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Chapter 1: Probabilit y

1.1 In tro duction

De�nition: A probabilit y is a number between0 and 1 representing how likely it
is that an event will occur.

Probabilities can be:

1. Frequentist (basedon frequencies),

e.g. numberof timeseventoccurs
numberof opportunitiesfor eventto occur;

2. Subjective: probabilit y represents a person's degree of belief that an
event will occur,
e.g.I think thereis an80%chanceit will rain today,
writtenasP(rain) = 0:80.

Regardlessof how we obtain probabilities, we always combine and manipulate
them accordingto the samerules.

1.2 Sample spaces

De�nition: A random exp erimen t is an experiment whoseoutcomeis notknown
until it is observed.

De�nition: A sample space, 
, is a setof outcomesof a randomexperiment.

Every possibleoutcomemust be listed onceandonly once.

De�nition: A sample poin t is an elementof thesamplespace.

For example, if the samplespaceis 
 = f s1; s2; s3g, then each si is a sample
point.
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Examples:

Experiment: Tossa coin twice and observe the result.
Samplespace: 
 = f H H; H T; TH; TTg
An exampleof a samplepoint is: H T

Experiment: Tossa coin twice and count the number of heads.
Samplespace: 
 = f 0; 1; 2g

Experiment: Tossa coin twiceand observe whether the two tossesare the same
(e.g. HH or TT).
Samplespace: 
 = f same,di� erentg

Discrete and contin uous sample spaces

De�nition: A samplespaceis �nite if it hasa �nite numberof elements.

De�nition: A sample spaceis discrete if thereare “gaps” betweenthe di� erent
elements,or if theelementscanbe“listed”, evenif anin�nite list (eg. 1; 2; 3; : : :).

In mathematical language,a samplespaceis discreteif it is countable.

De�nition: A samplespaceis contin uous if therearenogapsbetweentheelements,
sotheelementscannotbelisted(eg. theinterval [0; 1]).

Examples:


 = f 0; 1; 2; 3g (discreteand�nite)


 = f 0; 1; 2; 3; : : :g (discrete,in�nite)


 = f 4:5; 4:6; 4:7g (discrete,�nite)


 = f H H; H T; TH; TTg (discrete,�nite)


 = [0; 1] = f all numbersbetween0 and1 inclusiveg (continuous,in�nite)


 =
�

[0� ; 90� ); [90� ; 360� )
	

(discrete,�nite)



1.3 Events

Kolmogorov (1903-1987).
One of the foundersof

probabilit y theory.

Supposeyou are setting out to createa science
of randomness.Somehow you needto harness
the idea of randomness,which is all about the
unknown, and expressit in terms of mathematics.

How would you do it?

So far, we have introducedthe sample space, 
,
which lists all possibleoutcomesof a random
experiment, and might seemunexciting.

However, 
 is a set. It lays the ground for a whole mathematical formulation
of randomness,in terms of settheory.

The next conceptthat you would needto formulate is that of something that
happens at random, or anevent.

How would you expressthe idea of an event in terms of set theory?

De�nition: An event is a subsetof thesamplespace.

That is, any collectionof outcomesformsanevent.

Example: Tossa coin twice. Samplespace:
 = f H H; H T; TH; TTg

Let event A be the event that there is exactlyonehead.

We write: A = “exactlyonehead”

Then A = f H T; TH g.

A is a subsetof 
, as in the de�nition. We write A � 
 .

De�nition: Event A occurs if we observe anoutcomethat is a memberof theset
A.

Note: 
 is a subsetof itself, so 
 is an event. The empty set, ; = fg , is also a
subsetof 
. This is called the null event , or theevent with no outcomes .
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Example:

Experiment: throw 2 dice.
Samplespace: 
 = f (1; 1); (1; 2); : : : ; (1; 6); (2; 1); (2; 2); : : : ; (2; 6); : : : ; (6; 6)g

Event A = “sumof two facesis 5” = f (1; 4); (2; 3); (3; 2); (4; 1)g

Com bining Events

Formulating random events in terms of sets gives us the power of set theory
to describe all possibleways of combining or manipulating events. For exam-
ple, we needto describe things like coincidences(events happening together),
alternatives,opposites,and so on.

We do this in the languageof set theory.

Example: Supposeour random experiment is to pick a personin the classand see
what form(s) of transport they usedto get to campustoday.

Bus

Bike
Walk

Car

Train

People in class

This sort of diagram representing events in a sample spaceis called a Venn
diagram.
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1. Alternativ es: the union `or' operator

We wish to describe an event that is composedof severaldi� erentalternatives.

For example,the event that you useda motor vehicle to get to campusis the
event that your journey involved a car, or a bus, or both.

To represent the set of journeys involving both alternatives,we shadeall out-
comesin `Bus' andall outcomesin `Car'.

Bus

Bike
Walk

Car

Train

People in class

Overall, we have shadedall outcomesin theUNION of BusandCar.

We write the event that you useda motor vehicleas the event Bus [ Car, read
as“Bus UNION Car”.

The union operator, [ , denotesBusORCarORboth.

Note: Be careful not to confuse`Or' and `And'. To shadethe union of Bus and
Car, we had to shadeeverything in Bus AND everything in Car.

To remember whether union refersto `Or' or `And', you have to considerwhat
doesanoutcomeneedto satisfyfor theshadedeventto occur?

The answer is Bus,ORCar, ORboth.NOT BusAND Car.

De�nition: Let A and B be events on the samesamplespace
: so A � 
 and
B � 
 .

The union of events A and B is written A [ B , and is given by

A [ B = f s : s 2 A or s 2 B or bothg:
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2. Concurrences and coincidences: the in tersection `and' operator

The in tersection is an event that occurswhen two or more events ALL occur
together.

For example,considerthe event that your journey today involved BOTH a car
AND a train. To represent this event, we shadeall outcomesin theoverlapof
CarandTrain.

Bus

Bike
Walk

Car

Train

People in class

We write the event that you usedboth car and train as Car \ Train, readas
“Car INTERSECTTrain”.

The intersectionoperator, \ , denotesbothCarAND Train together.

De�nition: The in tersection of events A and B is written A \ B and is given by

A \ B = f s : s 2 A AND s 2 Bg:

3. Opp osites: the complemen t or `not' operator

The complemen t of an event is the oppositeof theevent: whatever theevent
was,it didn't happen.

For example, consider the event that your journey today did NOT involve
walking. To represent this event, we shadeall outcomesin 
 exceptthosein the
eventWalk.
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People in class

Bus

Bike
Walk

Car

Train

People in class

We write the event `not Walk' asWalk.

De�nition: The complemen t of event A is written A and is given by

A = f s : s =2 Ag:

Examples:

Experiment: Pick a personin this classat random.
Samplespace: 
 = f all peoplein classg.

Let event A =\p ersonis male" and event B =\p ersontravelledby bike today".

SupposeI pick a male who did not tr avel by bike . Say whetherthe following
events have occurred:

1) A Yes. 2) B No.

3) A No. 4) B Yes.

5) A [ B = f femaleor bike rideror bothg. No.

6) A \ B = f maleandnon-bikerg. Yes.

7) A \ B = f maleandbike riderg. No.

8) A \ B = everythingoutsideA \ B . A \ B did notoccur, soA \ B did occur.
Yes.

Question: What is the event 
 ? 
 = ;
Challenge: can you expressA \ B using only a [ sign?
Answer: A \ B = (A [ B):
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Limitations of Venn diagrams

Venn diagrams are generally useful for up to 3 events, although they are not
usedto provide formal proofs. For more than 3 events, the diagram might not
be able to represent all possibleoverlapsof events. (This wasprobably the case
for our transport Venn diagram.)

Example: A B

C
PSfrag replacements




(a) A [ B [ C

A B

C
PSfrag replacements




(b) A \ B \ C

Prop erties of union, in tersection, and complemen t

The following properties hold.

(i) ; = 
 and 
 = ; .

(ii) For any event A, A [ A = 
 ;

and A \ A = ; :

(iii) For any events A and B, A [ B = B [ A;

and A \ B = B \ A: Commutative.

(iv) (a) (A [ B) = A \ B : (b) (A \ B) = A [ B :

A B

PSfrag replacements




A B

PSfrag replacements
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Distributiv e laws

We are familiar with the fact that multiplication is distributiv e over addition.
This meansthat, if a, b, and c are any numbers, then

a � (b+ c) = a � b+ a � c:

However, addition is not distributiv e over multiplication:

a + (b� c) 6= (a + b) � (a + c):

For set union and set intersection, unionis distributive over intersection,AND
intersectionis distributiveover union.

Thus, for any setsA, B , and C:

A [ (B \ C) = (A [ B) \ (A [ C);

and A \ (B [ C) = (A \ B) [ (A \ C):

A B

C
PSfrag replacements



A B

C
PSfrag replacements




More generally, for several events A andB1; B2; : : : ; Bn;,

A [ (B1 \ B2 \ : : : \ Bn) = (A [ B1) \ (A [ B2) \ : : : \ (A [ Bn)

i.e. A [

 
n\

i =1

B i

!

=
n\

i =1

(A [ B i );

and

A \ (B1 [ B2 [ : : : [ Bn) = (A \ B1) [ (A \ B2) [ : : : [ (A \ Bn)

i.e. A \

 
n[

i =1

B i

!

=
n[

i =1

(A \ B i ):
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1.4 Partitioning sets and events

The idea of a partition is fundamental in probabilit y manipulations. Later in
this chapter we will encounter the important Partition Theorem. For now, we
give somebackground de�nitions.

De�nition: Two events A and B are mutually exclusiv e, or disjoin t , if A \ B =
; :

This meanseventsA andB cannothappentogether. If A happens,it excludesB
from happening,andvice-versa.

���������
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Note: Doesthis meanthat A and B are independent?

No: quitetheopposite.A EXCLUDESB from happening,soB dependsstrongly
onwhetheror notA happens.

De�nition: Any number of events A1; A2; : : : ; Ak are mutually exclusiv e if every
pair of theeventsis mutuallyexclusive: ie. A i \ A j = ; for all i; j with i 6= j .
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A1 A2 A3

De�nition: A partition of the samplespace
 is a collectionof mutuallyexclusive
eventswhoseunionis 
 .

That is, setsB1; B2; : : : ; Bk form a partition of 
 if

B i \ B j = ; for all i; j with i 6= j ;

and
k[

i =1

B i = B1 [ B2 [ : : : [ Bk = 
 :
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Examples:

B1; B2; B3; B4 form apartitionof 
 : B1; : : : ; B5 partition 
 :

PSfrag replacements



B1

B2

B3

B4

B5

PSfrag replacements



B1

B2

B3

B4
B5

Imp ortan t: B andB partition 
 for any eventB:

PSfrag replacements




BB

Partitioning an event A

Any setor eventA canbepartitioned:it doesn't have to be 
 .
If B1; : : : ; Bk form a partitionof 
 , then(A \ B1); : : : ; (A \ Bk) form a partition
of A.
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B1

B2

B3

B4

We will seethat this is very useful for �nding the probabilit y of event A.

This is becauseit is often easierto �nd the probabilit y of small `chunks' of A
(the partitioned sections)than to �nd the whole probabilit y of A at once. The
partition idea shows us how to add the probabilities of thesechunks together:
seelater.
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1.5 Probabilit y: a way of measuring sets

Remember that you are given the job of building the scienceof randomness.
This meanssomehow `measuringchance'.

If I sent you away to measureheights, the �rst
thing you would ask is what you are supposed
to be measuringthe heights of.
People?Trees?Mountains?

We have the samequestionwhen setting out to measurechance.
Chanceof what?

The answer is sets.

It was clever to formulate our notions of events and samplespacesin terms of
sets: it givesus somethingto measure.`Probability', the namethat we give to
our chance-measure,is awayof measuringsets.

You probably already have a good idea for a suitable way to measurethe size
of a set or event. Why not just countthenumberof elementsin it?

In fact, this is often what we do to measureprobabilit y | (although counting
the number of elements can be far from easy!) But there are circumstances
wherethis is not appropriate.

What happens, for example, if one set is far mor e likely than another, but
they have the samenumber of elements? Should they be the sameprobabilit y?
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First set: f Lionswing:

Second set: f All Blackswing.

Both setshave just oneelement, but
wede�nitely needto give themdi� erentprobabilities!

More problemsarisewhen the setsare in�nite
or continuous.

Should the intervals [3; 4] and [13; 14] be the sameprobabilit y, just because
they are the samelength? Yesthey should, if (say) our random experiment is
to pick a random number on [0; 20] | but no they shouldn't (hopefully!) if our
experiment was the time in yearstaken by a student to �nish their degree.
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Most of this courseis about probabilit y distributions.

A probabilit y distribution is aruleaccordingto whichprobabilityis apportioned,
or distributed,amongthedi� erentsetsin thesamplespace.

At its simplest,a probabilit y distribution just lists every element in the sample
spaceand allots it a probability between0 and 1, suchthat the total sum of
probabilitiesis 1.

In the rugby example,we could usethe following probabilit y distribution:

P(Lions win)= 0:01, P(All Blackswin)= 0:99:

In general,we have the following de�nition for discretesamplespaces.

Discrete probabilit y distributions

De�nition: Let 
 = f s1; s2; : : :g be a discretesamplespace.
A discrete probabilit y distribution on 
 is a setof realnumbersf p1; p2; : : :g
associatedwith thesamplepointsf s1; s2; : : :g suchthat:

1. 0 � pi � 1 for all i;

2.
X

i

pi = 1.

pi is called the probabilityof theeventthattheoutcomeis si .

We write: pi = P(si ).

The rule for measuringthe probabilit y of any set, or event , A � 
, is to sum
theprobabilitiesof theelementsof A:

P(A) =
X

i 2A

pi :

E.g.if A = f s3; s5; s14g, then P(A) = p3 + p5 + p14.
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Contin uous probabilit y distributions

On a continuous samplespace
, e.g. 
 = [0; 1], we can not list all the ele-
ments and givethem an individual probabilit y. Wewill needmoresophisticated
methods detailed later in the course.

However, the sameprinciple applies. A continuousprobabilit y distribution is a
rule underwhich we cancalculatea probabilitybetween0 and1 for any set,or
event , A � 
 .

Probabilit y Axioms

For any samplespace,discreteor continuous,all of probabilit y theory is based
on the following three de�nitions, or axioms.

Axiom 1: P(
) = 1.

Axiom 2: 0 � P(A) � 1 for all eventsA.

Axiom 3: If A1; A2; : : : ; An aremutually exclusiv e events,(nooverlap),then

P(A1 [ A2 [ : : : [ An) = P(A1) + P(A2) + : : : + P(An):

If our rule for `measuringsets'satis�es the three axioms,it is a valid probabilit y
distribution.

It shouldbeclearthat the de�nitions givenfor the discretesamplespaceon page
16 will satisfy the axioms. The challengeof de�ning a probabilit y distribution
on a continuoussamplespaceis left till later.

Note: The axiomscan never be `proved': they are de�nitions.

Note: P(; ) = 0:

Note: Remember that anEVENT is aSET: aneventis asubsetof thesamplespace.
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1.6 Probabilities of combined events

In Section 1.3 we discussedunions, intersections,and complements of events.
We now look at the probabilities of these combinations. Everything below
appliesto events (sets) in eithera discreteor acontinuoussamplespace.

1. Probabilit y of a union

Let A and B be events on a sample space
. There are two casesfor the
probabilit y of the union A [ B :

1. A andB aremutuallyexclusive (nooverlap): i.e. A \ B = ; .

2. A andB arenotmutuallyexclusive: A \ B 6= ; .

For Case1, we get the probabilit y of A [ B straight from Axiom 3:

If A \ B = ; then P(A [ B) = P(A) + P(B):

For Case2, we have the following formula;

For ANY eventsA, B , P(A [ B) = P(A) + P(B) � P(A \ B).

Note: The formula for Case2 appliesalso to Case1: just substitute
P(A \ B) = P(; ) = 0:

For three or more events: e.g. for any A, B , and C,

P(A [ B [ C) = P(A) + P(B) + P(C)

� P(A \ B) � P(A \ C) � P(B \ C)

+ P(A \ B \ C) :
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Explanation

For any events A and B, P(A [ B) = P(A) + P(B) � P(A \ B).

The formal proof of this formula is in Section1.9 (non-examinable).
To understandthe formula, think of the Venn diagrams:
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A

B \ (A n B)

A

B

W W

When we add P(A) + P(B), we
addtheintersectiontwice.

So we have to subtractthe
intersectiononceto getP(A [ B):
P(A [ B) = P(A) + P(B) � P(A \ B):

Alternativ ely, think of A [ B as

two disjoint sets:all of A,
andthebitsof B without the
intersection.SoP(A [ B) =

P(A) +
n

P(B) � P(A \ B)
o

:

2. Probabilit y of an in tersection
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W

B

There is no easyformula for P(A \ B).

We might be able to usestatisticalindependence
(Section1.16).

If A and B are not statistically independent,
we often useconditionalprobability
(Section1.10.)

3. Probabilit y of a complemen t
W

A

A

P(A) = 1 � P(A):

This is obvious, but a formal proof is given in Sec.1.9.
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1.7 The Partition Theorem

The Partition Theorem is one of the most useful tools for probabilit y calcula-
tions. It is basedon the fact that probabilities are often easierto calculate if
webreakdown asetinto smallerparts.

Recall that a partition of 
 is acollection
of non-overlappingsetsB1; : : : ; Bm which
togethercover everythingin 
 .

PSfrag replacements 


B1

B3

B2

B4

Also, if B1; : : : ; Bm form a partition of 
, then (A \ B1); : : : ; (A \ Bm) form a
partitionof thesetor eventA.PSfrag replacements

A

A \ B1 A \ B2

A \ B3 A \ B4

B1 B2

B3 B4

The probabilit y of event A is therefore thesumof its parts:

P(A) = P(A \ B1) + P(A \ B2) + P(A \ B3) + P(A \ B4):

The Partition Theorem is a mathematical way of saying thewhole is thesum
of its parts.

Theorem 1.7: The Partition Theorem. (Proof in Section1.9.)

Let B1; : : : ; Bm form a partitionof 
 . Thenfor any eventA,

P(A) =
mX

i =1

P(A \ B i ).

Note: Recall the formal de�nition of a partition. SetsB1; B2; : : : ; Bm form a par-
tition of 
 if B i \ B j = ; for all i 6= j ; and

S m
i=1 B i = 
 :
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1.8 Examples of basic probabilit y calculations

300Australians wereasked about their car preferencesin 1998. Of the respon-
dents, 33% had children. The respondents were asked what sort of car they
would like if they could chooseany car at all. 13%of respondents had children
and chosea large car. 12% of respondents did not have children and chosea
large car.

Find the probabilit y that a randomly chosenrespondent:
(a) would choosea large car;
(b) either haschildren or would choosea large car (or both).

First formulateevents:

Let C = “haschildren” C = “no children”

L = “chooseslargecar”.

Next write down all theinformationgiven:

P(C) = 0:33

P(C \ L) = 0:13

P(C \ L) = 0:12:

(a)Askedfor P(L).

P(L) = P(L \ C) + P(L \ C) (Partition Theorem)

= P(C \ L) + P(C \ L)

= 0:13+ 0:12

= 0:25: P(chooseslargecar)= 0:25:

(b) Askedfor P(L [ C):

P(L [ C) = P(L) + P(C) � P(L \ C) (Section1.6)

= 0:25+ 0:33� 0:13

= 0:45:
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Respondents werealsoasked their opinionson car reliabilit y and fuel consump-
tion. 84%of respondents consideredreliabilit y to be of high importance,while
40%consideredfuel consumptionto be of high importance.

Formulate events: R = \considers reliabilit y of high importance";

F = \considers fuel consumptionof high importance":

(c) What is P(R)?

(d) What is P(R \ F )?

Informationgiven: P(R) = 0:84 P(F ) = 0:40:

(c) P(R) = 1 � P(R)

= 1 � 0:84

= 0:16:

(d) Wecannot calculateP(R \ F ) from theinformationgiven.

(e) Given the further information that 12% of respondents consideredneither
reliabilit y nor fuel consumption to be of high importance, �nd P(R [ F ) and
P(R \ F ).

Informationgiven: P(R [ F ) = 0:12.
PSfrag replacements

R F

Thus P(R [ F ) = 1 � P(R [ F )

= 1 � 0:12

= 0:88:

Probability that respondentconsiderseither reliability or fuel consumption,or
both,of high importance.

P(R \ F ) = P(R) + P(F ) � P(R [ F ) (Section1.6)
= 0:84+ 0:40� 0:88

= 0:36:

Probability that respondentconsidersBOTH reliability AND fuel consumption
of high importance.
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(f ) Find the probabilit y that a respondent consideredreliabilit y, but not fuel
consumption,of high importance.

P(R \ F ) = P(R) � P(R \ F ) (Partition Theorem)

= 0:84� 0:36

= 0:48:

1.9 Formal probabilit y pro ofs: non-examinable

If you are a mathematician, you will be interested to seehow properties of
probabilit y are proved formally. Only the Axioms, together with standard set-
theoretic results, may be used.

Theorem : The probabilit y measureP has the following properties.

(i) P(; ) = 0.

(ii) P(A) = 1 � P(A) for any event A.

(iii) (Partition Theorem.) If B1; B2; : : : ; Bm form a partition of 
, then for any
event A,

P(A) =
mX

i =1

P(A \ B i ):

(iv) P(A [ B) = P(A) + P(B) � P(A \ B) for any events A, B .

Pro of:

i) For any A, we have A = A [ ; ; and A \ ; = ; (mutually exclusive).

SoP(A) = P(A [ ; ) = P(A) + P(; ) (Axiom 3)

) P(; ) = 0.
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ii) 
 = A [ A; and A \ A = ; (mutually exclusive).

So 1 = P(
)| {z }
Axiom 1

= P(A [ A) = P(A) + P(A). (Axiom 3)

iii) SupposeB1; : : : ; Bm are a partition of 
:

then B i \ B j = ; if i 6= j , and
S m

i=1 B i = 
 :

Thus, (A \ B i ) \ (A \ B j ) = A \ (B i \ B j ) = A \ ; = ; , for i 6= j ,

ie. (A \ B1); : : : ; (A \ Bm) are mutually exclusive also.

So,
mX

i =1

P(A \ B i ) = P

 
m[

i =1

(A \ B i )

!

(Axiom 3)

= P

 

A \
m[

i =1

B i

!

(Distributiv e laws)

= P(A \ 
)

= P(A) : �

iv)

A [ B = (A \ 
) [ (B \ 
) (Set theory)

=
h
A \ (B [ B)

i
[

h
B \ (A [ A)

i
(Set theory)

= (A \ B) [ (A \ B) [ (B \ A) [ (B \ A) (Distributiv e laws)

= (A \ B) [ (A \ B) [ (A \ B):

These3 events are mutually exclusive:

eg. (A \ B) \ (A \ B) = A \ (B \ B) = A \ ; = ; , etc.

So, P(A [ B) = P(A \ B) + P(A \ B) + P(A \ B) (Axiom 3)

=
h

P(A) � P(A \ B)| {z }
from (iii) using B and B

i
+

h
P(B) � P(A \ B)| {z }

from (iii) using A and A

i
+ P(A \ B)

= P(A) + P(B) � P(A \ B): �
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1.10 Conditional Probabilit y

Conditioning is another of the fundamental tools of probabilit y: probably the
most fundamental tool. It is especially helpful for calculating the probabilities
of intersections,such as P(A \ B), which themselvesare critical for the useful
Partition Theorem.

