g( z) = 0o(2), soit
integratesto O over range
1 tol.
Thus E(X) = 0+ 1
3. Proof thatV ar(X) = 2.
Var(X) = E (X )2
Z 1
= (X )Zplie (x )*=(2 ? dx
1 2 2
Z
P PR, - _ X
= p?z e dz putting z= ——
1
h i Z,
1 2— 1 1 2 . .
= 2 P> 2e =2 L * ps=e 2’22dz  (integration by parts)
1
= 2f0+ 1g
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5.2 The Central Limit Theorem (CLT)

also known as... the Piece of Cake Theorem

The Central Limit Theorem (CLT) is one of the most fundamertal results in
statistics. In its simplestform, it statesthat if a large number of independen
randomyvariablesaredrawn from any distribution, then the distribution of their
sum (or alternatively their sample average) always corvergesto the Normal
distribution.

Theorem (The Central Limit Theorem):

distribution.
Forexample,X;  Binomialn; p) foreach,so = npand 2= np(1 p):

P Ty
ThenthesumS, = X+ :::+ X, = ., X; hasa distribution
thattendsto Normalasn! 1 .

P
The mean of the Normal distribution is E(S,) = L, E(X;) = n:

The varianc e of the Normal dis;[ribution IS

xXn
vans,) = Var X
i=1
xXo

1
>
~
X
N>
o
D
Q)
D
-
%)
52
.
X
>
D
=
®
=3
QS
D
e]
D
S
jo8
D
S
~

i=1

= n 2

So| Sy= X1+ Xo+ i+ X! Normaln; n ?) asn! 1.
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Notes:
1. This is a remarkable theorem, becausethe limit holds for any distribution

2. A sucient condition on X for the Certral Limit Theorem to apply is
that Var(X) is nite. Other versionsof the Certral Limit Theorem relax the

3. The speed of convergenceof S, to the Normal distribution dependsupon the
distribution of X . Skewed distributions convergemore slowvly than symmetric
Normal-like distributions. It is usually safeto assumethat the Certral Limit
Theoremapplieswhenewern  30. It might apply for aslittle asn = 4.

The Central Limit Theorem in action : simulation studies

The following simulation study illustrates the Central Limit Theorem, making
useof seweral of the techniqueslearnt in STATS 210. We will look particularly
at how fastthedistribution of S, convergesto the Normaldistribution.

Example 1: Triangular distribution: fyx(x) = 2x forO< x< 1. f(x)

Find E(X) and Var(X): 5
1

Xf x (x) dx
Z°, 0 1 X
2x2 dx

= E(X)

2= VarX) = E(X? fEX)d
A )
= X2 x (X) dx
Z, 3 A
= 2X _
. dx 5

wIinN
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Let S, = X1+ :::+ X, whereX;:::; X,, are independent.

Then on
E(Sh) = E(X1+ :::+ Xp)=n = =
VarS,) = VarX.+ :::+ X,) = n 2 byindependence
n
) Vars) =
SoS, approxNormal %”; 1g for largen, by the CentralLimit Theorem.

The graph showshistogramsof 10000valuesof S,, = X +:::+ X, forn = 1;2; 3;
and 10. The Normal p.d.f. Normal(n; n ?) = Normal(%”; 1g) is superimposed
acrossthe top. Even for n as low as 10, the Normal curve is a very good
approximation.

n=1 n=2 D n=3 n= 10
f(x)
Example 2: U-shaped distribution: fx (x) = 3x?for 1< x < 1. T
We nd that E(X)= =0, Va(X)= 2= 3. (Exercise)

X

Let S, = X1+ :::+ X, whereXq;:::; X, are independent.

Then
E(Shy) = E(X1+:::+X)=n =0
VanS,) = VarX.+ :::+ X,) = n 2 byindependence
3n
) vars,) = g:

SoS, approxNormal O; %"‘ for largen, by the CentralLimit Theorem.

Evenwith this highly non-Normaldistribution for X , the Normal curve provides
a good approximation to S, = X+ :::+ X, for n assmall as 10.
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Normal appro ximation to the Binomial distribution, using the CLT

Let Y  Binomial(n; p).

We canthink of Y asthe sumofn Bernoullirandomvariables:

1 if triali is a“success’{prob=p),
0 otherwisg(prob=1 p)

Y = X1+ Xo+ i+ Xq, WhereX; =
So Y = X+ :::+ X, andeachX; has = E(X;) = p; 2= VarX;)=p(d p):
Thus by the CLT,
Y= X1+ Xo+:::4 X, ! Normaln; n ?
= Normal np;np(2 p) :

Thus,

Bin(n;p) ! Normal |&? ; Pp(q{z p} asn! 1 withp xed.

mean of Bin(n;p) var of Bin(n;p)

The Binomial distribution is thereforewell approximated by the Normal distri-
bution whenn is large, for any xed value of p.