Additionally , the whole�eld of stochastic processes(Stats 320and 325)is based
on the ideaof conditional probabilit y. What happensnext in a processdepends,
or is conditional, on what hashappenedbeforehand.

Dep endent events

SupposeA and B are two events on the samesamplespace. There will often
be dependencebetween A and B. This meansthat if we know that B has
occurred, it changesour knowledgeof the chancethat A will occur.

Example: Tossa die once.

Let event A = “get a 6”
Let event B= “get anevennumber”

If the die is fair, then P(A) = 1
6 andP(B) = 1

2.

However, if we know that B has occurred, then there is an increasedchance
that A hasoccurred:

P(A occursgiven that B hasoccurred) = 1
3.

�
result 6

result 2 or 4 or 6

�

We write
P(A givenB) = P(A j B) =

1
3

:

Question: what would be P(B j A)?

P(B j A) = P(B occurs,giventhatA hasoccurred)
= P(getanevennumber, giventhatweknow wegota 6)

= 1:
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Conditioning as reducing the sample space

The car survey in Section1.8 also asked respondents which they valued more
highly in a car: easeof parking, or style/prestige. Hereare the responses:

Male Female Total

Prestigemore important than parking 79 51 130

Prestigelessimportant than parking 71 99 170

Total 150 150 300

Supposewe pick a respondent at random from all those in the table.

Let event A = \respondent thinks that prestigeis more important".

P(A) =
# A's

total# respondents
=

130
300

= 0:43:

However, this probabilit y di�ers betweenmalesand females.Supposewe reduce
oursamplespacefrom


 = f all peoplein tableg

to
B = f all malesin tableg:

P(respondent thinks prestigeis moreimportant, giventhat respondent is male)

=
# maleswho favourprestige

total # males

=
# maleA 's

# males

=
79
150

= 0:53:

We write: P(A j B) = 0:53.
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We could follow the sameworking for any pair of events, A and B:

P(A j B) =
# B 's whoareA

total # B 's

=
# in tablewhoareBOTH B andA

# B 's

=
(# in B AND A) = (# in 
 )

(# in B ) = (# in 
 )

=
P(A \ B)

P(B)
:

This is our de�nition of conditional probabilit y:

De�nition: Let A and B betwo events. The conditional probabilit y that event
A occurs, giv en that event B has occurred , is written P(A j B),

and is given by

P(A j B) =
P(A \ B)

P(B)
:

ReadP(A j B) as “probability of A, givenB”.

Note: P(A j B) givesP(A andB , from within thesetof B's only).

P(A \ B) givesP(A andB , from thewholesamplespace
 ).

Note: Follow the reasoningabove carefully. It is important to understand why
the conditional probabilit y is the probabilit y of the intersectionwithin the new
samplespace.

Conditioning on event B meanschanging the sample space to B.

Think of P(A j B) as the chanceof getting an A, from the set of B 's only.
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The symbol P belongs to the sample space 


Recall the �rst of our probabilit y axiomson page17:

P(
) = 1:

This indicates that the symbol P is de�ned with respect to 
. That is,
P BELONGSto thesamplespace
 .

If we changethe samplespace,we needto changethe symbol P. This is what
we do in conditional probabilit y:

to changethe samplespacefrom 
 to B , say, we changefrom thesymbolP to
thesymbolP( j B ).

The symbol P( j B ) should behave exactly like thesymbolP.

For example:
P(C [ D) = P(C) + P(D) � P(C \ D);

so
P(C [ D j B) = P(C j B) + P(D j B) � P(C \ D j B):

Tric k for checking conditional probabilit y calculations:

A useful trick for checking a conditional probabilit y expressionis to replacethe
conditionedsetby 
 , andseewhethertheexpressionis still true.

For example,is P(A j B) + P(A j B) = 1?

A nswer: ReplaceB by 
 : thisgives

P(A j 
) + P(A j 
) = P(A) + P(A) = 1:

So,yes,P(A j B) + P(A j B) = 1 for any othersamplespaceB .

Is P(A j B) + P(A j B) = 1?

Try to replacetheconditioningsetby 
 : we can't! Therearetwo conditioning
sets:B andB .

The expressionis NOT true, andin fact it doesn't make senseto try to addto-
getherprobabilitiesfrom two di� erentsamplespaces.
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The Multiplication Rule

For any events A and B,

P(A \ B) = P(A j B)P(B) = P(B j A)P(A).

Pro of:

Immediatefrom thede�nitions:

P(A j B) =
P(A \ B)

P(B)
) P(A \ B) = P(A j B)P(B) ;

and

P(B j A) =
P(B \ A)

P(A)
) P(B \ A) = P(A \ B) = P(B j A)P(A): �

New statemen t of the Partition Theorem

The Multiplication Rule givesus a new statement of the Partition Theorem:
If B1; : : : ; Bm partitionS, thenfor any eventA,

P(A) =
mX

i =1

P(A \ B i ) =
mX

i =1

P(A j B i )P(B i ):

Both formulations of the Partition Theoremarevery widely used,but especially
the conditional formulation

P m
i=1 P(A j B i )P(B i ).

Warning:

Be careful to usethis new versionof the Partition Theoremcorrectly:

it is P(A) = P(A j B1)P(B1) + : : : + P(A j Bm)P(Bm),

NOT P(A) = P(A j B1) + : : : + P(A j Bm).
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Conditional probabilit y and Peter Pan

When Peter Pan washungry but had nothing to eat,
he would pretendto eat.
(An excellent strategy, I have always found.)

Conditional probabilit y is the Peter Pan of Stats 210. When you don't know
somethingthat you needto know, pretendyouknow it.

Conditioning on an event is like pretending that you know that the event has
happened.

For example,if you know the probabilit y of getting to work on time in di�eren t
weather conditions, but you don't know what the weather will be like today,
pretendyoudo— andaddup thedi� erentpossibilities.

P(work on time)= P(work on timej �ne) � P(�ne)
+ P(work on timej wet) � P(wet).

1.11 Examples of conditional probabilit y and partitions

Tom gets the bus to campusevery day. The bus is on time with probabilit y
0.6, and late with probabilit y 0.4.

The samplespacecan be written as 
 = f bus journeysg. We can formulate
events as follows:

T = \on time"; L = \late".

From the information given, the events have probabilities:

P(T) = 0:6; P(L) = 0:4:

(a) Do the events T and L form a partition of the samplespace
? Explain why
or why not.

Yes: they cover all possiblejourneys (probabilitiessumto 1), andthereis no
overlapin theeventsby de�nition.
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The busesare sometimescrowded and sometimesnoisy, both of which are
problemsfor Tom as he likesto usethe bus journeys to do his Stats assign-
ments. When the bus is on time, it is crowdedwith probabilit y 0.5. When it
is late, it is crowded with probabilit y 0.7. The bus is noisy with probabilit y
0.8 when it is crowded, and with probabilit y 0.4 when it is not crowded.

(b) Formulate events C and N correspondingto the busbeingcrowdedand noisy.
Do the events C and N form a partition of the samplespace?Explain why
or why not.

Let C = “crowded”, N = “noisy”.
C andN do NOT form a partitionof 
 . It is possiblefor thebus to benoisy
whenit is crowded,sotheremustbesomeoverlapbetweenC andN .

(c) Write down probabilit y statements corresponding to the information given
above. Your answer should involve two statements linking C with T and L,
and two statements linking N with C.

P(C j T) = 0:5; P(C j L) = 0:7:

P(N j C) = 0:8; P(N j C) = 0:4:

(d) Find the probabilit y that the bus is crowded.

P(C) = P(C j T)P(T) + P(C j L)P(L) (Partition Theorem)

= 0:5 � 0:6 + 0:7 � 0:4

= 0:58:

(e) Find the probabilit y that the bus is noisy.

P(N ) = P(N j C)P(C) + P(N j C)P(C) (Partition Theorem)

= 0:8 � 0:58+ 0:4 � (1 � 0:58)

= 0:632:
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1.12 Bayes' Theorem: inverting conditional probabilities

ConsiderP(B \ A) = P(A \ B): Apply multiplicationrule to eachside:

P(B j A)P(A) = P(A j B)P(B)

Thus P(B j A) =
P(A j B)P(B)

P(A)
: (?)

This is the simplest form of Bayes' Theorem,named
after Thomas Bayes(1702{61), English clergyman
and founder of BayesianStatistics.

Bayes' Theoremallows us to “invert” theconditioning,
i.e. to expressP(B j A) in termsof P(A j B).

This is very useful. For example,it might be easyto calculate,

P(latereventjearlierevent);

but we might only observe the later event and wish to deducethe probabilit y
that the earlier event occurred,

P(earliereventj laterevent):

Full statement of Bayes' Theorem:

Theorem 1.12: Let B1; B2; : : : ; Bm form a partition of 
. Then for any event A,
and for any j = 1; : : : ; m,

P(B j j A) =
P(A j B j )P(B j )P m
i=1 P(A j B i )P(B i )

(Bayes'Theorem)

Pro of:

Immediatefrom (?) (put B = B j ), andthe Partition Rule which givesP(A) =P m
i=1 P(A j B i )P(B i ): �
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Special caseof Bayes' Theorem when m = 2: useB andB asthepartitionof

 :

then P(B j A) =
P(A j B)P(B)

P(A j B)P(B) + P(A j B)P(B)

Example: The caseof the Per�dious Gardener.
Mr Smith owns a hystericalrosebush.It will die with
probabilit y 1/2 if watered, and with probabilit y 3/4 if
not watered. Worsestill, Smith employs a per�dious
gardenerwho will fail to water the rosebushwith
probabilit y 2/3.

Smith returns from holiday to �nd the rosebush. . . DEAD!!!
What is the probabilit y that the gardenerdid not water it?

Solution:

First step:formulateevents

Let : D = “rosebushdies”
W = “gardenerwatersrosebush”
W = “gardenerfails to waterrosebush”

Secondstep:write down all informationgiven

P(D j W) = 1
2 P(D j W) = 3

4 P(W) = 2
3 (so P(W) = 1

3)

Third step:write down whatwe're looking for

P(W j D)

Fourthstep:comparethis to whatwe know

Needto invert theconditioning,souseBayes'Theorem:

P(W j D) =
P(D j W)P(W)

P(D j W)P(W) + P(D j W)P(W)
=

3=4 � 2=3
3=4 � 2=3 + 1=2 � 1=3

=
3
4

Sothegardenerfailedto watertherosebushwith probability 3
4.



Example: The caseof the Defective Ketchup Bottle.

Ketchup bottles are producedin 3 di�eren t factories,accounting
for 50%,30%,and 20%of the total output respectively.
The percentage of defective bottles from the 3 factories is
respectively 0.4%,0.6%,and 1.2%. A statistics lecturer who
eatsonly ketchup �nds a defective bottle in her wig.
What is the probabilit y that it camefrom Factory 1?

Solution:

1. Events:

let Fi = “bottle comesfrom Factoryi” (i=1,2,3)
let D = “bottle is defective”

2. Informationgiven:

P(F1) = 0:5 P(F2) = 0:3 P(F3) = 0:2
P(D j F1) = 0:004 P(D j F2) = 0:006 P(D j F3) = 0:012

3. Looking for:

P(F1 j D) (soneedto invert conditioning).

4. BayesTheorem:

P(F1 j D) =
P(D j F1)P(F1)

P(D j F1)P(F1) + P(D j F2)P(F2) + P(D j F3)P(F3)

=
0:004� 0:5

0:004� 0:5 + 0:006� 0:3 + 0:012� 0:2

=
0:002
0:0062

= 0:322:
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1.13 Chains of events and probabilit y trees

The multiplication rule is very helpful for calculating probabilities whenevents
happenin sequence.

Example: Two balls are drawn at random without replacement from a box con-
taining 4 white and 2 red balls. Find the probabilit y that:
(a) they are both white,
(b) the secondball is red.

Solution

Let eventWi = “ i th ball is white” and Ri = “ i th ball is red”.

a) P(W1 \ W2) = P(W2 \ W1) = P(W2 j W1)P(W1)

Now P(W1) =
4
6

and P(W2 j W1) =
3
5

:
W1

SoP(bothwhite) = P(W1 \ W2) =
3
5

�
4
6

=
2
5
.

b)Lookingfor P(2ndball is red). Wecan't �nd thiswithoutconditioningonwhat
happenedin the�rst draw.

Event“2nd ball is red” is actuallyeventf W1R2; R1R2g = (W1 \ R2) [ (R1 \ R2):

SoP(2ndball is red) = P(W1 \ R2) + P(R1 \ R2) (mutuallyexclusive)
= P(R2 j W1)P(W1) + P(R2 j R1)P(R1)

=
2
5

�
4
6

+
1
5

�
2
6

=
1
3

W1 R1
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Probabilit y trees

Probabilit y treesare a graphical way of representing the multiplication rule.

First Draw Second Draw

PSfrag replacements
P(W1) = 4

6

P(R1) = 2
6

P(W2 j W1) = 3
5

P(R2 j W1) = 2
5

P(W2 j R1) = 4
5

P(R2 j R1) = 1
5

W1

R1

W2

R2

W2

R2

Write conditionalprobabilitieson the branches,andmultiply to get probability

of anintersection:eg. P(W1 \ W2) =
4
6

�
3
5

; or P(R1 \ W2) =
2
6

�
4
5
.

More than two events

To �nd P(A1 \ A2 \ A3) we can apply the multiplication rule successively:

P(A1 \ A2 \ A3) = P(A3 \ (A1 \ A2))

= P(A3 j A1 \ A2)P(A1 \ A2) (multiplicationrule)

= P(A3 j A1 \ A2)P(A2 j A1)P(A1) (multiplicationrule)
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Remember as: P(A1 \ A2 \ A3) = P(A1)P(A2 j A1)P(A3 j A2 \ A1):

On the probabilit y tree:

PSfrag replacements

P(A1)

P(A1)

P(A2 j A1)

P(A3 j A2 \ A1) P(A1 \ A2 \ A3)

In general,for n events A1; A2; : : : ; An, we have

P(A1\ A2\ : : :\ An) = P(A1)P(A2 j A1)P(A3 j A2\ A1) : : : P(An j An� 1\ : : :\ A1).

Example: A box contains w white balls and r red balls. Draw 3 balls without
replacement. What is the probabilit y of getting the sequencewhite, red, white?

Answer:

P(W1 \ R2 \ W3) = P(W1)P(R2 j W1)P(W3 j R2 \ W1)

=
�

w
w + r

�
�

�
r

w + r � 1

�
�

�
w � 1

w + r � 2

�
:
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Two separatestudiessay. . .
You're

Better

Off

with

AntiCough!

Soyou'rebetter off with AntiCough

. . . or areyou???

Havea look at the �gur es:

AntiCough Other Medicine

Given to: 25 75

Cured: 20 58

%Cur ed: 80% 77%

AntiCough Other Medicine

Given to: 75 25

Cured: 50 16

%Cur ed: 67% 64%

S
tu

dy
1

S
tu

dy
2

Combine the studies. . . What happens?
Never believe what you read.. . This is Simpson'sParadox. . . Never believe what you read.. . This is Sim
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1.14 Simpson's parado x

It is possiblefor onetreatment(e.g.Anticough)to bebetterthananother(Other
Medicine)in every one of a set of categories (e.g.Study1 andStudy2), but
worseoverall!

Combining the results overleaf:

AntiCough Other Medicine

Given to: 100 100

Cured: 70 74

%Cured: 70% 74%

Overall, AntiCough hasa 4% lower curepercentage(70%),
despitebeing about 3%higher in bothStudy1 andStudy2.

This e�ect is known asSimpson's Parado x.

It occursbecause

P(C j A) = P(C j A \ S1)P(S1 j A) + P(C j A \ S2)P(S2 j A) ;

P(C j A) = P(C j A \ S1)P(S1 j A) + P(C j A \ S2)P(S2 j A) :

C = f curedg A = f Anticoughg A = f OtherMedicineg
S1 = f Study1g S2 = f Study2g

Although P(C j A \ S1) > P(C j A \ S1), and P(C j A \ S2) > P(C j A \ S2), the
other terms can changethe overall outcome:

P(S1 j A), P(S1 j A), P(S2 j A), P(S2 j A).
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1.15 Probabilities from combinatorics: equally lik ely outcomes

Sometimes,all the outcomesin a discrete�nite samplespaceare equally likely.
This makesit easyto calculateprobabilities. If:

i) 
 = f s1; : : : ; skg;

ii) each outcomesi is equally likely, so p1 = p2 = : : : = pk = 1
k ;

iii) event A = f s1; s2; : : : ; sr g contains r possibleoutcomes,

then

P(A) =
r
k

=
# outcomesin A
# outcomesin 


:

Example: For a 3-child family, possibleoutcomesfrom oldest to youngestare:


 = f GGG;GGB; GBG; GBB; BGG; BGB; BBG; BBBg

= f s1; s2; s3; s4; s5; s6; s7; s8g

Let f p1; p2; : : : ; p8g be a probabilit y distribution on 
. If every baby is equally
likely to be a boy or a girl, then all of the8 outcomesin 
 areequallylikely, so
p1 = p2 = : : : = p8 = 1

8.

Let event A be A = “oldestchild is a girl”.

Then A = f GGG;GGB; GBG; GBBg.

Event A contains 4 of the 8 equally likely outcomes,so event A occurs with
probabilit y P(A) = 4

8 = 1
2.

Coun ting equally lik ely outcomes

To count the number of equally likely outcomesin an event, we often need
to use permutations or combinations . Thesegive the number of ways of
choosingr objects from n distinct objects.

For example,if we wish to select3 objects from n = 5 objects (a, b, c, d, e), we
have choicesabc, abd, abe, acd, ace, . . . .
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1. Num ber of Perm utations, n Pr

The number of permutations, nPr , is thenumberof waysof selectingr objects
from n distinctobjectswhendi� erentorderingsconstitutedi� erentchoices.

That is, choice(a;b;c) countsseparatelyfrom choice(b;a;c).

Then

#permutations= nPr = n(n � 1)(n � 2) : : : (n � r + 1) =
n!

(n � r )!
:

(n choicesfor �rst object,(n � 1) choicesfor second,etc.)

2. Num ber of Com binations, n C r =
� n

r

�

The number of combinations, nCr , is thenumberof waysof selectingr objects
from n distinctobjectswhendi� erentorderingsconstitutethesamechoice.

That is, choice(a;b;c) andchoice(b;a;c) arethesame.

Then

#combinations= nCr =
�

n
r

�
=

nPr

r !
=

n!
(n � r )!r !

:

(becausenPr countseachpermutationr ! times,andweonly wantto countit once:
sodivide nPr by r !)

Use the same rule on the numerator and the denominator

When P(A) =
�

# outcomesin A
# outcomesin 


�
; we can often think about the problem

either with di�eren t orderings constituting di�eren t choices,or with di�eren t
orderings constituting the samechoice. The critical thing is to usethe same
rule for bothnumeratoranddenominator.
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Example: (a) Tom has�v e elderly great-aunts who live together in a tiny bunga-

low. They insist on each receiving separateChristmas cards, and threaten to
disinherit Tom if he sendstwo of them the samepicture. Tom has Christmas
cards with 12 di�eren t designs. In how many di�eren t ways can he select 5
di�eren t designsfrom the 12 designsavailable?

Orderof cardsis not important,sousecombinations.Numberof waysof select-
ing 5 distinctdesignsfrom 12 is

12C5 =
�

12
5

�
=

12!
(12 � 5)! 5!

= 792:

b) The next year,Tom buysa pack of 40Christmascards,featuring 10di�eren t
pictures with 4 cardsof each picture. He selects5 cardsat random to sendto
his great-aunts. What is the probabilit y that at least two of the great-aunts
receive the samepicture?

Looking for P(at least2 cardsthesame)= P(A) (say).

Easiestto �nd P(all 5 cardsaredi� erent)= P(A).

Numberof outcomesin A is

(# waysof selecting5 di� erentdesigns)= 40� 36� 32� 28� 24:

(40choicesfor �rst card;36 for second,becausethe4 cardswith the
�rst designareexcluded;etc.
Notethatordermatters:e.g.wearecountingchoice12345separately
from 23154.)

Total numberof outcomesis

(total # waysof selecting5 cardsfrom 40) = 40� 39� 38� 37� 36:

(Note: ordermatteredabove,sowe needorderto matterheretoo.)

So
P(A) =

40� 36� 32� 28� 24
40� 39� 38� 37� 36

= 0:392:

Thus

P(A) = P(at least2 cardsarethesamedesign) = 1 � P(A) = 1 � 0:392= 0:608:
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Alternativ e solution if order doesnot matter on numerator and denominator:
(much harder method)

P(A) =

�
10
5

�
45

�
40
5

� :

This works becausethere are
� 10

5

�
ways of choosing5 di�eren t designsfrom 10,

and there are 4 choicesof card within each of the 5 chosengroups. Sothe total
number of ways of choosing 5 cards of di�eren t designsis

� 10
5

�
45. The total

number of ways of choosing5 cardsfrom 40 is
� 40

5

�
.

Exer cise: Check that this givesthe sameanswer for P(A) as before.

Note: Problemslike thesebelongto the branch of mathematicscalled
Combinatorics: the scienceof counting.

1.16 Statistical Indep endence

Two events A and B are statistically independent if theoccurrenceof onedoes
nota� ecttheoccurrenceof theother.

This means P(A j B) = P(A) and P(B j A) = P(B).

Now P(A j B) =
P(A \ B)

P(B)
,

soif P(A j B) = P(A) then P(A \ B) = P(A) � P(B).

We usethis as our de�nition of statistical independence.

De�nition: Events A and B are statistically indep endent if

P(A \ B) = P(A)P(B):
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For more than two events, we say:

De�nition: Events A1; A2; : : : ; An are mutually indep endent if

P(A1 \ A2 \ : : : \ An) = P(A1)P(A2) : : : P(An), AND

thesamemultiplicationruleholdsfor every subcollectionof theeventstoo.

Eg. eventsA1; A2; A3; A4 aremutuallyindependentif

i) P(A i \ A j ) = P(A i )P(A j ) for all i; j with i 6= j ;
AND

ii) P(A i \ A j \ Ak) = P(A i )P(A j )P(Ak) for all i; j; k thatareall di� erent;
AND

iii) P(A1 \ A2 \ A3 \ A4) = P(A1)P(A2)P(A3)P(A4).

Statistical indep endence for calculating the probabilit y of an in tersection

In section1.6 we said that it is often hard to calculateP(A \ B).

We usually have two choices.

1. IF A andB arestatisticallyindependent,then

P(A \ B) = P(A) � P(B):

2. If A andB arenotknown to bestatisticallyindependent,weusuallyhave to
useconditionalprobabilityandthemultiplicationrule:

P(A \ B) = P(A j B)P(B):

This still requiresus to be able to calculateP(A j B):

Note: If events are physically independent, then they will alsobe statistically
independent.
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Example: Tossa fair coin and a fair die together. The coin and die are physically

independent.

Samplespace:
 = f H 1; H 2; H 3; H 4; H 5; H 6; T1; T2; T3; T4; T5; T6g

- all 12 items are equally likely.

Let A= \heads" and B= \six".

Then P(A) = P(f H 1; H 2; H 3; H 4; H 5; H 6g) = 6
12 = 1

2

P(B) = P(f H 6; T6g) = 2
12 = 1

6

Now P(A \ B) = P(Headsand 6) = P(f H 6g) = 1
12

But P(A) � P(B) = 1
2 � 1

6 = 1
12 also,

So P(A \ B) = P(A)P(B) and thus A andB arestatisticallyindept.

Pairwise indep endence does not imply mutual indep endence

Example: A jar contains 4 balls: onered, onewhite, oneblue, and onered, white
& blue. Draw oneball at random.

Let A =\ball has red on it",
B =\ball haswhite on it",
C =\ball hasblue on it".

Two balls satisfy A, so P(A) = 2
4 = 1

2: Likewise,P(B) = P(C) = 1
2:

Pairwise indep endent:

Consider P(A \ B) = 1
4 (one of 4 balls hasboth red and white on it).

But, P(A) � P(B) = 1
2 � 1

2 = 1
4; so P(A \ B) = P(A)P(B):

Likewise,P(A \ C) = P(A)P(C); and P(B \ C) = P(B)P(C).

So A, B and C are pairwiseindependent.

Mutually indep endent?

Consider P(A \ B \ C) = 1
4 (one of 4 balls)

while P(A)P(B)P(C) = 1
2 � 1

2 � 1
2 = 1

8 6= P(A \ B \ C).

So A, B andC areNOT mutually independent,despitebeingpairwiseindepen-
dent.
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1.17 Random Variables

We have onemore job to do in laying the foundationsof our scienceof random-
ness.So far we have comeup with the following ideas:

1. `Things that happen' are sets,alsocalledevents.

2. We measurechanceby measuringsets,usinga measurecalledprobability.

Finally, what are the setsthat we are measuring?It is a nuisanceto have lots
of di�eren t samplespaces:


 = f head, tail g; 
 = f same,di�eren tg; 
 = f Lions win, All Blacks wing:

All of these sample spacescould be represented more concisely in terms of
numbers:


 = f 0; 1g:

On the other hand, therearemany randomexperiments that genuinely produce
randomnumbersastheir outcomes.

For example,the number of girls in a three-child family; the number of heads
from 10 tossesof a coin; and so on.

When the outcomeof a randomexperiment is anumber, it enablesusto quantify
many new things of interest:

1. quantify the averagevalue (e.g. the averagenumber of headswe would get
if we made10 coin-tossesagain and again);

2. quantify how much the outcomestend to divergefrom the averagevalue;

3. quantify relationshipsbetweendi�eren t randomquantities (e.g.is the num-
ber of girls related to the hormonelevelsof the fathers?)

The list is endless. To give us a framework in which theseinvestigationscan
takeplace,wegivea specialnameto randomexperiments that producenumbers
as their outcomes.

A randomexperimentwhosepossibleoutcomesare real numbersis called a
random variable .
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In fact, any random experiment can be made to have outcomesthat are real
numbers,simply by mappingthesamplespace
 ontoasetof realnumbersusing
a function.

For example: functionX : 
 ! R

X (\Lions win" ) = 0; X (\All Blacks win" ) = 1:

This givesus our formal de�nition of a random variable :

De�nition: A random variable (r.v.) is a functionfrom a samplespace
 to the
realnumbersR.
Wewrite X : 
 ! R.

Although this is the formal de�nition, the intuitiv e de�nition of a random vari-
able is probably more useful. Intuitiv ely, remember that a randomvariable
equatesto a randomexperimentwhoseoutcomesarenumbers.

A random variable producesrandom real numbers
as the `outcome'of a random experiment.

De�ning random variablesservesthe dual purposesof:

1. Describingmany di�eren t samplespacesin the sameterms:
e.g.
 = f 0; 1g with P(1) = p andP(0) = 1 � p describesEVERY possible
experimentwith two outcomes.

2. Giving a nameto a large classof random experiments that genuinely pro-
ducerandom numbers,and for which we want to develop generalrules for
�nding averages,variances,relationships,and soon.

Example: Tossa coin 3 times. The samplespaceis


 = f HHH, HHT, HTH, HTT, THH, THT, TTH, TTT g

One exampleof a random variable is X : 
 ! R suchthat,for samplepointsi ,
wehave X (si ) = # headsin outcomesi .

SoX (H H H ) = 3; X (TH T) = 1, etc.
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Another exampleis Y : 
 ! R suchthatY(si ) =
�

1 if 2ndtossis a head,
0 otherwise.

ThenY(H TH ) = 0, Y(TH H ) = 1, Y(H H H ) = 1, etc.

Probabilities for random variables

By convention, we use CAPITAL LETTERSfor random variables(e.g.X ), and
lower caselettersto represent the valuesthat the random variable takes (e.g.
x).

For a samplespace
 and randomvariable X : 
 ! R, and for a real number x,

P(X = x) = P(outcomes is suchthatX (s) = x) = P(f s : X (s) = xg).

Example: tossa fair coin 3 times. All outcomesare equally likely:
P(HHH) = P(HHT) = . . . = P(TTT) = 1/8.

Let X : 
 ! R, such that X (s) = # headsin s.

Then P(X = 0) = P(f TTTg) = 1=8:

P(X = 1) = P(f H TT; TH T; TTH g) = 3=8:

P(X = 2) = P(f H H T; H TH; TH H g) = 3=8:

P(X = 3) = P(f H H H g) = 1=8:

Notethat P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1.

Indep endent random variables

Random variablesX and Y are indep endent if eachdoesnot a� ecttheother.

Recall that two eventsA and B are independent if P(A \ B) = P(A)P(B):

Similarly, random variablesX and Y are de�ned to be independent if

P(f X = xg \ f Y = yg) = P(X = x)P(Y = y)

for all possiblevaluesx andy.
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We usually replacethe cumbersomenotation P(f X = xg \ f Y = yg) by the
simpler notation P(X = x; Y = y).

From now on, we will usethe following notations interchangeably:

P(f X = xg \ f Y = yg) = P(X = x AND Y = y) = P(X = x; Y = y):

Thus X andY areindependentif andonly if

P(X = x; Y = y) = P(X = x)P(Y = y) for ALL possiblevaluesx, y.
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1.18 Key Probabilit y Results for Chapter 1

1. If A and B are mutually exclusiv e (i.e. A \ B = ; ), then

P(A [ B) = P(A) + P(B):

2. Conditional probability: P(A j B) =
P(A \ B)

P(B)
for any A, B .

Or: P(A \ B) = P(A j B)P(B):

3. For any A, B , we can write

P(A j B) =
P(B j A)P(A)

P(B)
:

This is a simpli�ed versionof Bayes' Theorem. It shows how to `invert' the conditioning,
i.e. how to �nd P(A j B) when you know P(B j A).

4. Bayes' Theoremslightly more generalized:

for any A, B ,

P(A j B) =
P(B j A)P(A)

P(B j A)P(A) + P(B j A)P(A)
:

This works becauseA and A form a partition of the samplespace.

5. Completeversionof Bayes' Theorem:

If sets A1; : : : ; Am form a partition of the sample space, i.e. they do not overlap
(mutually exclusive) and collectiv ely cover all possible outcomes (their union is the
samplespace),then

P(A j j B ) =
P(B j A j )P(A j )

P(B j A1)P(A1) + : : : + P(B j Am )P(Am )

=
P(B j A j )P(A j )P m
i=1 P(B j A i )P(A i )

:
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6. Partition Theorem: if A1; : : : ; Am form a partition of the samplespace,then

P(B) = P(B \ A1) + P(B \ A2) + : : : + P(B \ Am ) :

This can alsobe written as:

P(B) = P(B j A1)P(A1) + P(B j A2)P(A2) + : : : + P(B j Am )P(Am ) :

Theseare both very useful formulations.

7. Chains of events:

P(A1 \ A2 \ A3) = P(A1) P(A2 j A1) P(A3 j A2 \ A1) :

8. Statistical independence:

if A and B are indep endent , then

P(A \ B) = P(A) P(B)

and
P(A j B) = P(A)

and
P(B j A) = P(B) :

9. Conditional probability:

If P(B) > 0, then we can treat P(� j B ) just like P:

e.g. if A1 and A2 are mutually exclusive, then P(A1 [ A2 j B ) = P(A1 j B ) + P(A2 j B )
(comparewith P(A1 [ A2) = P(A1) + P(A2));

if A1;: : : ;Am partition the samplespace,then P(A1 j B ) + P(A2 j B ) + : : :+ P(Am j B ) = 1;

and P(A j B) = 1 � P(A j B) for any A.

(Note: it is not generallytrue that P(A j B) = 1 � P(A j B).)

The fact that P(� j B ) is a valid probability measureis easily veri�ed by checking that it
satis�es Axioms 1, 2, and 3.

10. Unions: For any A, B , C,

P(A [ B) = P(A) + P(B) � P(A \ B) ;

P(A [ B [ C) = P(A) + P(B) + P(C) � P(A \ B) � P(A \ C) � P(B \ C) + P(A \ B \ C) :

The secondexpressionis obtainedby writing P(A[ B [ C) = P
�

A [ (B [ C)
�

and applying

the �rst expressionto A and (B [ C), then applying it again to expandP(B [ C).
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Chapter 2: Discrete Probabilit y

Distributions

2.1 In tro duction

In the next two chapters we meet several important concepts:

1. Probabilit y distributions, and the probabilit y function f X (x):

� the pr obability function of a randomvariable lists the valuesthe random
variable can take, and their probabilities.

2. Hypothesistesting:

� I toss a coin ten times and get nine heads. How unlikely is that? Can we
continue to believe that the coin is fair when it producesnine headsout
of ten tosses?

3. Likelihood and estimation:

� what if we know that our random variable is (say) Binomial(5; p), for some
p, but we don't know the value of p? We will seehow to estimate the
value of p using maximum likelihood estimation.

4. Expectation and varianceof a random variable:

� the expectation of a random variable is the value it takesonaverage.
� the varianc e of a randomvariablemeasureshow much the randomvariable

variesaboutits average.

5. Changeof variable procedures:

� calculating probabilities and expectations of g(X ), where X is a random
variable and g(X ) is a function, e.g.g(X ) =

p
X or g(X ) = X 2.

6. Modelling:

� we have a situation in real life that we know is random. But what does
the randomnesslook like? Is it highly variable, or little variabilit y? Does
it sometimesgive results much higher than average,but never give results
much lower (long-tailed distribution)? Wewill seehow di�eren t probabilit y
distributions are suitable for di�eren t circumstances.Choosinga probabil-
it y distribution to �t a situation is called modelling.
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2.2 The probabilit y function, f X (x )

The probabilit y function f X (x) lists all possiblevaluesof X ,
and givesa probabilit y to each value.

Recall that a random variable, X , assignsa real number to every possible
outcomeof a random experiment. The random variable is discreteif thesetof
realvaluesit cantake is �nite or countable,eg. f 0,1,2,.. .g.

Ferrari

Porsche

MG...

Random exp erimen t: whichcar?

Random variable: X .

X givesnumbersto the possibleoutcomes.

If he chooses.. .

8
<

:

Ferrari ) X = 1
Porsche ) X = 2

MG ) X = 3

De�nition: The probabilit y function, f X (x), for adiscreterandomvariableX , is
givenby,

f X (x) = P(X = x); for all possibleoutcomesx of X .

Example: Which car?

Outcome: Ferrari Porsche MG
x 1 2 3

Probabilit y function, f X (x) = P(X = x) 1
6

1
6

4
6

We write: P(X = 1) = f X (1) = 1
6: theprobabilityhemakeschoice1 (a Ferrari)

is 1
6.
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We can alsowrite the probabilit y function as: f X (x) =

8
>><

>>:

1=6 if x = 1;
1=6 if x = 2;
4=6 if x = 3;
0 otherwise:

Example: Tossa fair coin once,and let X =number of heads.Then

X =
�

0 with probabilit y 0.5,
1 with probabilit y 0.5.

The probabilit y function of X is given by:

x 0 1
f X (x) = P(X = x) 0.5 0.5

or f X (x) =

8
<

:

0:5 if x=0
0:5 if x=1
0 otherwise

Wewrite (eg.) f X (0) = 0:5; f X (1) = 0:5; f X (7:5) = 0, etc.

f X (x) is just a list of probabilities.

Prop erties of the probabilit y function

i) 0 � f X (x) � 1 for all x; probabilitiesarealwaysbetween0 and1.

ii)
P

x
f X (x) = 1; probabilitiesaddto 1 overall.

iii) P (X 2 A) =
P

x2A
f X (x);

e.g. in the car example,

P(X 2 f 1; 2g) = P(X = 1 or 2) = P(X = 1) + P(X = 2) = 1
6 + 1

6 = 2
6.

This is theprobabilityof choosingeithera Ferrarior a Porsche.
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2.3 Bernoulli trials

Many of the discreterandomvariablesthat wemeet
are basedon counting the outcomesof a seriesof
trials calledBernoulli trials. JacquesBernoulli was
a Swissmathematician in the late 1600s. He and
his brother Jean,who werebitter rivals, both stud-
ied mathematicssecretlyagainst their father's will.
Their father wanted Jacquesto be a theologist and
Jean to be a merchant.

De�nition: A random experiment is called a set of Bernoulli trials if it consists
of severaltrialssuchthat:

i) Eachtrial hasonly 2 possibleoutcomes(usuallycalled“Success”and“Fail-
ure”);

ii) Theprobabilityof success,p, remainsconstantfor all trials;

iii) Thetrials areindependent,ie. theevent“successin trial i” doesnot depend
on theoutcomeof any othertrials.

Examples: 1) Repeated tossing of a fair coin: eachtossis a Bernoulli trial with
P(success) = P(head) = 1

2:

2) Repeated tossingof a fair die: success= “6”, failure= “not 6”. Eachtossis
aBernoulli trial with P(success) = 1

6.

De�nition: The random variable Y is called a Bernoulli random variable if it
takesonly 2 values,0 and1.

Theprobabilityfunctionis,

f Y (y) =
�

p if y = 1
1 � p if y = 0

Thatis,

P(Y = 1) = P(“success”) = p;

P(Y = 0) = P(“f ailure”) = 1 � p:
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2.4 Example of the probabilit y function: the Binomial Distribution

The Binomial distribution counts the number of successes
in a �xed num ber of Bernoulli trials.

De�nition: Let X bethenumberof successesin n independentBernoulli trials each
with probability of success= p. Then X hasthe Binomial distributionwith
parametersn andp. Wewrite X � Bin(n; p), or X � Binomial(n; p).

ThusX � Bin(n; p) if X is the numberof successesout of n independent
trials,eachof whichhasprobabilityp of success.

Probabilit y function

If X � Binomial(n; p), then the probabilit y function for X is

f X (x) = P(X = x) =
�

n
x

�
px(1 � p)n� x for x = 0; 1; : : : ; n

Explanation:

An outcomewith x successesand(n � x) failureshasprobability,

px
|{z}
(1)

(1 � p)n� x
| {z }

(2)

where:
(1) succeedsx times,eachwith probabilityp
(2) fails (n � x) times,eachwith probability(1 � p).
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Thereare
�

n
x

�
possibleoutcomeswith x successesand(n � x) failuresbecause

wemustselectx trials to beour “successes”,outof n trials in total.

Thus,

P(#successes= x) = (#outcomeswith x successes) � (prob. of eachsuchoutcome)

=
�

n
x

�
px(1 � p)n� x

Note:

f X (x) = 0 if x =2 f 0; 1; 2; : : : ; ng:

Check that
nX

x=0

f X (x) = 1:

nX

x=0

f X (x) =
nX

x=0

�
n
x

�
px(1 � p)n� x = [p + (1 � p)]n (BinomialTheorem)

= 1n = 1

It is this connectionwith the Binomial Theorem that givesthe Binomial Dis-
tribution its name.
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Example 1: Let X � Binomial(n = 4; p = 0:2). Write down the probabilit y

function of X .

x 0 1 2 3 4
f X (x) = P(X = x) 0.4096 0.4096 0.1536 0.0256 0.0016

Example 2: Let X be the number of times I get a `6' out of 10 rolls of a fair die.

1. What is the distribution of X ?

2. What is the probabilit y that X � 2?

1. X � Binomial(n = 10; p = 1=6):

2.

P(X � 2) = 1 � P(X < 2)

= 1 � P(X = 0) � P(X = 1)

= 1 �
�

10
0

� �
1
6

� 0 �
1 �

1
6

� 10� 0

�
�

10
1

� �
1
6

� 1 �
1 �

1
6

� 10� 1

= 0:515:

Example 3: Let X be the number of girls in a three-child family. What is the
distribution of X ?

Assume:

(i) eachchild is equallylikely to beaboy or agirl;

(ii) all childrenareindependentof eachother.

ThenX � Binomial(n = 3; p = 0:5):
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Shape of the Binomial distribution

The shapeof the Binomial distribution dependsupon the valuesof n and p. For
small n, the distribution is almost symmetrical for valuesof p closeto 0.5, but
highly skewed for valuesof p closeto 0 or 1. As n increases,the distribution
becomesmore and more symmetrical, and there is noticeableskew only if p is
very closeto 0 or 1.

The probabilit y functions for various valuesof n and p are shown below.
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PSfrag replacements

n = 10, p = 0:5 n = 10, p = 0:9 n = 100,p = 0:9

Sum of indep endent Binomial random variables:

If X and Y are independent, and X � Binomial(n; p), Y � Binomial(m; p),
then

X + Y � Bin(n + m; p).

This is becauseX counts the number of successesout of n trials, and Y counts
the number of successesout of m trials: so overall, X + Y counts the total
number of successesout of n + m trials.

Note: X and Y must both sharethesamevalueof p.



60
2.5 The cum ulativ e distribution function, FX (x )

We have de�ned the probabilityfunction,f X (x), as f X (x) = P(X = x).

The probabilit y function tells us everything there is to know about X .

The cumulative distribution function, or just distribution function, written as
FX (x), is an alternative function that also tells us everything there is to know
about X .

De�nition: The(cumulative) distribution function(c.d.f.) is

FX (x) = P(X � x) for � 1 < x < 1

If you areaskedto `givethe distribution of X ', you couldanswer by giving either
the distribution function, FX (x), or the probabilit y function, f X (x). Each of
thesefunctions encapsulateall possibleinformation about X .

The distribution function FX (x ) as a probabilit y sweeper

The cumulative distribution function, FX (x),

sweepsupall theprobabilityup to andincludingthepointx.
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Example: Let X � Binomial(2; 1
2).

x 0 1 2

f X (x) = P(X = x) 1
4

1
2

1
4

Then FX (x) = P(X � x) =

8
>><

>>:

0 if x < 0
0:25 if 0 � x < 1
0:25+ 0:5 = 0:75 if 1 � x < 2
0:25+ 0:5 + 0:25= 1 if x � 2:

PSfrag replacements

0

0

1

1

1

2

2

1
4

1
4

1
2

1
2

3
4

x

x

f (x)

F (x)

FX (x) givesthe cumulative probabilityup to andincludingpointx.

So
FX (x) =

X

y� x

f X (y)

Note that FX (x) is a step function : it jumps by amount f X (y) at every point
y with positive probabilit y.
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Reading o� probabilities from the distribution function

As well as using the probabilit y function to �nd the distribution function, we
can alsousethe distribution function to �nd probabilities.

f X (x) = P(X = x) = P(X � x) � P(X � x � 1) (if X takesintegervalues)

= FX (x) � FX (x � 1):

This is why the distribution function FX (x) contains as much information as
the probabilit y function, f X (x), becausewe canuseeither oneto �nd the other.

In general:

P(a < X � b) = FX (b) � FX (a) if b> a.

Pro of: P(X � b) = P(X � a) + P(a < X � b)

PSfrag replacements
a b

X � b

a < X � bX � a

So

FX (b) = FX (a) + P(a < X � b)

) FX (b) � FX (a) = P(a < X � b):



Warning: endp oin ts

Be careful of endpoints and the di�erence between� and < .
For example,
P(X < 10) = P(X � 9) = FX (9):

Examples: Let X � Binomial(100; 0:4). In terms of FX (x), what is:

1. P(X � 30)? FX (30):

2. P(X < 30)? FX (29):

3. P(X � 56)?

1 � P(X < 56) = 1 � P(X � 55) = 1 � FX (55):

4. P(X > 42)?
1 � P(X � 42) = 1 � FX (42):

5. P(50 � X � 60)?

P(X � 60) � P(X � 49) = FX (60) � FX (49):

Prop erties of the distribution function

1) F (�1 ) = P(X � �1 ) = 0.

F (+ 1 ) = P(X � + 1 ) = 1.

(Theseare true becausevaluesare strictly between�1 and 1 ).

2) FX (x) is a non-decreasingfunction of x: that is,

if x1 < x2, then FX (x1) � FX (x2):

3) P(a < X � b) = FX (b) � FX (a) if b> a.

4) F is right-continuous: that is, limh#0 F (x + h) = F (x).
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2.6 Hyp othesis testing

You have probably comeacrossthe idea of hypothesistests, p-values,and sig-
ni�cance in other courses. Common hypothesis tests include t-tests and chi-
squaredtests. However, hypothesis tests can be conducted in much simpler
circumstancesthan these. The conceptof the hypothesistest is at its easiestto
understandwith the Binomial distribution in the following example. All other
hypothesistests throughout statistics are basedon the sameidea.

Example: Weird Coin?

H

H

I tossa coin 10 times and get 9 heads.How weird is that?

What is `weird' ?

� Getting 9 headsout of 10 tosses:we'll call this weird.

� Getting 10 headsout of 10 tosses:evenmoreweird!

� Getting 8 headsout of 10 tosses:lessweird.

� Getting 1 head out of 10 tosses: sameasgetting9 tails out of 10 tosses:
justasweirdas9 headsif thecoin is fair.

� Getting 0 headsout of 10 tosses:sameasgetting10 tails: moreweird than
9 headsif thecoin is fair.

Set of weird outcomes

If our coin is fair, the outcomesthat are as weir d or weir der than 9 heads
are:

9 heads,10heads,1 head,0 heads.

So how weird is 9 heads or worse, if the coin is fair?

We can add the probabilities of all the outcomesthat are at least as weir d
as 9 headsout of 10 tosses,assumingthat the coin is fair.

Distribution of X , if the coin is fair: X � Binomial(n = 10; p = 0:5):
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Probabilit y of observing something at least as weird as 9 heads,

if the coin is fair:

P(X = 9)+ P(X = 10)+ P(X = 1)+ P(X = 0) where X � Binomial(10; 0:5):

Probabilities for Binomial( n = 10, p = 0:5)
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For X � Binomial(10; 0:5), we have:

P(X = 9) + P(X = 10) + P(X = 1) + P(X = 0) =
�

10
9

�
(0:5)9(0:5)1 +

�
10
10

�
(0:5)10(0:5)0 +

�
10
1

�
(0:5)1(0:5)9 +

�
10
0

�
(0:5)0(0:5)10

= 0:00977+ 0:00098+ 0:00977+ 0:00098

= 0:021:

Is this weird?

Yes,it is quite weird. If wehad a fair coin and tossedit 10 times, wewould only
expect to seesomethingas extremeas 9 headson about 2.1%of occasions.
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Is the coin fair?

Obviously, we can't say. It might be: after all, on 2.1% of occasionsthat you
tossa fair coin 10 times, you do get somethingasweird as9 headsor more.

However, 2.1%is a small probabilit y, so it is still very unusual for a fair coin to
producesomethingas weird as what we've seen. If the coin really was fair, it
would be very unusual to get 9 headsor more.