The Normal distribution is alsoa good approximation to the Poisson( ) distri-
bution when s large:

Poissofi )! Normal ; )when islarge.
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Binomial(n = 100,p = 0:5) Poisson( = 100)

0.04 0.06 0.08
0.02 0.03 0.04

0.02
0.01

0.0

30 40 50 60 70 60 80 100 120 140

Why the Piece of Cake Theorem?

The Certral Limit Theorem makeswhole realms of statistics into a piece
of cake.

After seeinga theoremthis good, you desene a pieceof cake!
Example: Remenber the margin of error for an opinion poll?

An opinion pollster wishesto estimate the level of support for Labour in an
upcoming election. Sheinterviews n peopleabout their voting preferencesLet
p be the true, unknown level of support for the Labour party in New Zealand.
Let X bethe number of of the n peopleinterviewed by the opinion pollster who
plan to vote Labour. Then X  Binomialn;p).

At the end of Chapter 2, we said that the maximum likelihood estimator for p
IS

X
p= "
In a large sample(large n), we now know that

X approxNormalnp; npq) whereg=1 p.

So

b= Pq

% approxNormal p; o (lineartransformatiorof Normalr.v.)
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So b
A _IO

n
Now if Z  Normal(0; 1), we nd (using a computer) that the 95% certral

probability regionof Z is from 1:96to +1:96:
P( 1:96< Z < 1:96) = 0:95:
Chedk in R: pnorm(1.96, mean=0,sd=1) - pnorm(-1.96, mean=0, sd=1)

Putting Z = %ﬁ? we obtain

approxNormal0; 1):

n
!

P. 196 ' 005

P 1.96< %—

n

Rearranging:
r__ r__

P b 196 %*< D < p+ 196 %* " 0:95:

This enablesus to form an estimated 95% con dence interval for the unknown

parameterp:. estimated5% con denceinterval is
r— r—

b 196 p(1n P o p+ 196 b(ln b

The 95% con dence interval has RANDOM end-points,which dependon p.
About 95% of the time, theserandomend-pointswill enclosethe true unknavn
value,p.

Con denceintervalsare extremelyimportant for helpingusto asses$iow useful
our estimates.

A narrow con dence interval suggestsa usefulestimatglow variance);
a wide con denceinterval suggestsa poorestimatghigh variance).

Next time you seethe newspagersquoting the mar gin of err or on an opinion
poll:

Remenber: mamgin of error= 1:96 @,’

Think: CentralLimit Theorem!
Have: a pieceof cale.



192

Using the Central Limit Theorem to nd the distribution of the mean, X

and variance Var(X;) = 2 for all i.

The samplemean, X, is de ned as:
— X1+ Xo+ i+ Xy
- :

SoX = F” whereS, = X+ :::+ X, approxNormaln; n 2) bytheCLT.

BecauseX is a scalar multiple of a Normal r.v. as n grows large, X itself is

approximatelyNormalfor largen:

N

X1+ Xo+ 10+ X
ST " approxNormal — asn! 1:

n
The following three statemerts of the Certral Limit Theoremare equivalen:

— X1+ X+ i+ X 2
X = 21 2n n approx Normal ; — asn! 1:
Sp= X1+ Xo+ 10+ Xy approx Normal n; n 2 asn! 1:
S, n X
ﬁ_z = p= approx Normal(0; 1) asn! 1 :
N =

The essetial point to remenber about the Certral Limit Theoremis that large
sumsor samplemeansof independen random variablescorvergeto a Normal

distribution, whateverthedistribution of theoriginalr.v.s.

More general version of the CLT

E(X;) = i, Var(X;) = 2 (not necessarilyall equal), then
P

n

X

M
i=1 i

) ' Normal(0;1) asn! 1:

Zy=
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Chapter 6: Wrapping Up

Probably the two major ideasof this courseare:

likelihood and estimation;
hypothesistesting.

Most of the techniguesthat we have studied alongthe way are to help us with
thesetwo goals: expectation, variance, distributions, change of variable, and
the Certral Limit Theorem.

Let's seehow thesedi erent ideasall cometogether.

What's with estimators?

We have seenthat an estimator is a capital letter replacing a small letter.
What's the point of that?

Example: Let X Binomial(n; p) with known n and obsened value X = x.

The maximum likelihood estimateof pis p= 7.
The maximum likelihood estimator of p is p= %

Example: Let X Exponertial( ) with obsenedvalue X = x,

The maximum likelihood estimateof isP= 1.