We can deducethat, EITHERwehaveobservedaveryunusualeventwith a fair
coin,ORthecoin is not fair.

In fact, this givesus someevidencethatthecoin is not fair.

The value 2.1% measuresthestrengthof our evidence.Thesmallerthis proba-
bility, themoreevidencewehave.

Formal hyp othesis test

We now formalize the procedureabove. Think of the steps:

� We have a questionthat we want to answer: Is thecoin fair?

� There are two alternatives:
1. Thecoin is fair.
2. Thecoin is not fair.

� Our observed information is X , the number of headsout of 10 tosses.We
write down the distribution of X if the coin is fair:
X � Binomial(10; 0:5):

� We calculate the probabilit y of observingsomethingAT LEAST AS EX-
TREMEasourobservation,X = 9, if thecoin is fair: prob=0.021.

� The probabilit y is small (2.1%). We concludethat this is unlikely with a
fair coin, so wehave observedsomeevidencethatthecoin is NOT fair.
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Null hyp othesis and alternativ e hyp othesis

We expressthe stepsabove as two competing hypotheses.

Null hyp othesis: the�rst alternative, thatthecoin IS fair.

We expectto believe thenull hypothesisunlesswe seeconvincing evidencethat
it is wrong.

Alternativ e hyp othesis: thesecondalternative, thatthecoin is NOT fair.

In hypothesistesting, we often usethis sameformulation.

� The null hypothesisis speci�c.

It speci�esanexactdistribution for our observation: X � Binomial(10; 0:5):

� The alternative hypothesisis general.

It simply states that the null hypothesis is wrong. It does not say what
the right answer is.

We useH0 andH1 to denotethe null and alternative hypothesesrespectively.

The null hypothesisis H0 : thecoin is fair.
The alternative hypothesisis H1 : thecoin is NOT fair.

More precisely, we write:

Numberof heads,X � Binomial(10; p);

and

H0 : p = 0:5

H1 : p 6= 0:5:

Think of `null hypothesis' as meaning the `default': the hypothesis we will
acceptunlesswe have a good reasonnot to.
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p-values

In the hypothesis-testingframework above,wealwaysmeasureevidenceAGAINST
thenull hypothesis.

That is, we believe that our coin is fair unless we seeconvincing evidence
otherwise.

We measurethe strength of evidenceagainst H0 using the p-value.

In the exampleabove, the p-value wasp = 0:021:

A p-value of 0.021represents quitestrongevidenceagainstthenull hypothesis.

It statesthat, if the null hypothesisis TRUE, wewould only havea2.1%chance
of observingsomethingasextremeas9 headsor tails.

Many of us would seethis as strong enoughevidenceto decidethat the null
hypothesisis not true.

In general,the p-value is theprobabilityof observingsomethingAT LEAST AS
EXTREMEAS OUROBSERVATION, if H0 is TRUE.

This meansthat SMALL p-valuesrepresentSTRONG evidenceagainstH 0.

Smallp-valuesmeanStrongevidence.
Large p-valuesmeanLittle evidence.

Note: Be careful not to confusethe term p-value, which is 0:021 in our exam-
ple, with the Binomial probabilit y p. Our hypothesis test is designedto test
whether the Binomial probabilit y is p = 0:5. To test this, we calculate the
p-value of 0.021as a measureof the strength of evidenceagainst the hypoth-
esisthat p = 0:5.
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In terpreting the hyp othesis test

Therearedi�eren t schoolsof thought about how a p-valueshouldbeinterpreted.

� Most peopleagreethat the p-value is a usefulmeasureof the str ength of
evidenc e against the nul l hypothesis . The smaller the p-value, the
stronger the evidenceagainst H0.

� Somepeoplego further and use an accept/r eject fr amework. Under
this framework, the null hypothesisH0 should be rejected if the p-value is
lessthan 0.05(say), and accepted if the p-value is greater than 0.05.

� In this course we use the str ength of evidenc e interpretation. The
p-value measureshow far out our observation lies in the tails of the dis-
tribution speci�ed by H0. We do not talk about accepting or rejecting
H0. This decisionshouldusually be taken in the context of other scienti�c
information.

However, it is worth bearing in mind that p-valuesof 0.05 and lessstart
to suggestthat the null hypothesisis doubtful.

Statistical signi�cance

You have probably encountered the idea of statistic al signi�c ance in other
courses.

Statisticalsigni�cancerefersto thep-value.

The result of a hypothesistest is signi�c ant at the 5% level if the p-value
is lessthan0.05.

This meansthat thechanceof seeingwhatwedid see(9 heads),or more,is less
than5%if thenull hypothesisis true.

Saying the test is signi�c ant is a quick way of saying that there is evidence
against the null hypothesis,usually at the 5% level.
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In the coinexample,wecansay that our test of H0 : p = 0:5 againstH1 : p 6= 0:5
is signi�cant at the5%level, becausethep-valueis 0.021which is < 0:05.

This means:

� wehave someevidencethatp 6= 0:5.

It doesnot mean:

� the di�erence betweenp and 0.5 is large,or

� the di�erence betweenp and 0.5 is importantin practicalterms.

Statistically signi�cant meansthat we have evidencethat

thereIS adi� erence.It saysNOTHING abouttheSIZE,

or theIMPORTANCE, of thedi� erence.

Bew are!

The p-value gives the probabilityof seeingsomethingasweird aswhatwe did
see,if H0 is true.

This meansthat 5%of thetime,wewill getap-value< 0:05EVEN WHEN H 0

IS TRUE!!

Indeed,about oncein every thousandtests, we will get a p-value < 0:001,even
though H0 is true!

A smallp-valuedoesNOT meanthatH0 is de�nitely wrong.

One-sided and two-sided tests

The test above is a two-sidedtest. This meansthat we consideredit just as
weird to get9 tails as9 heads.

If we had a good reason,befor e tossingthe coin, to believe that the binomial
probabilit y could only be = 0:5 or > 0:5, i.e. that it would be imp ossible
to have p < 0:5, then we could conduct a one-sidedtest: H 0 : p = 0:5 versus
H1 : p > 0:5.

This would have the e�ect of halving the resultant p-value.
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2.7 Example: Presiden ts and deep-sea div ers

Men in the class: would you like to have daughters? Then becomea deep-sea
diver, a �gh ter pilot, or a heavy smoker.

Would you prefer sons?Easy!
Just becomea US president.

Numberssuggestthat men in di�eren t
professionstend to have more sonsthan
daughters, or the reverse.Presidents have
sons,�gh ter pilots have daughters. But is it real, or just chance?We can use
hypothesistests to decide.

The facts

� The 43 US presidents from GeorgeWashington to GeorgeW. Bush have
had a total of 151 children, comprising 88 sonsand only 63 daughters: a
sexratio of 1.4 sonsfor every daughter.

� Two studies of deep-seadivers revealedthat the men had a total of 190
children, comprising65sonsand125daughters: a sexratio of 1.9daughters
for every son.

Could this happ en by chance?

Is it possiblethat the men in each group reallyhada50-50chanceof producing
sonsanddaughters?

This is the sameas the question in Section2.6.

For the presiden ts: If I tossedacoin151timesandgotonly 63heads,could
I continueto believe thatthecoinwasfair?

For the div ers: If I tosseda coin 190 times and got only 65 heads,could I
continue to believe that the coin was fair?
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Hyp othesis test for the presiden ts

We set up the competing hypothesesas follows.

Let X bethenumberof daughtersoutof 151presidentialchildren.

ThenX � Binomial(151; p), wherep is theprobabilitythateachchild is adaugh-
ter.

Null hyp othesis: H0 : p = 0:5.

Alternativ e hyp othesis: H1 : p 6= 0:5.

p-value: We needtheprobabilityof gettinga resultAT LEAST
AS EXTREMEasX = 63daughters,if H0 is true
andp really is 0.5.

Whic h results are at least as extreme as X = 63?

X = 0; 1; 2; : : : ; 63, for evenfewerdaughters.

X = (151� 63); : : : ; 151, for too many daughters,becausewe would be just as
surprisedif wesaw � 63sons,i.e. � (151� 63) = 88daughters.

Probabilities for X � Binomial (n = 151; p = 0:5)
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Calculating the p-value

The p-value for the president problem is given by

P(X � 63)+ P(X � 88) whereX � Binomial(151; 0:5).

In principle, we could calculate this as

P(X = 0) + P(X = 1) + : : : + P(X = 63)+ P(X = 88)+ : : : + P(X = 151)

=
�

151
0

�
(0:5)0(0:5)151 +

�
151
1

�
(0:5)1(0:5)150+ : : :

This would take a lot of calculator time! Instead, we use a computer with a
packagesuch asR.

R command for the p-value

The R commandfor calculating the lower-tail p-valuefor the
Binomial(n = 151; p = 0:5) distribution is

pbinom(63, 151, 0.5) .

Typing this in R gives:

> pbinom(63, 151, 0.5)
[1] 0.02522393

This givesus the lower-tail p-valueonly:
P(X � 63) = 0:0252.
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To get the overall p-value, we have two choices:

1. Multiply thelower-tail p-valueby 2:

2 � 0:0252= 0:0504:

In R:

> 2 * pbinom(63, 151, 0.5)
[1] 0.05044785
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This works becausethe upper-tail p-value, by de�nition, is always going
to be the same as the lower-tail p-value. The upper tail gives us the
probabilit y of �nding somethingequally surprising at the opposite end of
the distribution.

2. Calculate the upper-tail p-value explicitly:

Theupper-tail p-valueis

P(X � 88) = 1 � P(X < 88)

= 1 � P(X � 87)

= 1 � pbinom(87, 151, 0.5) :

In R:

> 1-pbinom(87, 151, 0.5)
[1] 0.02522393

The overall p-value is the sumof the lower-tail and the upper-tail p-values:

pbinom(63, 151, 0.5) + 1 - pbinom(87, 151, 0.5)

= 0:0252+ 0:0252= 0:0504: (Sameasbefore.)

Note: The R commandpbinomis equivalent to the cumulativedistributionfunction
for the Binomial distribution:

pbinom(63, 151, 0.5) = P(X � 63) whereX � Binomial(151; 0:5)

= FX (63) for X � Binomial(151; 0:5):

The overall p-value in this exampleis 2 � FX (63).

Note: In the R commandpbinom(63, 151, 0.5) , the order that you enter the
numbers63,151,and0.5is important. If you enter them in a di�eren t order, you
will get an error. An alternativeis to usethe longhandcommandpbinom(q=63,
size=151, prob=0.5) , in which caseyou can enter the terms in any order.
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Summary: are presiden ts more lik ely to have sons?

Back to our hypothesistest. Recall that X wasthe number of daughters out of
151presidential children, and X � Binomial(151; p), wherep is the probabilit y
that each child is a daughter.

Null hyp othesis: H0 : p = 0:5.

Alternativ e hyp othesis: H1 : p 6= 0:5.

p-value: 2 � FX (63) = 0:0504:

What does this mean?

The p-value of 0.0504meansthat, if thepresidentsreallywereaslikely to have
daughtersassons,therewould only be5.04%chanceof observingsomethingas
unusualasonly 63daughtersoutof thetotal 151children.

This is unusual, but not extremely unusual.

We concludethat thereis someevidencethatpresidentsaremorelikely to have
sonsthandaughters.However, theobservationsarealsoconsistentwith thepos-
sibility thatthereis no realdi� erence.

Hyp othesis test for the deep-sea div ers

For the deep-seadivers, there were190children: 65 sons,and 125daughters.

Let X be the numberof sonsout of 190diver children.

Then X � Binomial(190; p), wherep is theprobabilitythateachchild is a son.

Note: We could just as easily formulate our hypothesesin terms of daughters
insteadof sons.Becausepbinomis de�ned asa lower-tail probabilit y, however,
it is usually easiestto formulate them in terms of the low result (sons).
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Null hyp othesis: H0 : p = 0:5.

Alternativ e hyp othesis: H1 : p 6= 0:5.

p-value: Probabilityof gettinga resultAT LEAST
AS EXTREMEasX = 65sons,if H0 is true
andp really is 0.5.

Resultsat least as extremeasX = 65 are:

X = 0; 1; 2; : : : ; 65, for evenfewersons.

X = (190� 65); : : : ; 190, for theequallysurprisingresultin theoppositedirection
(toomany sons).

Probabilities for X � Binomial (n = 190; p = 0:5)
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R command for the p-value

p-value= 2� pbinom(65, 190, 0.5) .

Typing this in R gives:

> 2*pbinom(65, 190, 0.5)
[1] 1.603136e-05

This is 0.000016,or a little more than onechancein 100thousand.



77
We concludethat it is extremelyunlikely that this observation could have oc-
curredby chance,if the deep-seadivershadequalprobabilitiesof having sons
anddaughters.

We haveverystrongevidencethatdeep-seadiversaremorelikely to havedaugh-
tersthansons.

What next?

p-valuesareoften badly usedin scienceand business.They areregularly treated
as the end point of an analysis, after which no more work is needed. Many
scienti�c journals insist that scientists quote a p-value with every set of results,
and often only p-valueslessthan 0.05areregardedas`interesting'. The outcome
is that somescientists do every analysisthey canthink of until they �nally come
up with a p-value of 0.05or less.

A good statistician will recommenda di�eren t attitude. It is veryrarein science
for numbersandstatisticsto tell usthefull story.

Results like the p-value should be regardedas an investigative starting point,
rather than the �nal conclusion. Why is the p-value small? What possible
mechanismcould there be for producing this result?

If you were a medic al statistician and you gave me a p-value, I
would ask you for amechanism.

Don't accept that Drug A is better than Drug B becausethe p-value says so:
�nd a biochemist who can explain what Drug A does that Drug B doesn't.
Don't accept that sun exposure is a causeof skin cancer on the basis of a
p-value: �nd a mechanism by which skin is damagedby the sun.

Wh y migh t div ers have daugh ters and presiden ts have sons?

Deep-seadivers are thought to have more daughters than sons becausethe
underwater work at high atmosphericpressurelowers the level of the hormone
testosteronein the men'sblood, which is thought to make them more likely to
conceive daughters. For the presidents, your guessis as good as mine . . .



2.8 Example: Politicians and the alphab et

What do the following peopleall have
in common: Bush, Blair, Clinton, Clark?

They are all electedpresidents or prime
ministers . . . and their namesare all
right at the beginningof the alphabet!

Zombie

Clark

Wombat

Mark choice

with an X Is it true that political candidateswith namesat
the beginning of the alphabet have an advantage
over other candidates,becausetheir namescomeat
the top of the list on the ballot cards?

The appropriate tool to useis
anotherhypothesistest.

For the 2001 UK general election, namesof all candidatesand the winning
candidatecan be found on the internet for 590constituencyseatsin England,
Wales,and Northern Ireland. (Results for Scotland did not include candidate
names.) Candidatesare listed on the voting paper in alphabetical order.

Each seat had three candidates. Candidates from minor parties such as the
Monster Raving Loony Party wereexcludedfor this analysis.

Of the 590 winning candidates,207 were alphabetically �rst of the three can-
didates in their constituency.

Is there any evidencethat there is an alphabetical advantage in the voting
process?

Hyp othesis test

Let X bethenumberof the590winnerswhoarealphabetically�rst.
We needto set up hypothesesof the following form:

Null hyp othesis: H0 : thereis noalphabeticaladvantage.

Alternativ e hyp othesis: H1 : thereis analphabeticaladvantage.
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What is the distribution of X under H0 and under H1?

UnderH0, thereis no alphabeticale� ect. So theprobability thateachwinner is
alphabetically�rst shouldbe1=3.

(Threecandidatesfor eachseat,eachwith thesameprobabilityof beingalpha-
betically�rst.)

Thus the distribution of X under H0 is X � Binomial(590; 1=3):

Under H1, there is an alphabetical e�ect, sop 6= 1=3.

Our formulation for the hypothesistest is thereforeas follows.

Numberof alphabet-�rstwinners,X � Binomial(590; p).

Null hyp othesis: H0 : p = 1=3.

Alternativ e hyp othesis: H1 : p 6= 1=3.

Our observation:

The observedproportion of winnerswho werealphabet-�rst is 207=590= 0:351.

This is a little morethanthe1=3 predictedby H0.

Is it su�cien tly greater than 1=3 to provide evidenceagainst H 0?

Just usingour intuition, it is very hard to guess.Weneedthep-valueto measure
theevidenceproperly.

p-value: Probabilityof gettinga resultAT LEAST
AS EXTREMEasX = 207alphabet-�rstwinners,if H0 is true
andp really is 1/3.

Resultsat least as extremeasX = 207are:

Uppertail: X = 207; 208; : : : ; 590, for evenmorealphabet-�rstwinners.

Lower tail: anequalprobability in theoppositedirection,for too few alphabet-
�rst winners.
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Note: We do not needto calculate the valuescorresponding to our lower-tail p-

value. It is more complicated in this examplethan in Section2.7, becausewe
do not have Binomial probabilit y p = 0:5. In fact, the lower tail probabilit y is
from 0 to somewherebetween185and 186,but it cannot be speci�ed exactly.

We get round this problem for calculating the p-value by just multiplying the
upper-tail p-valueby 2.

Probabilities for X � Binomial (n = 590; p = 1=3)
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R command for the p-value

We needtwice theUPPER-tailp-value:

p-value= 2 � (1� pbinom(206, 590, 1/3) ).
(RecallP(X � 207)= 1 � P(X � 206):)

Typing this in R gives:

2*(1-pbinom(20 6, 590, 1/3))
[1] 0.3897671

This p-value is large.

It meansthat if therereally wasno alphabeticaladvantage,we would expectto
seeresultsasunusualas207out of 590alphabet-�rstwinnersabout39%of the
time.

We concludethat thereis no evidencethat therewasanalphabeticaladvantage
in the2001UK election.
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Note: This does not mean that the alphabetical advantage does not exist! It

simply meansthat, from theevidencegiven, if an alphabeticaladvantagedoes
exist, wecannotdistinguishit from purechance.

The evidenceis consistent with both the possibility that there is no alphabetical
advantage, and that there is an alphabetical advantage that is too small to
distinguish from samplingvariabilit y.

2.9 Lik eliho od and estimation

Sofar, the hypothesistestshaveonly told uswhether the Binomial probabilit y p
might be, or probably isn't , equal to the value speci�ed in the null hypothesis.
They have told us nothing about the size,or potential importance, of the de-
parture from H0.

For example,for the deep-seadivers,we found that it wouldbeveryunlikely to
observe asmany as125daughtersout of 190childrenif thechanceof having a
daughterreallywasp = 0:5.

But what doesthis say about the actual value of p?

Remember the p-value for the test was0.000016.Do you think that:

1. p could be as big as 0.8?

No idea! Thep-valuedoesnot tell us.

2. p could be as closeto 0.5 as, say, 0.51?

The test doesn't even tell us this much! If therewas a hugesamplesize
(numberof children),we COULD geta p-valueassmallas0.000016even
if thetrueprobabilitywas0.51.

Common sense,however, givesus a hint. Becausethere were almost twice as
many daughters assons,my guessis that the probabilit y of a having a daughter
is somethingcloseto p = 2=3. We needsomeway of formalizing this.
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Estimation

The processof using observations to suggesta value for a parameter is called
estimation.

The value suggestedis called the estimateof the parameter.

In the caseof the deep-seadivers, we wish to estimate the probabilit y p that
the child of a diver is a daughter. The common-senseestimate to useis

p =
numberof daughters

totalnumberof children
=

125
190

= 0:658:

However, there are many situations where our common sensefails us. For
example,what would we do if we had a regression-model situation (seeother
courses)and wishedto specify an alternative form for p, such as

p = � + � � (diver age):

How would we estimate the unknown intercept � and slope � , given known
information on diver ageand number of daughters and sons?

We needa generalframework for estimation that can be applied to any situ-
ation. Probably the most useful and generalmethod of obtaining parameter
estimatesis the method of maximumlikelihoodestimation.

Lik eliho od

Likelihood is oneof the most important conceptsin statistics.
Return to the deep-seadiver example.

X is the numberof daughtersoutof 190children.

We know that X � Binomial(190; p),

and we wish to estimate the value of p.

The available data is the observed value of X : X = 125.
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Suppose for a moment that p = 0:5. What is the probabilit y of observing
X = 125?

WhenX � Binomial(190; 0:5),

P(X = 125) =
�

190
125

�
(0:5)125(1 � 0:5)190� 125

= 3:97� 10� 6:

Not very likely!!

What about p = 0:6? What would be the probabilit y of observingX = 125 if
p = 0:6?

WhenX � Binomial(190; 0:6),

P(X = 125) =
�

190
125

�
(0:6)125(1 � 0:6)190� 125

= 0:016:

Thisstill looksquiteunlikely, but it is almost4000timesmorelikely thangetting
X = 125whenp = 0:5.

So far, we have discovered that it would be thousandsof timesmorelikely to
observe X = 125if p = 0:6 thanit wouldbeif p = 0:5.

This suggeststhat p = 0:6 is a betterestimatethanp = 0:5.

You canprobably seewherethis is heading. If p = 0:6 is a better estimatethan
p = 0:5, what if we move p even closerto our common-senseestimateof 0.658?

WhenX � Binomial(190; 0:658),

P(X = 125) =
�

190
125

�
(0:658)125(1 � 0:658)190� 125

= 0:061:

This is evenmorelikely thanfor p = 0:6. Sop = 0:658is thebestestimateyet.
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Can we do any better? What happens if we increasep a little more, say to
p = 0:7?

WhenX � Binomial(190; 0:7),

P(X = 125) =
�

190
125

�
(0:7)125(1 � 0:7)190� 125

= 0:028:

This hasdecreasedfrom the result for p = 0:658, so our observation of 125 is
LESSlikely underp = 0:7 thanunderp = 0:658.

Overall, we can plot a graph showing how likely our observation of X = 125
is under each di�eren t value of p.
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The graph reachesa clearmaximum.Thisis avalueof p atwhichtheobservation
X = 125is MORELIKELY thanatany othervalueof p.

This maximum likeliho od value of p is our maximumlikelihoodestimate.

We can seethat the maximum occurs somewherecloseto our common-sense
estimateof p = 0:658.
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The lik eliho od function

Look at the graph we plotted overleaf:

Horizon tal axis: Theunknown parameter, p.

Vertical axis: Theprobabilityof our observation,X = 125, underthis value
of p.

This function is called the likelihoodfunction.

It is a function of theunknown parameterp.

For our �xed observation X = 125, the likelihood function shows how LIKELY
theobservation125is for every di� erentvalueof p.

The likelihood function is:

L(p) = P(X = 125)whenX � Binomial(190; p);

=
�

190
125

�
p125(1 � p)190� 125

=
�

190
125

�
p125(1 � p)65 :

This function of p is the curve shown on the graph on page84.

In general,if our observation wereX = x rather than X = 125, the likelihood
function is a functionof p giving P(X = x) whenX � Binomial(190; p).

We write:

L(p; x) = P(X = x) whenX � Binomial(190; p);

=
�

190
x

�
px(1 � p)190� x :
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Di�erence between the lik eliho od function and the probabilit y function

The likelihood function is a probabilityof x, but it is a FUNCTIONof p.

The likelihood givestheprobabilityof aFIXED observationx, for everypossible
valueof theparameterp.

Compare this with the probability function, which is the probability of every
di� erentvalueof x, for a FIXED valueof p.
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Likelihoodfunction,L(p; x). Probabilityfunction,f X (x):
Functionof p for �x edx. Functionof x for �x edp.
GivesP(X = x) asp changes. GivesP(X = x) asx changes.
(x = 125here, (p = 0:6 here,
but it couldbeanything.) but it couldbeanything.)

Maximizing the lik eliho od

We have decided that a sensibleparameter estimate for p is the maximum
likelihood estimate: the valueof p at which the observation X = 125 is more
likely thanatany othervalueof p.

We can �nd the maximum likelihood estimateusing calculus.
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The likelihood function is

L(p; 125)=
�

190
125

�
p125(1 � p)65:

We wish to �nd the value of p that maximizesthis expression.

To �nd the maximizing value of p, di� erentiatethelikelihoodwith respectto p:

dL
dp

=
�

190
125

�
�

n
125� p124 � (1 � p)65 + p125 � 65� (1 � p)64 � (� 1)

o

(ProductRule)

=
�

190
125

�
� p124 � (1 � p)64

n
125(1� p) � 65p

o

=
�

190
125

�
p124(1 � p)64

n
125� 190p

o
:

The maximizing value of p occurswhen

dL
dp

= 0:

This gives:

dL
dp

=
�

190
125

�
p124(1 � p)64

n
125� 190p

o
= 0

)
n

125� 190p
o

= 0

) p =
125
190

= 0:658:
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For the diver example,the maximum likelihood estimateof 125=190is thesame
asthecommon-senseestimate(page82):

p =
numberof daughters

totalnumberof children
=

125
190

:

This givesus con�dence that the method of maximum likelihood is sensible.

The `hat' notation for an estimate

It is conventional to write the estimatedvalue of a parameterwith a `hat', like
this: bp.

For example,

bp =
125
190

:

The correct notation for the maximization is:

dL
dp

�
�
�
�
p= bp

= 0 ) bp =
125
190

:

Summary of the maxim um lik eliho od pro cedure

1. Write down the distribution of X in terms of the unknown parameter:

X � Binomial(190; p):

2. Write down the observed value of X :

Observeddata:X = 125.

3. Write down the likelihood function for this observed value:

L(p; 125) = P(X = 125)whenX � Binomial(190; p)

=
�

190
125

�
p125(1 � p)65:
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4. Di�eren tiate the likelihood with respect to the parameter,and set to 0 for

the maximum:

dL
dp

=
�

190
125

�
p124(1 � p)64

n
125� 190p

o
= 0; whenp = bp:

This is the LikelihoodEquation.

5. Solve for bp:

bp =
125
190

:

This is the maximumlikelihoodestimate(MLE) of p.

Verifying the maxim um

Strictly speaking,when we �nd the maximum likelihood estimateusing

dL
dp

�
�
�
�
p= bp

= 0;

we should verify that the result is a maximum (rather than a minimum) by
showing that

d2L
dp2

�
�
�
�
p= bp

< 0:

In Stats 210,we will be relaxedabout this. You will usually be told to assume
that the MLE exists. Where possible,it is always best to plot the likelihood
function,asonpage84.

This con�rms that the maximum likelihood estimateexistsandis unique.

In particular, caremustbetakenwhentheparameterhasa restrictedrangelike
0 < p < 1 (seelater).
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Estimators

For the exampleabove, we had observation X = 125,and the maximum likeli-
hood estimateof p was

bp =
125
190

:

It is clear that we could follow through the sameworking with any value of X ,
which we can write as X = x, and we would obtain

bp =
x

190
:

Exer cise: Check this by maximizing the likelihood using x instead of 125.

This meansthat evenbefore wehavemadeour observation of X , wecanprovide
aRULE for calculatingthemaximumlikelihoodestimateonceX is observed:

Rule: Let
X � Binomial(190; p):

Whatevervalueof X weobserve, themaximumlikelihoodestimateof p will be

bp =
X

190
:

Note that this expressionis now a randomvariable: it dependson therandom
valueof X .

A randomvariablespecifyinghow an estimateis calculatedfrom an observation
is called anestimator.

In the exampleabove, themaximumlikelihoodestimaTORof p is

bp =
X

190
:

ThemaximumlikelihoodestimaTEof p, oncewehave observedthatX = x, is

bp =
x

190
:
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General maxim um lik eliho od estimator for Binomial( n; p)

Take any situation in which our observation X has the distribution

X � Binomial(n; p);

wheren is KNOWN andp is to beestimated.

We make a singleobservation X = x.

Follow the stepson page88 to �nd the maximum likelihood estimator for p.

1. Write down the distribution of X in terms of the unknown parameter:

X � Binomial(n; p):

(n is known.)

2. Write down the observed value of X :

Observeddata:X = x.

3. Write down the likelihood function for this observed value:

L(p; x) = P(X = x) whenX � Binomial(n; p)

=
�

n
x

�
px(1 � p)n� x:

4. Di�eren tiate the likelihood with respect to the parameter,and set to 0 for
the maximum:

dL
dp

=
�

n
x

�
px� 1(1 � p)n� x� 1

n
x � np

o
= 0; whenp = bp:

(Exercise)

5. Solve for bp:
bp =

x
n

:

This is the maximumlikelihoodestimateof p.
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The maximum likelihood estimator of p is

bp =
X
n

:

(Justreplacethe x in the MLE with an X , to convert from the estimateto the
estimator.)

By deriving the general maximum likelihood estimator for any problem of
this sort, we can plug in values of n and x to get an instant MLE for any
Binomial(n; p) problem in which n is known.

Example: Recall the alphabetic advantage problem in Section 2.8. Out of 590
winners, 207 were alphabetically �rst of the candidatesin the seat. Let p be
the probabilit y that a winning candidate is alphabetically �rst. What is the
maximum likelihood estimateof p?

Solution: Plugin thenumbersn = 590, x = 207:

themaximumlikelihoodestimateis

bp =
x
n

=
207
590

(0:351):

Note: We showed in Section2.8 that p wasnot signi�cantly di� erentfrom 1=3 =
0:333in thisexample.
However, the MLE of p is de�nitely di�eren t from 0:333.
This comesback to the meaningof signi�c antly di�er ent in the statistical sense.
Sayingthat p is not signi�cantly di� erentfrom 0:333 just meansthat we can't
DISTINGUISH any di� erencebetweenp and0:333from routinesamplingvari-
ability.

We expect that p probably IS di�eren t from 0:333, just by a little. The maxi-
mum likelihood estimategivesus the `best' estimateof p.

Note: Wehaveonly consideredthe classof problemsfor which X � Binomial(n; p)
and n is KNOWN. If n is not known, we have a harder problem: we have two
parameters,and oneof them (n) should only take discretevalues1; 2; 3; : : :.
We will not considerproblemsof this type in Stats 210.
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2.10 Random num bers and histograms

We often wish to generaterandom numbers from a given distribution. Statis-
tical packageslike R have custom-madecommandsfor doing this.

To generate(say) 100 random numbers from the Binomial(n = 190; p = 0:6)
distribution in R, we use:

rbinom(100, 190, 0.6)

or in long-hand,

rbinom(n=100, size=190, prob=0.6)

Caution: the R inputs n and size are the opposite to what you might expect:
n givesthe required samplesize,and size givesthe Binomial parametern!

Histograms

The usual graph usedto visualisea set of random numbers is the histogram.

The height of each bar of the histogramshowshow many of the randomnumbers
fall into the interval represented by the bar.

For example,if each histogram bar covers an interval of length 5, and if 24 of
the randomnumbersfall between105and 110,then the height of the histogram
bar for the interval (105, 110) would be 24.

Herearehistogramsfrom applyingthecommandrbinom(100, 190, 0.6) three
di� erenttimes.
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Each graph shows 100 randomnumbersfrom the Binomial(n = 190; p = 0:6)
distribution.
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Note: The histogramsabove have beenspecially adjusted so that each histogram

bar covers an interval of just one integer. For example, the height of the bar
plotted at x = 109 shows how many of the 100 randomnumbersareequalto
109.

Usually, histogram bars would cover a larger
interval, and the histogram would be smoother.
For example,on the right is a histogram using
the default settings in R, obtained from the
commandhist(rbinom(100 , 190, 0.6)) .

Each histogram bar coversan interval of
5 integers.

Histogram of rbinom(100, 190, 0.6)

rbinom(100, 190, 0.6)
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In all the histogramsabove, thesumof theheightsof all thebarsis 100,because
thereare100observations.

Histograms as the sample size increases

Histogramsare useful becausethey show theapproximateshapeof theunderly-
ing probabilityfunction.

They are alsouseful for exploring the e� ectof increasingsamplesize.

All the histogramsbelow have bars covering an interval of 1 integer.
They show how the histogram becomessmootherandlesserraticassamplesize
increases.

Eventually, with a largeenoughsamplesize,thehistogramstartsto look identical
to theprobabilityfunction.

Note: di�erence between a histogram and the probabilit y function

The histogram plots OBSERVED FREQUENCIESof asetof randomnumbers.

The probabilit y function plots EXACT PROBABILITIES for thedistribution.

The histogramshouldhavethesameshapeastheprobabilityfunction,especially
asthesamplesizegetslarge.
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2.11 Exp ectation

Given a random variable X that measuressomething,we often want to know
whatis theaverage valueof X ?

For example,hereare 30 random observations taken from the distribution
X � Binomial(n = 190; p = 0:6):

R command: rbinom(30, 190, 0.6)

116 116 117 122 111 112 114 120 112 102
125 116 97 105 108 117 118 111 116 121
107 113 120 114 114 124 116 118 119 120
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The average,or mean, of the �rst ten valuesis:

116+ 116+ : : : + 112+ 102
10

= 114:2:

The meanof the �rst twenty valuesis:

116+ 116+ : : : + 116+ 121
20

= 113:8:

The meanof the �rst thirty valuesis:

116+ 116+ : : : + 119+ 120
30

= 114:7:

The answers all seemto be closeto 114. What would happen if we took the
averageof hundredsof values?

100 values from Binomial(190, 0.6):

R command: mean(rbinom(100, 190, 0.6))
Result: 114.86

Note: You will get a di�eren t result every time you run this command.
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1000 values from Binomial(190, 0.6):

R command: mean(rbinom(1000, 190, 0.6))
Result: 114.02

1 million values from Binomial(190, 0.6):

R command: mean(rbinom(1000000, 190, 0.6))
Result: 114.0001

The averageseemsto be converging to thevalue114.

The larger the samplesize,theclosertheaverageseemsto getto 114.

If wekept goingfor largerand largersamplesizes,wewould keepgetting answers
closerand closer to 114. This is because114 is theDISTRIBUTION MEAN:
themeanvaluethatwewouldgetif wewereableto draw anin�nite samplefrom
theBinomial(190,0.6)distribution.

This distribution meanis called the expectation,or expectedvalue,of theBino-
mial(190,0.6)distribution.

It is a FIXED propertyof theBinomial(190,0.6)distribution. This meansit is a
�x edconstant:thereis nothingrandomaboutit.

De�nition: The exp ected value, also called the exp ectation or mean, of a
discrete random variable X , can be written as either E(X ), or E(X), or � X ,
andis givenby

� X = E(X ) =
X

x

xf X (x) =
X

x

xP(X = x) :

Theexpectedvalueis ameasureof thecentre, or average, of thesetof valuesthat
X cantake,weightedaccordingto theprobabilityof eachvalue.

If we took a very large sampleof randomnumbersfrom the distribution of X ,
theiraveragewouldbeapproximatelyequalto � X .
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Example: Let X � Binomial(n = 190; p = 0:6): What is E(X )?

E(X ) =
X

x

xP(X = x)

=
190X

x=0

x
�

190
x

�
(0:6)x(0:4)190� x:

Although it is not obvious, the answer to this sum is n � p = 190� 0:6 = 114.
We will seewhy in Section2.14.

Explanation of the form ula for exp ectation

We will move away from the Binomial distribution for a moment, and use a
simpler example.

Let the random variable X be de�ned asX =
�

1 with probabilit y 0.9,
� 1 with probabilit y 0.1.

X takesonly the values1 and � 1. What is the `average'value of X ?

Using 1+( � 1)
2 = 0 would not be useful,becauseit ignoresthe fact that usually

X = 1, andonly occasionallyis X = � 1.

Instead, think of observingX many times, say 100 times.

Roughly 90 of these100 times will have X = 1.
Roughly 10 of these100 times will have X = � 1

Theaverageof the100valueswill beroughly

90� 1 + 10� (� 1)
100

;

= 0:9 � 1 + 0:1 � (� 1)

( = 0:8: )

We could repeat this for any samplesize.
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As thesamplegetslarge,theaverageof thesamplewill getever closerto

0:9 � 1 + 0:1 � (� 1):

This is why thedistributionmeanis givenby

E(X ) = P(X = 1) � 1 + P(X = � 1) � (� 1);

or in general,
E(X ) =

X

x

P(X = x) � x:

E(X ) is a �x edconstantgiving the
averagevaluewewouldgetfrom a largesampleof X .

Linear prop ert y of exp ectation

Expectation is a line ar operator:

Theorem 2.11: Let a andbbeconstants.Then

E(aX + b) = aE(X ) + b:

Pro of:

Immediate from the de�nition of expectation.

E(aX + b) =
X

x

(ax + b)f X (x)

= a
X

x

xf X (x) + b
X

x

f X (x)

= aE(X ) + b� 1: �
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Example: �nding exp ectation from the probabilit y function

Example 1: Let X � Binomial(3; 0:2). Write down the probabilit y function of X
and �nd E(X ).

Wehave:

P(X = x) =
�

3
x

�
(0:2)x(0:8)3� x for x = 0; 1; 2; 3:

x 0 1 2 3
f X (x) = P(X = x) 0:512 0:384 0:096 0:008

Then

E(X ) =
3X

x=0

xf X (x) = 0 � 0:512+ 1 � 0:384+ 2 � 0:096+ 3 � 0:008

= 0:6:

Note: We have: E(X ) = 0:6 = 3 � 0:2 for X � Binomial(3; 0:2).
We will prove in Section2.14that whenever X � Binomial(n; p), then
E(X ) = np.

Example 2: Let Y be Bernoulli(p) (Section 2.3). That is,

Y =
�

1 with probabilityp;
0 with probability1 � p:

Find E(Y).

y 0 1
P(Y = y) 1 � p p

E(Y) = 0 � (1 � p) + 1 � p = p:
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Exp ectation of a sum of random variables: E(X + Y )

For ANY randomvariablesX 1; X 2; : : : ; X n,

E (X 1 + X 2 + : : : + X n) = E(X 1) + E(X 2) + : : : + E(X n):

In particular, E(X + Y) = E(X ) + E(Y) for ANY X andY .

This result holds for any random variables X 1; : : : ; X n. It doesNOT require
X 1; : : : ; X n to beindependent.

We can summarizethis important result by saying:

Theexpectationof a sum
is thesumof theexpectations– ALWAYS.

The proof requiresmultiv ariate methods, to be studied later in the course.

Note: We can combine the result above with the linear property of expectation.
For any constants a1; : : : ; an, we have:

E (a1X 1 + a2X 2 + : : : + anX n) = a1E(X 1) + a2E(X 2) + : : : + anE(X n):

Exp ectation of a pro duct of random variables: E(X Y )

There are two caseswhen �nding the expectation of a product:

1. General case:

For generalX andY , E(X Y) is NOT equalto E(X )E(Y):

We have to �nd E(X Y) either using their joint probabilit y function (see
later), or using their covariance(seelater).

2. Special case: when X and Y are INDEPENDENT:

WhenX andY areINDEPENDENT, E(X Y) = E(X )E(Y):



2.12 Variable transformations

We often wish to transformrandom variablesthrough a function. For example,
given the random variable X , possibletransformations of X include:

X 2 ;
p

X ; 4X 3 ; : : :

We often summarizeall possiblevariable transformations by referring to
Y = g(X ) for somefunctiong.

For discreterandomvariables,it is very easyto �nd the probabilit y function for
Y = g(X ), given that the probabilit y function for X is known. Simply change
all thevaluesandkeeptheprobabilitiesthesame.

Example 1: Let X � Binomial(3; 0:2), and let Y = X 2. Find the probabilit y
function of Y.

The probabilit y function for X is:
x 0 1 2 3

P(X = x) 0:512 0:384 0:096 0:008

Thus theprobabilityfunctionfor Y = X 2 is:

y 02 12 22 32

P(Y = y) 0:512 0:384 0:096 0:008

This is becauseY takesthevalue02 whenever X takesthevalue0, andsoon.

Thus theprobabilitythatY = 02 is thesameastheprobabilitythatX = 0.

Overall, we would write the probabilit y function of Y = X 2 as:

y 0 1 4 9
P(Y = y) 0:512 0:384 0:096 0:008

To transform a discreterandom variable, transformthevalues
andleave theprobabilitiesalone.



Example 2: Mr Chancehires out giant helium balloonsfor
advertising. His balloonscomein three sizes:heights 2m, 3m,
and 4m. 50%of Mr Chance'scustomerschooseto hire the
cheapest 2m balloon, while 30%hire the 3m balloon and
20%hire the 4m balloon.

The amount of helium gasin cubic metresrequired to �ll the balloons is h3=2,
where h is the height of the balloon. Find the probabilit y function of Y, the
amount of helium gasrequired for a randomly chosencustomer.

Let X be theheightof balloonorderedby a randomcustomer. Theprobability
functionof X is:

height,x (m) 2 3 4
P(X = x) 0.5 0.3 0.2

Let Y betheamountof gasrequired:Y = X 3=2: Theprobability functionof Y
is:

gas,y (m3) 4 13.5 32
P(Y = y) 0.5 0.3 0.2

Transform the values,and leave the probabilities alone.

Exp ected value of a transformed random variable

Wecan�nd the expectation of a transformedrandomvariable just likeany other
random variable. For example,in Example1 we had X � Binomial(3; 0:2), and
Y = X 2.

The probabilit y function for X is:
x 0 1 2 3

P(X = x) 0:512 0:384 0:096 0:008

and for Y = X 2:
y 0 1 4 9

P(Y = y) 0:512 0:384 0:096 0:008
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Thus the expectation of Y = X 2 is:

E(Y) = E(X 2) = 0 � 0:512+ 1 � 0:384+ 4 � 0:096+ 9 � 0:008

= 0:84:

Note: E(X 2) is NOT thesameasf E(X )g2 : Checkthat f E(X )g2 = 0:36.

To make the calculation quicker, we could cut out the middle step of writing
down the probabilit y function of Y. Becausewe transform the valuesand keep
the probabilities the same,we have:

E(X 2) = 02 � 0:512+ 12 � 0:384+ 22 � 0:096+ 32 � 0:008:

If we write g(X ) = X 2, this becomes:

Ef g(X )g = E(X 2) = g(0) � 0:512+ g(1) � 0:384+ g(2) � 0:096+ g(3) � 0:008:

Clearly the samearguments can be extended to any function g(X ) and any
discreterandom variable X :

Ef g(X )g =
X

x

g(x)P(X = x):

Transform the values,and leave the probabilities alone.

De�nition: For any function g and discreterandom variable X , the expectedvalue
of g(X ) is given by

Ef g(X )g =
X

x

g(x)P(X = x) =
X

x

g(x)f X (x):
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Example: Recall Mr Chanceand his balloon-hire businessfrom page 103. Let

X be the height of balloon selectedby a randomly chosen customer. The
probabilit y function of X is:

height, x (m) 2 3 4
P(X = x) 0.5 0.3 0.2

(a) What is the averageamount of gasrequired per customer?

GasrequiredwasX 3=2 from page103.
Averagegaspercustomeris E(X 3=2).

E
�

X 3

2

�
=

X

x

x3

2
� P(X = x)

=
23

2
� 0:5 +

33

2
� 0:3 +

43

2
� 0:2

= 12:45 m3 gas.

(b) Mr Chance charges$400� h to hire a balloon of height h. What is his
expectedearning per customer?

Expectedearningis E(400X ).

E(400X ) = 400� E(X ) (expectationis linear)

= 400� (2 � 0:5 + 3 � 0:3 + 4 � 0:2)

= 400� 2:7

= $1080percustomer:

(c) How much doesMr Chanceexpect to earnin total from his next 5 customers?

Let Z1; : : : ; Z5 betheearningsfrom thenext 5 customers.EachZ i hasE(Z i ) =
1080by part(b). Thetotal expectedearningis

E(Z1 + Z2 + : : : + Z5) = E(Z1) + E(Z2) + : : : + E(Z5)

= 5 � 1080

= $5400:
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Getting theexpectation.. .

Wrong!

Suppose X =
�

3 with probability 3=4;
8 with probability 1=4:

Then 3=4 of the time, X takesvalue3, and 1=4 of the

time, X takesvalue8.

So E(X ) = 3
4 � 3 + 1

4 � 8:

add up the values
times how often they occur

What about E(
p

X )?

p
X =

� p
3 with probability 3=4;p
8 with probability 1=4:
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add up the values
times how often they occur

E(
p

X ) = 3
4 �

p
3 + 1

4 �
p

8:

Commonmistakes

i) E(
p

X ) =
p

EX =
q

3
4 � 3 + 1

4 � 8

Wrong!

ii) E(
p

X ) =
q

3
4 � 3 +

q
1
4 � 8

Wrong!

iii) E(
p

X ) =
q

3
4 � 3 +

q
1
4 � 8

=
q

3
4 �

p
3 +

q
1
4 �

p
8

Wrong!



2.13 Variance

Example: Mrs Tractor runs the Rational Bank of Remuera. Every day shehopes
to �ll her cashmachine with enoughcashto seethe well-heeledcitizens of Re-
muera through the day. Sheknows that the expectedamount of money with-
drawn each day is $50,000.How much moneyshould sheload in the machine?
$50,000?

No: $50,000is theaverage,nearthecentre
of thedistribution. Abouthalf thetime,
themoney requiredwill beGREATER

thantheaverage.

How much moneyshould Mrs Tractor put in the
machine if shewants to be 99%certain that there
will be enoughfor the day's transactions?

A nswer: it dependshow much the amount withdrawn variesaboveandbelow
its mean.

For questionslike this, we needthe study of variance.

Varianceis the averagesquareddistanceof arandomvariablefrom its own mean.

De�nition: The variance of a randomvariable X is writtenaseitherVar(X ) or � 2
X ,

andis givenby

� 2
X = Var(X ) = E

�
(X � � X )2

�
= E

�
(X � EX )2

�
:

Similarly, the varianceof a function of X is

Var(g(X )) = E
� �

g(X ) � E(g(X ))
� 2

�
:

Note: The variance is thesquareof thestandarddeviationof X, so

sd(X ) =
p

Var(X ) =
q

� 2
X = � X :
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Variance as the average squared distance from the mean

The variance is a measureof how spreadout are the valuesthat X can take.
It is the averagesquareddistancebetweena valueof X andthecentral(mean)
value,� X .

Possible values of X

(central value)

PSfrag replacements

x1 x2 x3 x4 x5 x6

� X

x2 � � X x4 � � X

Var(X ) = E
|{z}

(2)

[(X � � X )2

| {z }
(1)

]

(1) Take distancefrom observedvaluesof X to thecentralpoint, � X . Squareit
to balancepositive andnegative distances.

(2) Thentaketheaverageoverall valuesX cantake: ie. if weobservedX many
times,�nd whatwouldbetheaveragesquareddistancebetweenX and� X .