The maximum likelihood estimator of is P = -

Why are we interestedin estimators?

The answer is that estimators are random variables. This meansthey
have distributions, means, and varianc es that tell us how well we can
trust our single obsenation, or estimate, from this distribution.
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Good and bad estimators

Supposethat X 1; X;:::; X, areindependen, and X; Exponertial ( ) for all 1.
Is unknown, and we wish to estimateit.

In Chapter 4 we calculatedthe maximum likelihood estimator of

Now D is a randomvariablewith a distribution.
For a given value of n, we can calculatethe p.d.f. of b, How?

Weknow thatT = X+:::+ X, Gammén; ) whenX; i.id. Exponentid] ).

Sowe know thep.d.f.of T.
Now b = L
Sowe can nd the p.d.f. of b usingthe changeof variabletechnique.

Here are the p.d.f.sof P for two di erentvaluesofn:

Estimator 1: n = 100. 100piecesof informationabout .

Estimator 2: n = 10. 10piecesof informationabout .

f(1)

p.d.f. of Estimator 1
/

p.d.f. of Estimator 2

~~.

Truel
(unknown)

Clearly, the more information we have, the better. The p.d.f. for n = 100is
focusedmuch more tightly about the true value (unknown) than the p.d.f.
for n = 10.
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It is important to recognisewhat we do and don't know in this situation:

What we don't know:
thetrue

WHERE we areonthep.d.f. cure.

What we do know:
thep.d.f.curve;

we know we're SOMEWHEREon thatcurwve.

So we need an estimator sudh that EVERYWHERE on the estimators p.d.f.
curweis good!

f(1)

p.d.f. of Estimator 1
/

p.d.f. of Estimator 2

~ e
-~
-~
.....

Truel
(unknown)

This is why we are so concernedwith estimatomvariance.

A good estimator has low estimatovariance:everywhereon the estimator's
p.d.f. curve is guararteedto be good.

A poor estimator has high estimatowariance:someplaceson the estimator's
p.d.f. curve may be good, while others may be very bad. Becausewe dorit
know wheie we are on the curve, we can't trust any estimate from this poor
estimator.

The estimator variancetells us how much the estimator can be trusted.

Note: We werelucky in this exampleto happento know that T = X+ :::+ X,
Gamman; ) when X; ii.d. Exponerial( ), sowe could nd the p.d.f. of
our estimator P = n=T. We won't usually be solucky: sowhat shouldwe do?
Usethe CentralLimit Theorem!
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Example: calculating the maxim um lik eliho od estimator

The following questionis in the samestyle asthe exam questions.

Let X be a continuousrandom variable with probability density function
8
2 2(s Xx)

fx(x)= S §?
: 0 otherwise:

forO< x< s;

Here, s is a parameterto be estimated, where s is the maximum value of X

ands> 0.
(a) Shaw that E(X) = >.
z. 3 ,Zs
UseE(X)=  xfyx(x)dx= . (sx x?) dx:
0 0
SZ
(b) Show that E(X?) = =.
z. b6 ,Zs
UseE(X?) =  x%fx(x)dx= 2 (sx? x%)dx:
0 0

(c) Find Var(X).
UseVarX) = E(X?) (EX)2 Answer:VarX) = .

(d) Supposethat we make a singleobsenation X = x. Write down the likelihood
function, L(s; x), and state the rangeof valuesof s for which your answer is

valid.
2(s Xx)

L(s;Xx) = o for x<s< 1,

0.15

(e) The likelihood graph for a particular value of
x is shavn here.

Shaw that the maximum likelihood estimator
of sis b= 2X : You shouldrefer to the graph
in your answer.

Likelihood
0.10

0.05

0.0
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L(s;x) = 25 )(s x)
So ?j—I;: 2 25 3s x)+s?
= 253 2(s x)+59)
2
= ?(ZX S):
At the MLE,
dL

— =0 =1 or = 2X:
ds ) S S

Fromthegraph,we canseethats = 1 is notthe maximum.Sos = 2x:
Thusthe maximumlik elihoodestimators

b= 2X:

(f) Find the estimator variance,Var(b), in terms of s. Hence nd the estimated
variance,g'ar(b), in terms of b.

Vanb) = Van2X)

= 22VarX)
= 4 i—; by (c)
Vars) = %SZ:
Soalso: Yarb) = %
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(g) Supposewe makethe singleobsenation X = 3. Find the maximum likelihood

estimate of s, and its estimated variance and standard error.

b= 2X=2 3=6

28 2 6

Yanb) = 5 5

=8

q o_
seb) = Wank)= 8= 2:82

This means is a POORestimator:the twice standard-erromterval would be
6 2 2:82to6+ 2 2:82 thatis,0:36t011:64!