Note: The mean,� X , and the variance,� 2
X , of X arejust numbers:thereis nothing

randomor variableaboutthem.

Example: Let X =
�

3 with probabilit y 3/4,
8 with probabilit y 1/4.

Then E(X ) = � X = 3 �
3
4

+ 8 �
1
4

= 4:25

Var(X ) = � 2
X =

3
4

� (3 � 4:25)2 +
1
4

� (8 � 4:25)2

= 4:6875:

When we observe X, we get either 3 or 8: this is random.
But � X is �x edat 4.25,and� 2

X is �x edat 4.6875,regardlessof theoutcomeof
X.



110
For a discreterandom variable,

Var(X ) = E
�
(X � � X )2

�
=

X

x

(x � � X )2f X (x) =
X

x

(x � � X )2P(X = x):

This usesthe de�nition of the expectedvalue of a function of X :

Var(X ) = E(g(X )) where g(X ) = (X � � X )2:

Theorem 2.13A: (important)

Var(X ) = E(X 2) � (EX )2 = E(X 2) � � 2
X

Pro of: Var(X ) = E
�
(X � � X )2� by de�nition

= E[ X 2
|{z}
r.v.

� 2 X|{z}
r.v.

� X|{z}
constant

+ � 2
X|{z}

constant

]

= E(X 2) � 2� X E(X ) + � 2
X by Thm 2.11

= E(X 2) � 2� 2
X + � 2

X

= E(X 2) � � 2
X : �

Note: E(X 2) =
P

x x2f X (x) =
P

x x2 P(X = x) . This is not the sameas (EX )2:

e.g. X =
�

3 with probabilit y 0.75,
8 with probabilit y 0.25.

Then � X = EX = 4:25; so � 2
X = (EX )2 = (4:25)2 = 18:0625.

But

E(X 2) =
�

32 �
3
4

+ 82 �
1
4

�
= 22:75:

Thus E(X 2) 6= (EX )2 in general.
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Theorem 2.13B: If a and b are constants and g(x) is a function, then

i) Var(aX + b) = a2Var(X ).

ii) Var(ag(X ) + b) = a2Varf g(X )g:

Pro of:

(part(i))

Var(aX + b) = E
h
f (aX + b) � E(aX + b)g2

i

= E
h
f aX + b� aE(X ) � bg2

i
by Thm2.11

= E
h
f aX � aE(X )g2

i

= E
h
a2f X � E(X )g2

i

= a2E
h
f X � E(X )g2

i
by Thm2.11

= a2Var(X ) :

Part (ii) follows similarly.

Note: Thesearevery di�eren t from the correspondingexpressionsfor expectations
(Theorem 2.11). Variancesare more di�cult to manipulate than expectations.

Example: �nding exp ectation and variance from the probabilit y function

Recall Mr Chance'sballoons from page103. The random
variable Y is the amount of gasrequired by a randomly
chosencustomer. The probabilit y function of Y is:

gas,y (m 3) 4 13.5 32
P(Y = y) 0.5 0.3 0.2

Find Var(Y).
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We know that E(Y) = � Y = 12:45 from page105.

First metho d: useVar(Y) = E[(Y � � Y )2]:

Var(Y) = (4 � 12:45)2 � 0:5 + (13:5 � 12:45)2 � 0:3 + (32 � 12:45)2 � 0:2

= 112:47:

Second metho d: useE(Y 2) � � 2
Y : (usuallyeasier)

E(Y2) = 42 � 0:5 + 13:52 � 0:3 + 322 � 0:2

= 267:475:

SoVar(Y) = 267:475� (12:45)2 = 112:47 asbefore.

Variance of a sum of random variables: Var(X + Y )

There are two caseswhen �nding the varianceof a sum:

1. General case:

For generalX andY ,

Var(X + Y) is NOT equalto Var(X ) + Var(Y):

We have to �nd Var(X + Y) using their covariance(seelater).

2. Special case: when X and Y are INDEPENDENT:

WhenX andY areINDEPENDENT,
Var(X + Y) = Var(X ) + Var(Y):
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Interlude:
orTRUE

FALSE ??Guesswhether each of the
following statements is true or false.

1. Tossa fair coin 10 times. The probabilit y of getting 8 or more headsis less
than 1%.

2. Tossa fair coin 200times. The chanceof getting a run of at least 6 headsor 6
tails in a row is lessthan 10%.

3. Considera classroom with 30 pupils of age5, and one teacher of age50. The
probabilit y that the pupils all outlive the teacher is about 90%.

4. Open the BusinessHerald at the pagesgiving shareprices,or open an atlas at
the pagesgiving country areasor populations. Pick a column of �gures.

share last sale
A Barnett 143
Advantage I 23
AFFCO 18
Air NZ 52

...
...

The �gures are over 5 times more likely to begin with the digit 1 than with the
digit 9.

Answers:1.FALSEitis5.5%.2.FALSE:itis97%.3.FALSE:inNZtheprobabilityisabout50%.4.TRUE:infacttheyare6.5timesmorelikely.
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2.14 Mean and variance of the Binomial( n; p) distribution

Let X � Binomial(n; p). We have mentioned several times that E(X ) = np.
We now prove this and the additional result for Var(X ).

If X � Binomial(n; p), then:

E(X ) = � X = np

Var(X ) = � 2
X = np(1 � p):

Weoftenwrite q = 1 � p, soVar(X ) = npq.

Easy pro of: X as a sum of Bernoulli random variables

If X � Binomial(n; p), then X is the numberof successesout of n independent
trials,eachwith P(success) = p.

This meansthat we can write:

X = Y1 + Y2 + : : : + Yn;

whereeach

Yi =
�

1 with probabilityp;
0 with probability1 � p:

That is, Yi countsasa1 if trial i is asuccess,andasa0 if trial i is a failure.

Overall, Y1 + : : :+ Yn is thetotalnumberof successesoutof n independenttrials,
which is thesameasX .

Note: Each Yi is a Bernoulli(p) random variable (Section2.3).

Now if X = Y1 + Y2 + : : : + Yn, and Y1; : : : ; Yn are independent, then:

E(X ) = E(Y1) + E(Y2) + : : : + E(Yn) (doesNOT requireindependence),

Var(X ) = Var(Y1) + Var(Y2) + : : : + Var(Yn) (DOESrequireindependence).
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The probabilit y function of each Yi is:
y 0 1

P(Yi = y) 1 � p p

Thus,

E(Yi ) = 0 � (1 � p) + 1 � p = p:

Also,
E(Y2

i ) = 02 � (1 � p) + 12 � p = p:

So

Var(Yi ) = E(Y2
i ) � (EYi )2

= p � p2

= p(1 � p):

Therefore:

E(X ) = E(Y1) + E(Y2) + : : : + E(Yn)

= p + p + : : : + p

= n � p:

And:

Var(X ) = Var(Y1) + Var(Y2) + : : : + Var(Yn)

= n � p(1 � p):

Thus we have proved that E(X ) = np and Var(X ) = np(1 � p): �
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Hard pro of: for mathematicians (non-examinable)

We show below how the Binomial meanand varianceformulae can be derived
directly from the probabilit y function.

E(X ) =
nX

x=0

xf X (x) =
nX

x=0

x
�

n
x

�
px(1 � p)n� x =

nX

x=0

x
� n!

(n � x)!x!

�
px(1 � p)n� x

But
x
x!

=
1

(x � 1)!
and also the �rst term xf X (x) is 0 when x = 0.

So,continuing,

E(X ) =
nX

x=1

n!
(n � x)!(x � 1)!

px(1 � p)n� x

Next: make n's into (n � 1)'s, x's into (x � 1)'s, wherever possible:
e.g.

n � x = (n � 1) � (x � 1); px = p � px� 1

n! = n(n � 1)! etc:

This gives,

E(X ) =
nX

x=1

n(n � 1)!
[(n � 1) � (x � 1)]!(x � 1)!

p � p(x� 1)(1 � p)(n� 1)� (x� 1)

= np|{z}
what we want

nX

x=1

�
n � 1
x � 1

�
px� 1(1 � p)(n� 1)� (x� 1)

| {z }
needto show this sum = 1

Finally we let y = x � 1 and let m = n � 1.
When x = 1; y = 0; and when x = n; y = n � 1 = m.

So E(X ) = np
mX

y=0

�
m
y

�
py(1 � p)m� y

= np(p + (1 � p))m (Binomial Theorem)

E(X ) = np; as required.
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For Var(X ), usethe sameideasagain.

For E(X ), we used x
x! = 1

(x� 1)! ; so instead of �nding E(X 2), it will be easier
to �nd E[X (X � 1)] = E(X 2) � E(X ) becausethen we will be able to cancel
x(x� 1)

x! = 1
(x� 2)! :

Heregoes:

E[X (X � 1)] =
nX

x=0

x(x � 1)
�

n
x

�
px(1 � p)n� x

=
nX

x=0

x(x � 1)n(n � 1)(n � 2)!
[(n � 2) � (x � 2)]!(x � 2)!x(x � 1)

p2p(x� 2)(1 � p)(n� 2)� (x� 2)

First two terms (x = 0 and x = 1) are 0 due to the x(x � 1) in the numerator.
Thus

E[X (X � 1)] = p2n(n � 1)
nX

x=2

�
n � 2
x � 2

�
px� 2(1 � p)(n� 2)� (x� 2)

= n(n � 1)p2
mX

y=0

�
m
y

�
py(1 � p)m� y

| {z }
sum=1 by Binomial Theorem

if
�

m = n � 2;
y = x � 2:

So E[X (X � 1)] = n(n � 1)p2 :

Thus Var(X ) = E(X 2) � (E(X ))2

= E(X 2) � E(X ) + E(X ) � (E(X ))2

= E[X (X � 1)] + E(X ) � (E(X ))2

= n(n � 1)p2 + np � n2p2

= np(1 � p): �

Note the steps: takeout x(x � 1) and replacen by (n � 2), x by (x � 2) wherever
possible.
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Variance of the MLE for the Binomial p parameter

In Section2.9 we derived the maximum likelihood estimator for the Binomial
parameterp.

Reminder : Take any situation in which our observation X has the distribution
X � Binomial(n; p); wheren is KNOWN and p is to be estimated.

Make a singleobservation X = x.

The maximum likelihood estimator of p is bp =
X
n

:

In practice,estimatesof parametersshouldalwaysbeaccompaniedby estimates
of their variability.

For example,in the deep-seadiver exampleintroducedin Section2.7, we esti-
mated the probabilit y that a diver hasa daughter is

bp =
X
n

=
125
190

= 0:658:

What is our margin of error on this estimate? Do we believe it is 0:658� 0:3
(say), in other words almost useless,or do we believe it is very precise,perhaps
0:658� 0:02?

We assessthe usefulnessof estimatorsusing their variance.

Given bp =
X
n

, we have:

Var(bp) = Var
�

X
n

�

=
1
n2Var(X )

=
1
n2

� np(1 � p) for X � Binomial(n; p)

=
p(1 � p)

n
: (?)
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In practice, however, we donotknow thetruevalueof p, sowecannotcalculate
theexactVar(bp).

Instead, we have to ESTIMATE Var(bp) by replacingtheunknown p in equation
(?) by bp.

We call our estimatedvariancedVar(bp):

dVar(bp) =
bp(1 � bp)

n
:

The standard error of bp is:

se(bp) =
q

dVar(bp):

We usually quote the margin of error associated with bp as

Margin of error= 1:96� se(bp) = 1:96�

r
bp(1 � bp)

n
:

This result occursbecausethe Central Limit Theoremguaranteesthat bp will be
approximately Normally distributed in large samples(large n). We will study
the Central Limit Theorem in later chapters.

The expressionbp � 1:96� se(bp) givesan approximate 95%con�denceinterval
for p undertheNormalapproximation.

Example: For the deep-seadiver example,with n = 190,

bp = 0:658;

so: se(bp) =

r
0:658� (1 � 0:658)

190

= 0:034:

For our �nal answer, we should thereforequote:

bp = 0:658� 1:96� 0:034= 0:658� 0:067 or bp = 0:658 (0:591; 0:725):
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Chapter 3: Mo delling with Discrete

Probabilit y Distributions

In Chapter 2 we introducedseveral fundamental ideas: hypothesistesting, like-
lihood, expectation, and variance. Each of thesewasillustrated by the Binomial
distribution. We now introduceseveral other discretedistributions and discuss
their properties and usage. First we revise Bernoulli trials and the Binomial
distribution.

Bernoulli Trials

A set of Bernoulli trials is a seriesof trials such that:

i) each trial hasonly 2 possibleoutcomes:Successand Failure;
ii) the probabilit y of success,p, is constant for all trials;
iii) the trials are independent.

Examples: 1) Repeated tossing of a fair coin: each toss is a Bernoulli trial with
P(success)= P(head) = 1

2:

2) Having children: each child can be thought of as a Bernoulli trial with
outcomesf girl, boyg and P(girl ) = 0:5.

3.1 Binomial distribution

Description: X � Binomial(n; p) if X is the numberof successesout of a �x ed
numbern of Bernoulli trials,eachwith P(success) = p.

Pr obability function: f X (x) = P(X = x) =
� n

x

�
px(1 � p)n� x for x = 0; 1; : : : ; n.

Me an: E(X ) = np.

Varianc e: Var(X ) = np(1 � p).

Sum of indep endent Binomials: If X � Binomial(n; p) andY � Binomial(m; p),
and if X and Y areindependent, and if X and Y both sharethe sameparameter
p, then X + Y � Binomial(n + m; p):
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Shape: Usually symmetrical unlessp is closeto 0 or 1.

Peaksat approximately np.
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n = 10, p = 0:5
(symmetrical)

n = 10, p = 0:9
(skewed for p closeto 1)

n = 100,p = 0:9
(lessskew for p = 0:9 if n is large)

3.2 Geometric distribution

Like the Binomial distribution, the Geometric distribution is de�ned in terms
of a sequenceof Bernoulli trials.

� The Binomial distribution counts the numberof successesout of a �x ed
numberof trials.

� The Geometric distribution counts the numberof trials beforethe �rst
successoccurs.

This meansthat the Geometricdistribution counts the numberof failuresbefore
the�rst success.

If every trial hasprobabilit y p of success,we write: X � Geometric(p):

Examples: 1) X =number of boys beforethe �rst girl in a family:
X � Geometric(p = 0:5):

2) Fish jumping up a waterfall. On every jump the �sh
hasprobabilit y p of reaching the top.
Let X be thenumberof failedjumpsbefore
the�sh succeeds.
Then X � Geometric(p):
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Prop erties of the Geometric distribution

i) Description

X � Geometric(p) if X is the numberof failuresbeforethe �rst successin a
seriesof Bernoulli trialswith P(success) = p.

ii) Probabilit y function

For X � Geometric(p),

f X (x) = P(X = x) = (1 � p)xp for x = 0; 1; 2; : : :

Explanation: P(X = x) = (1 � p)x
| {z }

need x failures

� p|{z}
�nal trial must be a success

Di�er ence between Geometric and Binomial: For the Geometric distribu-
tion, the trials must always occur in the order F F : : : F| {z }

x failures

S.

For the Binomial distribution, failures and successescan occur in any order:
e.g.F F : : : F S, F SF : : : F , SF : : : F , etc.

This is why the Geometricdistribution hasprobabilit y function

P(x failures, 1 success)= (1 � p)xp;

while the Binomial distribution hasprobabilit y function

P(x failures, 1 success) =
�

x + 1
x

�
(1 � p)xp:

iii) Mean and variance

For X � Geometric(p),

E(X ) =
1 � p

p
=

q
p

Var(X ) =
1 � p

p2
=

q
p2
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iv) Sum of indep endent Geometric random variables

If X 1; : : : ; X k are independent, and each X i � Geometric(p), then

X 1 + : : : + X k � Negative Binomial(k; p). (seelater)

v) Shape

Geometricprobabilities are always greatestat x = 0.
The distribution always hasa long right tail (positive skew).

The length of the tail dependson p. For small p, there could be many failures
beforethe �rst success,so the tail is long.

For large p, a successis likely to occur almost immediately, so the tail is short.
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p = 0:3 (small p) p = 0:5 (moderate p) p = 0:9 (large p)

vi) Lik eliho od

For any randomvariable, the likelihood function is just the probabilit y function
expressedas a function of the unknown parameter. If:

� X � Geometric(p);
� p is unknown;
� the observed value of X is x;

then the likelihood function is: L(p; x) = p(1 � p)x for 0 < p < 1:

Example: we observe a �sh making 5 failed jumps before reaching the top of a
waterfall. We wish to estimate the probabilit y of successfor each jump.

Then L(p; 5) = p(1 � p)5 for 0 < p < 1:

MaximizeL with respectto p to �nd theMLE, bp.
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For mathematicians: pro of of Geometric mean and variance form ulae

(non-examinable)

We wish to prove that E(X ) = 1� p
p and Var(X ) = 1� p

p2 whenX � Geometric(p).

We usethe following results:
1X

x=1

xqx� 1 =
1

(1 � q)2
(for jqj < 1), (3.1)

and
1X

x=2

x(x � 1)qx� 2 =
2

(1 � q)3
(for jqj < 1). (3.2)

Pro of of (3.1) and (3.2):

Considerthe in�nite sum of a geometricprogression:
1X

x=0

qx =
1

1 � q
(for jqj < 1):

Di�eren tiate both sideswith respect to q:

d
dq

 
1X

x=0

qx

!

=
d
dq

�
1

1 � q

�

1X

x=0

d
dq

(qx) =
1

(1 � q)2

1X

x=1

xqx� 1 =
1

(1 � q)2
; as stated in (3.1).

Note that the lower limit of the summation becomesx = 1 becausethe term
for x = 0 vanishes.

The proof of (3.2) is obtained similarly, by di�eren tiating both sidesof (3.1)
with respect to q (Exercise).
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Now we can �nd E(X ) and Var(X ).

E(X ) =
1X

x=0

xP(X = x)

=
1X

x=0

xpqx (where q = 1 � p)

= p
1X

x=1

xqx (lower limit becomesx = 1 becauseterm in x = 0 is zero)

= pq
1X

x=1

xqx� 1

= pq
�

1
(1 � q)2

�
(by equation (3.1))

= pq
�

1
p2

�
(because1 � q = p)

=
q
p

; as required.

For Var(X ), we use

Var(X ) = E(X 2) � (EX )2 = E f X (X � 1)g + E(X ) � (EX )2 : (?)

Now

Ef X (X � 1)g =
1X

x=0

x(x � 1)P(X = x)

=
1X

x=0

x(x � 1)pqx (where q = 1 � p)

= pq2
1X

x=2

x(x � 1)qx� 2 (note that terms below x = 2 vanish)

= pq2

�
2

(1 � q)3

�
(by equation (3.2))

=
2q2

p2
:

Thus by (?),
Var(X ) =

2q2

p2
+

q
p

�
�

q
p

� 2

=
q(q+ p)

p2
=

q
p2

;

as required, becauseq+ p = 1.
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3.3 Negativ e Binomial distribution

The Negative Binomial distribution is a generalisedform of the Geometricdis-
tribution:

� the Geometric distribution counts the number of failuresbeforethe �rst
success;

� the Negative Binomial distribution counts the number of failuresbefore
thek' th success.

If every trial hasprobabilit y p of success,we write: X � NegBin(k; p):

Examples: 1) X =number of boys beforethe secondgirl in a family:
X � NegBin(k = 2; p = 0:5):

?2) Tom needsto pass24 papers to completehis degree.
He passeseach paper with probabilit y p, independently
of all other papers. Let X be thenumberof papers
Tomfails in hisdegree.

Then X � NegBin(24; p):

Prop erties of the Negativ e Binomial distribution

i) Description

X � NegBin(k; p) if X is the numberof failuresbeforethe k' th successin a
seriesof Bernoulli trialswith P(success) = p.

ii) Probabilit y function

For X � NegBin(k; p),

f X (x) = P(X = x) =
�

k + x � 1
x

�
pk(1 � p)x for x = 0; 1; 2; : : :
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Explanation:

� For X = x, we need x failures and k successes.
� The trials stop when we reach the k'th success,so the last trial must be a

success.
� This leaves x failures and k � 1 successesto occur in any order:

a total of k � 1 + x trials.

For example,if x = 3 failures and k = 2 successes,we could have:

F F F SS F F SF S F SF F S SF F F S

So:

P(X = x) =
�

k + x � 1
x

�

| {z }
(k � 1) successesandx failures

outof (k � 1 + x) trials.

�

k successesz}|{
pk � (1 � p)x

| {z }
x failures

iii) Mean and variance

For X � NegBin(k; p),

E(X ) =
k(1 � p)

p
=

kq
p

Var(X ) =
k(1 � p)

p2 =
kq
p2

Theseresultscan be proved from the fact that the Negative Binomial distribu-
tion is obtained as the sum of k independent Geometric random variables:

X = Y1 + : : : + Yk; whereeach Yi � Geometric(p); Yi indept,

) E(X ) = kE(Yi ) =
kq
p

;

Var(X ) = kVar(Yi ) =
kq
p2 :

iv) Sum of indep endent Negativ e Binomial random variables

If X and Y are independent,
and X � NegBin(k; p), Y � NegBin(m; p), with the samevalue of p, then

X + Y � NegBin(k + m; p).
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v) Shape

The Negative Binomial is 
exible in shape. Below are the probabilit y functions
for various di�eren t valuesof k and p.
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k = 3, p = 0:5 k = 3, p = 0:8 k = 10, p = 0:5

vi) Lik eliho od

As always, the likelihood function is the probabilit y function expressedas a
function of the unknown parameters. If:

� X � NegBin(k; p);
� k is known;
� p is unknown;
� the observed value of X is x;

then the likelihood function is:

L(p; x) =
�

k + x � 1
x

�
pk(1 � p)x for 0 < p < 1:

Example: Tom fails a total of 4 papers before �nishing his degree. What is his
passprobabilit y for each paper?

X = # failedpapersbefore24passedpapers:X � NegBin(24; p).

Observation: X = 4 failedpapers.
Likelihood:

L(p; 4) =
�

24+ 4 � 1
4

�
p24(1 � p)4 =

�
27
4

�
p24(1 � p)4 for 0 < p < 1:

MaximizeL with respectto p to �nd theMLE, bp.
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3.4 Hyp ergeometric distribution: sampling without replacemen t

The hypergeometricdistribution is usedwhenwe aresamplingwithoutreplace-
mentfrom a �nite population.

i) Description

Supposewe have N objects:

� M of the N objects are special;
� the other N � M objects are notspecial.

We remove n objects at randomwithout replacement.

Let X = numberof then removedobjectsthatarespecial.

Then X � Hypergeometric(N; M ; n):

Example: Ron hasa box of Chocolate Frogs. There are 20 chocolate frogs in the
box. Eight of them are dark chocolate,and twelve of them are white chocolate.

Ron grabsa randomhandful of 5 chocolatefrogsand stu�s them into his mouth
when he thinks that noone is looking. Let X be the number of dark chocolate
frogs he picks.

ThenX � Hypergeometric(N = 20; M = 8; n = 5):

ii) Probabilit y function

For X � Hypergeometric(N; M ; n),

f X (x) = P(X = x) =

� M
x

�� N � M
n� x

�

� N
n

�

for x = max(0; n + M � N ) to x = min(n; M ):
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Explanation: We needto choose x special objects and n � x other objects.