Taking the twice standarderror interval strictly appliesonly to the Normal
distribution, but it is a usefulrule of thumbto seehow "good'the estimators.

(h) Write a sertencein plain English to explain what the maximum likelihood
estimate from part (g) represets.

Thevalueb = 6 is the valueof s underwhich the obserationX = 3 is more
likely thanit is atary othervalueof s.

6.2 Hyp othesis tests: in search of a distribution

When we do a hypothesistest, we needatest statistic.: somerandom variable
with adistribution that we canspecify exactly underHgandthat di ers under
Hj.

It is nding the distribution that is the dicult part.

Weird coin: is my coin fair? Let X be the number of headsout of 10
tosses.X  Binomial(10; p). We have an easydistribution and cando a
hypothesistest.

Too many daughters? Do divershave moredaughersthan sons?Let X
bethe number of daughters out of 190diver children. X  Binomial(190; p).
Easy
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Too long between volcanoes? Let X be the length of time between

volcanic eruptions. If we assumevolcances occur as a Poissonprocess,
then X  Exponertial ( ). We have a simpledistribution and test statistic
(X): we cantest the obsened length of time betweeneruptions and seeif
it this is a believable obsenation under a hypothesizedvalue of

More advanced tests

Most things in life are not as easyasthe three examplesabove.
Here are someobsenations. Do they comefrom a distribution (any distribu-
tion) with mean0?

396 232 -181 -0.14 3.22 107 -052 040 051 148
1.37 -0.17 185 0.61 -0.58 154 -142 -085 166 154

Answer: yes,they are Normal(0, 4), but how can we tell?

What about these?

3.3 -30.0 -7.8 34 -1.3 126 -9.6 1.4 -6.4 -11.8
-8.1 8.1 -9.0 8.1 -13.7 -50 -6.6 -5.6 25 90

Again, yesthey do (Normal(0, 100) this time), but how can we tell? The
unknown variance (4 versus100) interferes,sothat the secondsampledoesnot
cluster about its meanof O at all.

What test statistic should we use?

If we don't know that our data are Normal, and we don't know their underlying
variance,what canwe useasour X to test whether = 0?

Answ er: a clewer person called W. S. Gossett (1876-1937)worked out an
answer. He calledhimselfonly "Student’, possiblybecausene (or his employers)
wanted it to be kept secretthat he was doing his statistical researt as part of
his employment at GuinnessBrewery. The test that "Studert’ deweloped is the
familiar Studert's t-test. It was originally deweloped to help Guinnessdecide
how large a sampleof peopleshould be usedin its beertastings!
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Studert usedthe following test statistic for the unknown mean,

X

T=¢p——
h inzl(xi 7)2
n(n 1)
UnderHg : = 0, the distribution of T is known: T hasp.d.f.
n ! t2 n=2
fr(t) = p—=—"o-~=2 1+ for 1 <t<1:
0= Pt —

T is the Student's t-distribution, derived asthe ratio of a Normal random vari-
able and an independert Chi-Squaredrandom variable. If 6 0, obsenations
of T will tend to lie out in the tails of this distribution.

The Studert's t-testis exactwhenthe distribution ofthe originaldata X 1;:::; X,
iIs Normal. For other distributions, it is still approximately valid in large sam-
ples, by the Certral Limit Theorem.

It looks dicult

It is! Most of the statistical tests in common use have deep (and sometimes
guite impenetrable) theory behind them. As you can probably guess,Studert

did not derive the distribution above without a great deal of hard work. The

result, howewer, is astonishing. With the help of our best friend the Central

Limit Theorem, Studert's T-statistic givesus a test for = 0 (or any other
value) that can be usedwith any large enoughsample.

The Chi-squaredtest for testing proportions in a cortingency table alsohasa
deeptheory, but oncereseartiershad derivedthe distribution  of a suitable

test statistic, the restwaseasy In the Chi-squaredgoodness-of- t test, the
Pearson'schi-squaretest statistic is shovn to have a Chi-squareddistribution
under Hy. It produceslarger valuesunder H .

Oneinteresting point to note is the pivotal role of the Certral Limit Theoremin
all of this. The Central Limit Theoremproducesapproximate Normal distribu-
tions. Normal randomvariablessquaredproduceChi-squaredrandomvariables.
Normalsdivided by Chi-squaredsproducet-distributed randomvariables. A ra-
tio of two Chi-squareddistributions producesan F -distributed randomvariable.
All thesethings are not coincidental: the Centr al Limit Theorem rocks!