� Number of ways of selectingx specialobjects from the M available is:
� M

x

�
.

� Number of ways of selectingn � x other objects from the N � M available
is:

� N � M
n� x

�
.

� Total number of waysof choosingx specialobjectsand (n� x) other objects
is:

� M
x

�
�

� N � M
n� x

�
.

� Overall number of ways of choosingn objects from N is:
� N

n

�
.

Thus:

P(X = x) =
numberof desiredways
totalnumberof ways

=

� M
x

�� N � M
n� x

�

� N
n

� :

Note: We need0 � x � M (number of special objects),
and 0 � n � x � N � M (number of other objects).
After someworking, this givesus the stated constraint that

x = max(0; n + M � N ) to x = min(n; M ):

Example: What is the probabilit y that Ron selects3 white and 2 dark chocolates?

X = # dark chocolates.ThereareN = 20 chocolates,including M = 8 dark
chocolates.Weneed

P(X = 2) =

� 8
2

�� 12
3

�

� 20
5

� =
28� 220

15504
= 0:397:

SameanswerasTutorial 3 Q1(e),but di� erentmethod.

iii) Mean and variance

For X � Hypergeometric(N; M ; n),

E(X ) = np

Var(X ) = np(1 � p)
�

N � n
N � 1

� wherep = M
N .
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iv) Shape

The Hypergeometricdistribution is similar to the Binomial distribution when
n=N is small, becauseremoving n objects doesnot changethe overall compo-
sition of the population very much when n=N is small.

For n=N < 0:1 weoften approximate the Hypergeometric(N; M ; n) distribution
by the Binomial(n; p = M

N ) distribution.
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Hypergeometric(30; 12; 10) Binomial(10; 12
30)

Note: The Hypergeometricdistribution can be used for opinion polls, because
theseinvolve samplingwithout replacement from a �nite population.
The Binomial distribution is usedwhenthe population is sampled with replace-
ment.

As noted above, Hypergeometric(N; M ; n) ! Binomial(n; M
N ) asN ! 1 :

A note about distribution names

Discretedistributions often get their namesfrom mathematical power series.

� Binomial probabilities sum to 1 becauseof the Binomial Theorem:
�

p + (1 � p)
� n

= < sum of Binomial probabilities> = 1:

� NegativeBinomial probabilities sumto 1 by the NegativeBinomial expan-
sion: i.e. the Binomial expansionwith a negative power, � k:

pk
�

1 � (1 � p)
� � k

= < sum of NegBin probabilities> = 1:

� Geometricprobabilities sum to 1 becausethey form a Geometricseries:

p
1X

x=0

(1 � p)x = < sum of Geometricprobabilities> = 1:



3.5 Poisson distribution

When is the next volcanodue to erupt in Auckland?

Any momentnow, unfortunately!
(give or take1000yearsor so.. . )

A volcanocould happen in Auckland this afternoon, or it might not happen for
another 1000years. Volcanoesare almost impossibleto predict: they seemto
happen completely at random.

A distribution that counts the numberof randomeventsin a �x edspaceof time
is thePoissondistribution.

How many carswill crossthe Harbour Bridge today? X � Poisson:
How many road accidents will there be in NZ this year? X � Poisson:
How many volcanoeswill erupt over the next 1000years?X � Poisson.

The Poissondistribution arosefrom a mathematical
formulation called the PoissonProcess,published
by Sim�eon-DenisPoissonin 1837.

Poisson Pro cess

The Poissonprocesscounts the numberof eventsoccurringin a �x ed time or
space,wheneventsoccurindependentlyandat aconstantaveragerate.

Example: Let X be the number of road accidents in a year in New Zealand.
Supposethat:

i) all accidents are independentof eachother;

ii) accidents occur at a constantaveragerateof � peryear;

iii) accidents cannotoccursimultaneously.

Then the number of accidents in a year, X , has the distribution

X � Poisson(� ):
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Num ber of acciden ts in one year

Let X be the number of accidents to occur in oneyear: X � Poisson(� ).

The probabilit y function for X � Poisson(� ) is

P(X = x) =
� x

x!
e� � for x = 0; 1; 2; : : :

Num ber of acciden ts in t years

Let X t be the number of accidents to occur in time t years.

Then X t � Poisson(�t ),

and
P(X t = x) =

(�t )x

x!
e� �t for x = 0; 1; 2; : : :

General de�nition of the Poisson pro cess

Take any sequenceof random events such that:

i) all events are independent;

ii) events occur at a constantaveragerateof � perunit time;

iii) events cannotoccursimultaneously.

Let X t bethenumberof eventsto occurin time t.

Then X t � Poisson(�t ),

and
P(X t = x) =

(�t )x

x!
e� �t for x = 0; 1; 2; : : :

Note: For a Poissonprocessin space,let X A = # eventsin areaof sizeA.
Then X A � Poisson(�A ):

Example: X A = number of raisins in a volume A of currant bun.
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Where does the Poisson form ula come from?

(Sketch idea, for mathematicians;non-examinable).
The formal de�nition of the Poissonprocessis as follows.

De�nition: The random variablesf X t : t > 0g form a Poissonprocesswith rate � if:

i) events occurring in any time interval are independent of those occurring
in any other disjoint time interval;

ii)

lim
� t#0

�
P(exactly oneevent occurs in time interval[t; t + � t])

� t

�
= � ;

iii)

lim
� t#0

�
P(more than oneevent occurs in time interval[t; t + � t])

� t

�
= 0:

Theseconditionscan be usedto derive a partial di�eren tial equationon a func-
tion known asthe probability generating function of X t . The partial di�eren tial
equation is solved to provide the form P(X t = x) = (�t )x

x! e� �t .

Poisson distribution

The Poissondistribution is not just usedin the context of the Poissonprocess.
It is alsousedin many other situations, often asa subjective model (seeSection
3.6). Its properties are as follows.

i) Probabilit y function

For X � Poisson(� ),

f X (x) = P(X = x) =
� x

x!
e� � for x = 0; 1; 2; : : :

The parameter � is called the rateof the Poissondistribution.
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ii) Mean and variance

The meanand varianceof the Poisson(� ) distribution are both � .

E(X ) = Var(X ) = � when X � Poisson(� ):

Notes:

1. It makessensefor E(X ) = � : by de�nition, � is the averagenumber of events
per unit time in the Poissonprocess.

2. The variance of the Poissondistribution increaseswith the mean (in fact,
variance= mean). This is often the casein real life: there is more uncertainty
associated with larger numbers than with smaller numbers.

iii) Sum of indep endent Poisson random variables

If X and Y are independent, and X � Poisson(� ), Y � Poisson(� ), then

X + Y � Poisson(� + � ):
iv) Shape

The shape of the Poissondistribution dependsupon the value of � . For small
� , the distribution has positive (right) skew. As � increases,the distribution
becomesmore and more symmetrical, until for large � it has the familiar bell-
shaped appearance.

The probabilit y functions for various � are shown below.
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v) Lik eliho od

As always, the likelihood function is the probabilit y function expressedas a
function of the unknown parameters. If:

� X � Poisson(� );
� � is unknown;
� the observed value of X is x;

then the likelihood function is:

L(� ; x) =
� x

x!
e� � for 0 < � < 1 :

Example: 28 babieswereborn in Mt Roskill yesterday. Estimate � .

Let X = # babiesbornin a dayin Mt Roskill. AssumethatX � Poisson(� ).

Observation: X = 28babies.
Likelihood:

L(� ; 28) =
� 28

28!
e� � for 0 < � < 1 :

MaximizeL with respectto � to �nd theMLE, �̂ .

For mathematicians: pro of of Poisson mean and variance form ulae

(non-examinable)

We wish to prove that E(X ) = Var(X ) = � for X � Poisson(� ).

For X � Poisson(� ), the probabilit y function is f X (x) =
� x

x!
e� � for x = 0; 1; 2; : : :
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So

E(X ) =
1X

x=0

xf X (x) =
1X

x=0

x
�

� x

x!
e� �

�

=
1X

x=1

� x

(x � 1)!
e� � (note that term for x = 0 is 0)

= �
1X

x=1

� x� 1

(x � 1)!
e� � (writing everything in terms of x � 1)

= �
1X

y=0

� y

y!
e� � (putting y = x � 1)

= �; becausethe sum=1 (sum of Poissonprobabilities) :

So E(X ) = � , as required.

For Var(X ), we use: Var(X ) = E(X 2) � (EX )2

= E[X (X � 1)] + E(X ) � (EX )2

= E[X (X � 1)] + � � � 2:

But E[X (X � 1)] =
1X

x=0

x(x � 1)
� x

x!
e� �

=
1X

x=2

� x

(x � 2)!
e� � (terms for x = 0 and x = 1 are 0)

= � 2
1X

x=2

� x� 2

(x � 2)!
e� � (writing everything in terms of x � 2)

= � 2
1X

y=0

� y

y!
e� � (putting y = x � 2)

= � 2:

So
Var(X ) = E[X (X � 1)] + � � � 2

= � 2 + � � � 2

= �; as required:
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3.6 Sub jectiv e mo delling

Most of the distributions we have talked about in this chapter are exactmodels
for the situation described. For example, the Binomial distribution describes
exactly the distribution of the number of successesin n Bernoulli trials.

However, there is often no exact model available. If so,we will usea subjective
model.

In a subjective model, we pick a probabilit y distribution to describe a situation
just becauseit haspropertiesthatwe think areappropriateto thesituation,such
asthe right sort of symmetryor skew, or the right sort of relationshipbetween
varianceandmean.

Example: Distribution of word lengths for English words.
Let X = numberof lettersin anEnglishwordchosenat randomfrom thedictio-
nary.

If we plot the frequencieson a barplot, we seethat theshapeof thedistribution
is roughlyPoisson.

English word lengths: X � 1 � Poisson(6:22)
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Word lengths from 25109 English words

The Poissonprobabilities (with � estimatedby maximum likelihood) areplotted
as points overlaying the barplot.
We needto useX � 1 + PoissonbecauseX cannot take the value 0.
The �t of the Poissondistribution is quitegood.
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In this example we can not say that the Poissondistribution represents the
number of events in a �xed time or space:instead,it is beingusedasasubjective
modelfor word length.

Can a Poissondistribution �t any data? The answer is no: in fact thePoisson
distribution is very in�e xible.
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Hereare stroke counts from 13061
Chinesecharacters. X is the number
of strokesin a randomly chosen
character. The best-�tting Poisson
distribution (foundby MLE)
is overlaid.

The �t of the Poissondistribution is
awful.

It turns out, however, that the Chinese
stroke distribution is well-described by
aNegative Binomialmodel.
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Stroke counts from 13061 Chinese characters

The best-�tting Negative

Binomial distribution

(foundby MLE)
is NegBin(k = 23:7; p = 0:64).

The �t is very good.

However, X doesnot

represent the number

of failures before

the k'th success:

the NegBin is a

subjective model.
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Chapter 4: Con tin uous Random Variables

4.1 In tro duction

When Mozart performedhis opera Die Entf•uhrung aus dem
Serail, the Emperor JosephII respondedwryly, `Too many
notes,Mozart!'

In this chapter we meet a di�eren t problem: toomany numbers!

We have met discr ete random variables, for which we can list all the values
andtheirprobabilities,evenif thelist is in�nite:

e.g. for X � Geometric(p);
x 0 1 2 . . .

f X (x) = P(X = x) p pq pq2 . . .

But supposethat X takesvaluesin a continuousset,e.g.[0; 1 ) or (0; 1).

We can't even begin to list all the valuesthat X can take. For example,how
would you list all the numbers in the interval [0; 1]?

� the smallest number is 0, but what is the next smallest? 0:01? 0:0001?
0:0000000001?We just end up talking nonsense.

In fact, there are so many numbers in any continuous set that eachof them
musthave probability0.

If there wasa probabilit y > 0 for all the numbers in a continuousset, however
`small', there simply wouldn't be enoughprobabilit y to go round.

A continuousrandomvariabletakesvalues
in acontinuousinterval (a; b).

It describesa continuouslyvaryingquantitysuchastime or height.
WhenX is continuous,P(X = x) = 0 for ALL x.

Theprobabilityfunctionis meaningless.

Although wecannotassigna probabilit y to any valueof X , weareableto assign
probabilities to intervals:
eg. P(X = 1) = 0, but P(0:999� X � 1:001)canbe> 0.

This meanswe should usethedistribution function,FX (x) = P(X � x).
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The cum ulativ e distribution function, FX (x )

Recall that for discr ete random variables:

� FX (x) = P(X � x);

� FX (x) is astepfunction:
probabilityaccumulatesin discrete
steps;

� P(a < X � b) = P(X 2 (a;b]) = F (b) � F (a).

PSfrag replacements

x

FX (x)

0
1

For a continuous random variable:

� FX (x) = P(X � x);

� FX (x) is acontinuousfunction:
probabilityaccumulatescontinuously;

� As before,P(a < X � b) = P(X 2 (a;b]) = F (b) � F (a).

PSfrag replacements

x

FX (x)

0

1

However, for a continuous random variable,

P(X = a) = 0:

So it makesno di�er ence whether we say P(a < X � b) or P(a � X � b).

For acontinuousrandomvariable,

P(a < X < b) = P(a � X � b) = FX (b) � FX (a):

This is not true for a discreterandom variable: in fact,

For adiscreterandomvariablewith values0; 1; 2; : : :,

P(a < X < b) = P(a + 1 � X � b� 1) = FX (b� 1) � FX (a):

Endpointsarenot importantfor continuousr.v.s.
Endpointsarevery importantfor discreter.v.s.



142
4.2 The probabilit y densit y function

Although the cumulative distribution function givesus an interval-basedtool
for dealing with continuous random variables, it is not very good at telling us
what the distribution lookslike.
For this we usea di�eren t tool called the probabilitydensityfunction.

The probabilit y density function (p.d.f.) is the best way to describe and recog-
nisea continuousrandom variable. We useit all the time to calculateprobabil-
ities and to gain an intuitiv e feel for the shape and nature of the distribution.
Using the p.d.f. is like recognisingyour friends by their faces.You can chat on
the phone,write emailsor sendtxts to each other all day, but you never really
know a personuntil you've seentheir face.

Just like a cell-phonefor keepingin touch, the cumulativedistribution function
is a tool for facilitating our interactions with the continuous random variable.
However, we never really understand the random variable until we've seenits
`face' | the probabilit y density function. Surprisingly, it is quite di�cult to
describe exactly what the probabilit y density function is. In this section we
take sometime to motivate and describe this fundamental idea.

All-time top-ten 100m sprin t times

The histogram below shows the best 10 sprint
times from the 168all-time top male 100m
sprinters. There are 1680times in total,
representing the top 10 times up to 2002from
each of the 168sprinters. Out of interest,
hereare the summary statistics:

Min. 1st Qu. Median Mean3rd Qu. Max.
9.78 10.08 10.15 10.14 10.21 10.41

9.8 10.0 10.2 10.4
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30
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frequency
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We could plot this histogram using di�eren t time intervals:

9.8 10.0 10.2 10.4

0
20

0
40

0
60

0

0.1s intervals                                                     

time

9.8 10.0 10.2 10.4

0
10

0
20

0
30

0

0.05s intervals                                                     

time

9.8 10.0 10.2 10.4

0
50

10
0

15
0

0.02s intervals                                                     

time

9.8 10.0 10.2 10.4

0
20

40
60

80

0.01s intervals                                                     

time

We seethat eachhistogramhasbroadlythesameshape,althoughtheheightsof
thebarsandtheinterval widthsaredi� erent.

The histograms tell us the most intuitiv e thing we wish to know about the
distribution: its shape:

� the most probabletimes are closeto 10.2seconds;
� the distribution of times hasa long left tail (left skew);
� times below 10.0sand above 10.3secondshave low probability.
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We could �t a curve over any of thesehistogramsto show the desiredshape,
but the problem is that thehistogramsarenotstandardized:

� every time we changethe interval width, theheightsof thebarschange.

How can we derive a curve or function that capturesthe commonshape of the
histograms,but keepsa constant height? What should that height be?

The standardized histogram

We now focuson an idealized (smooth) versionof the sprint times distribution,
rather than using the exact 1680sprint times observed.

We are aiming to derive a curve, or function, that captures the shape of the
histograms,but will keepthe sameheight for any choiceof histogrambar width.

First idea: plot the probabilities instead of the frequencies.

The heightof eachhistogrambar now representsthe probability of gettingan
observationin thatbar.
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This doesn't work, becausethe height(probability) still dependsuponthe bar
width. Widerbarshave higherprobabilities.
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Second idea: plot the probabilities divided by bar width.

The heightof eachhistogrambar now representsthe probability of gettingan
observationin thatbar, dividedby thewidth of thebar.
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This seemsto be exactly what we need! Thesamecurve �ts nicely over all the
histogramsandkeepsthesameheightregardlessof thebarwidth.

Thesehistogramsare called standardizedhistograms.

The nice-�tting curve is theprobabilitydensityfunction.

But. . . what is it?!
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The probabilit y densit y function

We have seenthat there is a singlecurve that �ts nicely over any standardized
histogram from a given distribution.

This curve is called the probability density function (p.d.f.).

We will write the p.d.f. of a continuousrandom variable X as p:d:f : = f X (x).

The p.d.f. f X (x) is clearly NOT theprobabilityof x — for example,in thesprint
timeswecanhave f X (x) = 4, soit is de�nitely NOT a probability.

However, as the histogram bars of the standardizedhistogram get narrower,
the bars get closerand closerto the p.d.f. curve. The p.d.f. is in fact the limit
of thestandardizedhistogramasthebarwidth approacheszero.

What is the heigh t of the standardized histogram bar?

For an interval from x to x + t, the standardizedhistogramplots theprobability
of anobservationfalling betweenx andx + t, dividedby thewidth of theinterval,
t.

Thus the height of the standardizedhistogram bar over the interval from x to
x + t is:

probability
interval width

=
P(x � X � x + t)

t
=

FX (x + t) � FX (x)
t

;

whereFX (x) is thecumulativedistribution function.

Now considerthe limit as the histogram bar width (t) goes to 0: this limit is
DEFINEDTO BE theprobabilitydensityfunctionat x, f X (x):

f X (x) = lim
t! 0

�
FX (x + t) � FX (x)

t

�
by de�nition.

This expressionshould look familiar: it is thederivative of FX (x).
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The probabilit y density function (p.d.f.) is therefore thefunction

f X (x) = F 0
X (x):

It is de�ned to be a single,unchangingcurve that describesthe SHAPEof any
histogramdrawn from thedistributionof X .

Formal de�nition of the probabilit y densit y function

De�nition: Let X bea continuousrandomvariablewith distribution function FX (x).
The probabilit y densit y function (p.d.f.) of X is de�ned as

f X (x) =
dFX

dx
= F 0

X (x):

It gives:
� theRATE atwhichprobabilityis accumulatingatany givenpoint,F 0

X (x);

� theSHAPEof thedistributionof X .

Using the probabilit y densit y function to calculate probabilities

As well asshowing us the shapeof the distribution of X , the probabilit y density
function hasanother major use:

� it calculatesprobabilitiesby integration.

Supposewe want to calculateP(a � X � b).

We already know that: P(a � X � b) = FX (b) � FX (a):

But we alsoknow that:
dFX

dx
= f X (x);

so FX (x) =
Z

f X (x) dx (withoutconstants):

In fact: FX (b) � FX (a) =
Z b

a
f X (x) dx:
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This is a very important result:

Let X bea continuousrandomvariablewith probabilit y density function f X (x).
Then

P(a � X � b) = P(X 2 [ a;b] ) =
Z b

a
f X (x) dx :

This meansthat we cancalculateprobabilitiesby integratingthep.d.f.

a b

PSfrag replacements

x

f X (x)

P(a � X � b) is the AREA under
the curve f X (x) betweena and b.

The total area under the p.d.f. curv e is:

totalarea =
Z 1

�1
f X (x) dx = FX (1 ) � FX (�1 ) = 1 � 0 = 1:

This says that the total areaunder the p.d.f. curve is equal to the total proba-
bilit y that X takesa value between�1 and + 1 , which is 1.

PSfrag replacements

x

f X (x)

total areaunder the curve f X (x)
is 1 :

R1
�1 f X (x) dx = 1.
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Using the p.d.f. to calculate the distribution function, FX (x )

Supposeweknow the probabilit y density function, f X (x), and wish to calculate
the distribution function, FX (x). We usethe following formula:

Distribution function, FX (x) =
Z x

�1
f X (u) du.

Pro of:

Z x

�1
f (u)du = FX (x) � FX (�1 ) = FX (x) � 0 = FX (x):

Using the dumm y variable, u :

Writing FX (x) =
Z x

�1
f X (u) du means:

integratef X (u) asu rangesfrom �1 to x.

PSfrag replacements

ux

f X (u)

FX (x) = P(X � x)

Writing FX (x) =
Z x

�1
f X (x) dx is WRONGandMEANINGLESS:youwill LOSE

A MARK every time.

In words,
Rx

�1 f X (x) dx means: integratef X (x) asx rangesfrom �1 to x. It' s
nonsense!

How can x rangefrom �1 to x?!
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Wh y do we need f X (x )? Wh y not stic k with FX (x )?

Thesegraphsshow FX (x) and f X (x) from the men's100msprint times (X is a
random top ten 100msprint time).
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Just usingFX (x) givesus very little intuition about the problem. For example,
which is the region of highest probabilit y?

Using the p.d.f., f X (x), we can seethat it is about 10.1to 10.2seconds.

Using the c.d.f., FX (x), we would have to inspectthepartof thecurve with the
steepestgradient:verydi� cult to see.

Example of calculations with the p.d.f.

Let f X (x) =
�

k e� 2x for 0 < x < 1 ;
0 otherwise.

x

f(x)

0

(i) Find the constant k.

(ii) Find P(1 < X � 3).

(iii) Find the cumulative distribution function, FX (x), for all x.

(i) Weneed:
Z 1

�1
f X (x) dx = 1

Z 0

�1
0dx +

Z 1

0
k e� 2x dx = 1

k
�

e� 2x

� 2

� 1

0
= 1
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� k
2

(e�1 � e0) = 1

� k
2

(0 � 1) = 1

k = 2:

(ii)
P(1 < X � 3) =

Z 3

1
f X (x) dx

=
Z 3

1
2e� 2x dx

=
�

2e� 2x

� 2

� 3

1

= � e� 2� 3 + e� 2� 1

= 0:132:

(iii)

FX (x) =
Z x

�1
f X (u) du

=
Z 0

�1
0du +

Z x

0
2e� 2u du for x > 0

= 0 +
�

2e� 2u

� 2

� x

0

= � e� 2x + e0

= 1 � e� 2x for x > 0:

Whenx � 0, FX (x) =
Rx

�1 0du = 0:

Sooverall,

FX (x) =
�

0 for x � 0;
1 � e� 2x for x > 0:
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Total area under the p.d.f. curv e is 1:
Z 1

�1
f X (x) dx = 1:

The p.d.f. is NOT a probabilit y: f X (x) � 0 always,
but we doNOT requiref X (x) � 1.

Calculating probabilities:

1. If you only needto calculate one probabilit y P(a � X � b): integratethe
p.d.f.:

P(a � X � b) =
Z b

a
f X (x) dx:

2. If you will need to calculate several probabilities, it is easiestto �nd the
distribution function,FX (x):

FX (x) =
Z x

�1
f X (u) du:

Then use: P(a � X � b) = FX (b) � FX (a) for any a, b.

Endp oin ts: DO NOT MATTER for continuousrandomvariables:

P(X � a) = P(X < a) and P(X � a) = P(X > a) :



4.3 The Exp onential distribution
16 Oct
2006? 9 Jun2074?

5 Nov

2345?

When will the next volcanoerupt in
Auckland? We never quite answered
this question in Chapter 3. The Poisson
distribution wasusedto count the
numberof volcanoesthatwouldoccurin a �x edspaceof time.

We have not said how long we have to wait for the next volcano: this is a
continuousrandomvariable.

Auc kland Volcano es

About 50 volcanic eruptions have occurred in Auckland over the last 100,000
years or so. The �rst two eruptions occurred in the Auckland Domain and
Albert Park | right underneath us! The most recent, and biggest, eruption
wasRangitoto, about 600yearsago. There havebeenabout 20eruptions in the
last 20,000years,which hasled the Auckland RegionalCouncil to assesscurrent
volcanic risk by assumingthat volcaniceruptions in Auckland follow a Poisson
processwith rate � = 1

1000 volcanoesper year. For background information, see:
www.arc.govt.n z/ ar c/ envi ronment /h azards/v ol canoes-o f-a uckl and/ .

Distribution of the waiting time in the Poisson pro cess

The length of time betweenevents in the Poissonprocessis called the waiting
time.

To �nd the distribution of a continuous random variable, we often work with
the cumulativedistribution function,FX (x).

This is becauseFX (x) = P(X � x) gives us a probability, unlike the p.d.f.
f X (x). We are comfortablewith handling and manipulating probabilities.

Supposethat f N t : t > 0g forms a Poissonprocesswith rate � = 1
1000.

N t is the numberof volcanoesto have occurredby time t, startingfrom now.

We know that

N t � Poisson(�t ) ; soP(N t = n) =
(�t )n

n!
e� �t :
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Let X bea continuousrandomvariablegiving the numberof yearswaitedbefore
thenext volcano,startingnow. We will derive an expressionfor FX (x).

(i) When x < 0:

FX (x) = P(X � x) = P( lessthan0 timebeforenext volcano) = 0:

(ii) When x � 0:

FX (x) = P(X � x) = P(amountof time waitedfor next volcanois � x)

= P(thereis at leastonevolcanobetweennow andtime x)

= P(# volcanoesbetweennow andtimex is � 1)

= P(Nx � 1)

= 1 � P(Nx = 0)

= 1 �
(�x )0

0!
e� �x

= 1 � e� �x :

Overall: FX (x) = P(X � x) =
�

1 � e� �x for x � 0;
0 for x < 0:

The distribution of the waiting time X is called the Exponentialdistribution
becauseof the exponential formula for FX (x).

Example: What is the probabilit y that there will be a volcaniceruption in Auck-
land within the next 50 years?

Put � = 1
1000. WeneedP(X � 50).

P(X � 50) = FX (50) = 1 � e� 50=1000 = 0:049:

There is about a 5%chancethat there will be a volcaniceruption in Auckland
over the next 50 years. This is the �gure given by the Auckland Regional
Council at the above web link (under `Future Hazards').
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The Exp onential Distribution

We have de�ned the Exponential( � ) distribution to be the distribution of the
waiting time (timebetweenevents)in aPoissonprocesswith rate� .

We write X � Exponential(� ), or X � Exp(� ):

However, just like the Poissondistribution, the Exponential distribution has
many other applications: it doesnot alwayshaveto arisefrom a Poissonprocess.

Let X � Exponential (� ). Note: � > 0 always.

Distribution function: FX (x) = P(X � x) =
�

1 � e� �x for x � 0;
0 for x < 0:

Probabilit y densit y function: f X (x) = F 0
X (x) =

�
�e � �x for x � 0;
0 for x < 0:

P.d.f., f X (x) C.d.f.,FX (x) = P(X � x).

Link with the Poisson pro cess

Let f N t : t > 0g be a Poissonprocesswith rate � . Then:

� N t is the number of events to occur by time t;

� N t � Poisson(�t ) ; soP(N t = n) = (�t )n

n! e� �t ;

� De�ne X to be either the time till the �rst event, or the time from now
until the next event, or the time betweenany two events.

Then X � Exponential(� ):
X is called the waiting time of theprocess.



Memorylessness

zzzz

Memory likea sieve!

We have said that the waiting time of the
Poissonprocesscan be de�ned either as
the time from the start to the �rst event,
or the time from now until the next event,
or the time betweenany two events.

All of thesequantities have the samedistribution: X � Exponential(� ):

The derivation of the Exponential distribution wasvalid for all of them, because
events occur at a constant averagerate in the Poissonprocess.

This property of the Exponential distribution is called memorylessness:

� the distribution of the time from now until the �rst event is the sameas
the distribution of the time from the start until the �rst event: the time
from thestarttill now hasbeenforgotten!

time from start to first event

time from now to first eventthis time forgotten

START NOW FIRST
EVENT

The Exponential distribution is famousfor this memorylessproperty: it is the
only memorylessdistribution.

For volcanoes,memorylessnessmeansthat the600yearswe have waitedsince
Rangitotoeruptedhave countedfor nothing.

The chancethat we still have 1000years to wait for the next eruption is the
sametoday as it was 600yearsagowhen Rangitoto erupted.

Memorylessnessapplies to any Poissonprocess. It is not always a desirable
property: you don't want a memorylesswaiting time for your bus!

The Exponential distribution is often usedto model failure timesof components:
for exampleX � Exponential (� ) is the amount of time beforea light bulb fails.
In this case,memorylessnessmeansthat `old is as good as new' | or, put
another way, `newis as bad as old' ! A memorylesslight bulb is quite likely to
fail almost immediately.
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For priv ate reading: pro of of memorylessness

Let X � Exponential (� ) be the total time waited for an event.

Let Y be the amount of extra time waited for the event, given that we have
already waited time t (say).

We wish to prove that Y has the samedistribution as X , i.e. that the time t
already waited has been `forgotten'. This meanswe needto prove that Y �
Exponential (� ):

Pro of: We will work with FY (y) and prove that it is equalto 1� e� �y . This proves
that Y is Exponential (� ) like X .

First note that X = t + Y, becauseX is the total time waited, and Y is the time
waited after time t. Also, we must condition on the event f X > tg, becausewe
know that we have alreadywaited time t. SoP(Y � y) = P(X � t + y j X > t):

FY (y) = P(Y � y) = P(X � t + y j X > t)

=
P(X � t + y AND X > t)

P(X > t)
(de�nition of conditional probabilit y)

=
P(t < X � t + y)

1 � P(X � t)

=
FX (t + y) � FX (t)

1 � FX (t)

=
(1 � e� � (t+ y)) � (1 � e� �t )

1 � (1 � e� �t )

=
e� �t � e� � (t+ y)

e� �t

=
e� �t (1 � e� �y )

e� �t

= 1 � e� �y : SoY � Exponential (� ) as required.

Thus the conditional probabilit y of waiting time y extra, given that we have
already waited time t, is the sameasthe probabilit y of waiting time y in total.
The time t already waited is forgotten. �
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4.4 Lik eliho od and estimation for contin uous random variables

� For discreterandomvariables,wefound the likelihood usingthe probability
function,f X (x) = P(X = x):

� For continuous random variables, we �nd the likelihood using the proba-
bility densityfunction,f X (x) = dFX

dx .

� Although the notation f X (x) meanssomethingdi� erentfor continuousand
discreterandomvariables,it is usedin exactly thesameway for likelihood
andestimation.

Note: Both discreteand continuousr.v.s have the samede�nition for the cumula-
tiv e distribution function: FX (x) = P(X � x).

Example: Exp onential lik eliho od

Supposethat:

� X � Exponential(� );

� � is unknown;

� theobservedvalueof X is x.

Then the likelihood function is:

L(� ; x) = f X (x) = �e � �x for 0 < � < 1 :

We estimate � by setting
dL
d�

= 0 to �nd theMLE, �̂ .

Tw o or more indep endent observations

Supposethat X 1; : : : ; X n are continuousrandom variablessuch that:

� X 1; : : : ; X n areINDEPENDENT;

� all theX i shave thesamep.d.f.,f X (x);

then the likelihood is
f X (x1)f X (x2) : : : f X (xn):
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Example: Supposethat X 1; X 2; : : : ; X n areindependent, andX i � Exponential (� )

for all i . Find the maximum likelihood estimateof � .

lambda
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el

ih
oo

d
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0

0.
00

2
0.

00
4

Likelihood graph shown
for � = 2 and n = 10.
x1; : : : ; x10 generated
by R command
rexp(10, 2) .

Solution: L(� ; x1; : : : ; xn) =
nY

i =1

f X (x i )

=
nY

i =1

�e � �x i

= � ne� �
P n

i =1 x i for 0 < � < 1 :

De�ne x = 1
n

P n
i=1 x i to bethesamplemeanof x1; : : : ; xn. So

nX

i =1

x i = nx:

Thus
L(� ; x1; : : : ; xn) = � ne� �n x for 0 < � < 1 :

Solve
dL
d�

= 0 to �nd theMLE of � :

dL
d�

= n� n� 1e� �n x � � n � nx � e� �n x = 0

n� n� 1e� �n x(1 � � x) = 0

) � = 0; � = 1 ; � =
1
x

:

TheMLE of � is
�̂ =

1
x

:
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4.5 Hyp othesis tests

Hypothesistests for continuousrandom variablesare just like hypothesistests
for discreterandom variables. The only di�erence is:

� endpointsmatterfor discreterandomvariables,but not for continuousran-
domvariables.

Example: discr ete. SupposeH0 : X � Binomial(n = 10; p = 0:5), and we have
observed the value x = 7. Then the upper-tail p-value is

P(X � 7) = 1 � P(X � 6) = 1 � FX (6):

Example: continuous. SupposeH0 : X � Exponential (2), and we have ob-
served the value x = 7. Then the upper-tail p-value is

P(X � 7) = 1 � P(X � 7) = 1 � FX (7):

Other than this trap, the procedurefor hypothesistesting is the same:

� UseH0 to specify the distribution of X completely, and o�er a one-tailed
or two-tailed alternative hypothesisH1.

� Make observation x.

� Find the one-tailed or two-tailed p-value as the probabilit y of seeingan
observation at least as weird as what we have seen,if H 0 is true.

� That is, �nd the probabilit y under the distribution speci�ed by H 0 of seeing
an observation further out in the tails than the value x that we have seen.

Example with the Exp onential distribution

A very very old personobserves that the waiting time from Rangitoto to the
next volcanic eruption in Auckland is 1500 years. Test the hypothesis that
� = 1

1000 against the one-sidedalternative that � < 1
1000.

Note: If � < 1
1000, we would expect to seeBIGGER valuesof X , NOT smaller.

This is becauseX is the time betweenvolcanoes, and � is the rate at which
volcanoesoccur. A smaller value of � meansvolcanoesoccurlessoften,sothe
time X betweenthemis BIGGER.
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Hyp otheses: Let X � Exponential(� ).

H0 : � =
1

1000

H1 : � <
1

1000
one-tailedtest

Observ ation: x = 1500years.

Values weirder than x = 1500 years: all valuesBIGGERthanx = 1500.

p-value: P(X � 1500)whenX � Exponential(� = 1
1000):

So

p � value = P(X � 1500)

= 1 � P(X � 1500)

= 1 � FX (1500) whenX � Exponential(� = 1
1000)

= 1 � (1 � e� 1500=1000)

= 0:223:

R command: 1-pexp(1500, 1/1000)

In terpretation: Thereis no evidenceagainstH0. Theobservationx = 1500
yearsis consistentwith thehypothesisthat � = 1=1000, i.e. thatvolcanoeserupt
onceevery 1000yearsonaverage.

0
0.

00
02

0.
00

06
0.

00
10

x
0 1000 2000 3000 4000 5000

f(
x)
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4.6 Exp ectation and variance

Remember the expectation of a discr ete random variable is thelong-termav-
erage:

� X = E(X ) =
X

x

xP(X = x) =
X

x

xf X (x):

(For each value x, we add in the value and multiply by the proportion of times
we would expect to seethat value: P(X = x).)

For a continuous random variable, replacethe probability function with the
probabilitydensityfunction,andreplace

P
x by

R1
�1 :

� X = E(X ) =
Z 1

�1
xf X (x) dx;

wheref X (x) = F 0
X (x) is theprobabilitydensityfunction.

Note: There exists no concept of a `probability function' f X (x) = P(X = x) for
continuous random variables. In fact, if X is continuous, then P(X = x) = 0
for all x.

The idea behind expectation is the samefor both discreteand continuousran-
dom variables. E(X ) is:

� the long-term averageof X ;

� a `sum' of valuesmultiplied by how commonthey are:P
xf (x) or

R
xf (x) dx.

Expectation is also the

balancepoint of f X (x)

for both continuousand

discreteX .

Imagine f X (x) cut out of

cardboard and balanced

on a pencil.
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Discrete: Con tin uous:

E(X ) =
X

x

xf X (x) E(X ) =
Z 1

�1
xf X (x) dx

E(g(X )) =
X

x

g(x)f X (x) E(g(X )) =
Z 1

�1
g(x)f X (x) dx

Transform the values, Transform the values,
leave the probabilities alone; leave the probabilit y density alone.

f X (x) = P(X = x) f X (x) = F 0
X (x) (p.d.f.)

Variance

If X is continuous,its varianceis de�ned in exactly the sameway asa discrete
random variable:

Var(X ) = � 2
X = E

�
(X � � X )2

�
= E(X 2) � � 2

X = E(X 2) � (EX )2:

For a continuousrandom variable, we can either compute the varianceusing

Var(X ) = E
�

(X � � X )2
�

=
Z 1

�1
(x � � X )2f X (x)dx,

or

Var(X ) = E(X 2) � (EX )2 =
Z 1

�1
x2f X (x)dx � (EX )2.

The secondexpressionis usually easier(although not always).



164
Prop erties of exp ectation and variance

All properties of expectation and varianceare exactly thesamefor continuous
anddiscreterandomvariables.

For any random variables,X , Y, and X 1; : : : ; X n, continuous or discrete,and
for constants a and b:

� E(aX + b) = aE(X ) + b.

� E(ag(X ) + b) = aE(g(X )) + b.

� E(X + Y) = E(X ) + E(Y).

� E(X 1 + : : : + X n) = E(X 1) + : : : + E(X n).

� Var(aX + b) = a2Var(X ).

� Var(ag(X ) + b) = a2Var(g(X )) .

The following statements are generallytrue only whenX andY are
INDEPENDENT:

� E(X Y) = E(X )E(Y) whenX , Y independent.

� Var(X + Y) = Var(X ) + Var(Y) whenX , Y independent.

4.7 Exp onential distribution mean and variance

When X � Exponential (� ), then:

E(X ) = 1
� Var(X ) = 1

� 2 :

Note: If X is the waiting time for a Poissonprocesswith rate � events per year
(say), it makessensethat E(X ) = 1

� . For example, if � = 4 events per hour,
the averagetime waited betweenevents is 1

4 hour.
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Pro of : E(X ) =

R1
�1 xf X (x) dx =

R1
0 x�e � �x dx:

Integrationby parts:recallthat
R

udv
dx dx = uv �

R
vdu

dx dx.

Let u = x, so du
dx = 1, andlet dv

dx = �e � �x , so v = � e� �x .

Then E(X ) =
Z 1

0
x�e � �x dx =

Z 1

0
u

dv
dx

dx

=
h
uv

i 1

0
�

Z 1

0
v

du
dx

dx

=
h

� xe� �x
i 1

0
�

Z 1

0
(� e� �x ) dx

= 0 +
�

� 1
� e� �x

� 1
0

= � 1
� � 0 �

�
� 1

� � e0
�

) E(X ) = 1
� :

Variance: Var(X ) = E(X 2) � (EX )2 = E(X 2) � 1
� 2 .

Now E(X 2) =
Z 1

�1
x2f X (x) dx =

Z 1

0
x2�e � �x dx.

Let u = x2, so du
dx = 2x, and let dv

dx = �e � �x , so v = � e� �x .

Then E(X 2) =
h
uv

i 1

0
�

Z 1

0
v

du
dx

dx =
h

� x2e� �x
i 1

0
+

Z 1

0
2xe� �x dx

= 0 +
2
�

Z 1

0
�xe � �x dx

=
2
�

� E(X ) =
2
� 2

:

So Var(X ) = E(X 2) � (EX )2 =
2
� 2 �

�
1
�

� 2

Var(X ) =
1
� 2

: �
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In terlude: Guess the Mean, Median, and Variance

For any distribution:

� the mean is the aver age that would be obtained if a large number of
observations weredrawn from the distribution;

� the median is the half-way point of the distribution: every observation
hasa 50-50chanceof being above the medianor below the median;

� the varianc e is the aver age squar ed distanc e of an observation from
the mean.

Given the probabilit y density function of a distribution, we should be able to
guessroughly the distribution mean,median,and variance. . . but it isn't easy!
Have a go at the examplesbelow. As a hint:

� the mean is the balanc e-point of the distribution. Imaginethat the p.d.f.
is madeof cardboard and balancedon a rod. The meanis the point where
the rod would have to be placedfor the cardboard to balance.

� the median is the half-way point, so it divides the p.d.f. into two equal
areasof 0.5 each.

� the varianc e is the averagesquar ed distanceof observations from the
mean;soto get a rough guess(not exact), it is easiestto guessan average
distancefrom the meanand squareit.

x

0 50 100 150 200 250 300

0.
0

0.
00

4
0.

00
8

0.
01

2

f(x)

Guessthe mean,median,and variance.

(answersoverleaf)
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A nswers:

x

0 50 100 150 200 250 300

0.
0

0.
00

4
0.

00
8

0.
01

2

f(x)

median (54.6)

mean (90.0)

variance = (118)  = 139242

Notes: The mean is larger than the median. This always happenswhen the dis-
tribution hasa long right tail (positive skew) like this one.
The varianceis huge . . . but whenyou look at the numbersalongthe horizontal
axis, it is quite believable that the averagesquareddistanceof an observation
from the mean is 1182. Out of interest, the distribution shown is a Lognormal
distribution.

Example 2: Try the sameagain with the example below. Answers are written
below the graph.

x

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f(x)

Answers:Median=0.693;Mean=1.0;Variance=1.0.
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4.8 The Uniform distribution

X hasa Uniform distribution on the in terv al [a; b] if X is equallylikely
to fall anywherein theinterval [a;b].

We write X � Uniform[a;b], or X � U[a;b]:
Equivalently, X � Uniform(a;b), or X � U(a;b):

Probabilit y densit y function, f X (x )

If X � U[a;b]; then

f X (x) =

8
<

:

1
b� a

if a � x � b;

0 otherwise.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

PSfrag replacements

x

f X (x)

a b

1
b� a

Distribution function, FX (x )

FX (x) =
Z x

�1
f Y (y) dy =

Z x

a

1
b� a

dy if a � x � b

=
�

y
b� a

� x

a

=
x � a
b� a

if a � x � b:

Thus

FX (x) =

8
><

>:

0 if x < a;
x� a
b� a if a � x � b;

1 if x > b:
�������
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�������

�������

�������

�������
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PSfrag replacements

x

FX (x)

a b

1

0
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Mean and variance:

If X � Uniform[a;b]; E(X ) =
a + b

2
; Var(X ) =

(b� a)2

12
:

Pro of :
E(X ) =

Z 1

�1
xf (x) dx =

Z b

a
x

�
1

b� a

�
dx =

1
b� a

�
x2

2

� b

a

=
�

1
b� a

�
�

1
2

(b2 � a2)

=
�

1
b� a

�
1
2

(b� a)(b+ a)

=
a + b

2
:

Var(X ) = E[(X � � X )2] =
Z b

a

(x � � X )2

b� a
dx =

1
b� a

�
(x � � X )3

3

� b

a

=
�

1
b� a

� �
(b� � X )3 � (a � � X )3

3

�

But � X = EX = a+ b
2 , so b� � X = b� a

2 and a � � X = a� b
2 .

So,

Var(X ) =
�

1
b� a

� �
(b� a)3 � (a � b)3

23 � 3

�
=

(b� a)3 + (b� a)3

(b� a) � 24

=
(b� a)2

12
: �

Example: let X � Uniform[0; 1]. Then

f X (x) =
�

1 if 0 � x � 1
0 otherwise.

� X = E(X ) = 0+1
2 = 1

2 (half-way throughinterval [0; 1]):

� 2
X = Var(X ) = 1

12(1 � 0)2 = 1
12:
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4.9 The Change of Variable Technique: �nding the distribution of g(X )

Let X be a continuousrandom variable. Suppose

� thep.d.f.of X , f X (x), is known;

� ther.v. Y is de�ned asY = g(X ) for somefunctiong;

� wewish to �nd thep.d.f.of Y .

We usethe Changeof Variabletechnique.

Example: Let X � Uniform(0; 1), and let Y = � log(X ).

The p.d.f. of X is f X (x) = 1 for 0 < x < 1.

What is the p.d.f. of Y , f Y (y)?

Change of variable technique for monotone functions

Supposethat g(X ) is a monotonefunctionR ! R.

This meansthat g is anincreasingfunction,or g is a decreasingf n.

When g is monotone,it is invertible, or (1–1)(`one-to-one').

That is, for every y thereis auniquex suchthatg(x) = y.

This meansthat the inversefunction, g� 1(y), is well-de�ned asa function for a
certain rangeof y.

When g : R ! R, as it is here, then g can only be (1{1) if it is monotone.

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PSfrag replacements

y = g(x ) = x 2 x = g� 1(y ) =
p

y
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Change of Variable form ula

Let g : R ! R be a monotonefunction and let Y = g(X ). Then thep.d.f. of
Y = g(X ) is

f Y (y) = f X (g� 1(y))
�
�
� d

dyg� 1(y)
�
�
� .

Easy way to remem ber

Write y = y(x)(= g(x))
) x = x(y)(= g� 1(y))

Then f Y (y) = f X
�

x(y)
� �

�
� dx

dy

�
�
�.

Working for change of variable questions

1) Show youhave checkedg(x) is monotoneover therequiredrange.

2) Write y = y(x) for x in <rangeof x>, e.g.for a < x < b.

3) Sox = x(y) for y in <rangeof y>:
for y(a) < y(x) < y(b) if y is increasing;
for y(a) > y(x) > y(b) if y is decreasing.

4) Then
�
�
�
dx
dy

�
�
� = <expressioninvolving y>.

5) So f Y (y) = f X (x(y))
�
�
�
dx
dy

�
�
� by Changeof Variableformula,

= : : : .
Quoterangeof valuesof y aspartof theFINAL answer.
Refer back to the questionto �nd f X (x): you often have to deducethis from
informationlike X � Uniform(0; 1) or X � Exponential(� ), or it maybegiven
explicitly.
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Note: Thereshouldbeno x 's left in theanswer!

x(y) and
�
�
�
dx
dy

�
�
� areexpressionsinvolving y only.

Example 1: Let X � Uniform(0; 1), and let
Y = � log(X ). Find the p.d.f. of Y .

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

y = -log(x)

1) y(x) = � log(x) is monotonedecreasing,
sowecanapplytheChangeof Variableformula.

2) Let y = y(x) = � logx for 0 < x < 1:

3) Thenx = x(y) = e� y for � log(0) > y > � log(1); ie. 0 < y < 1 :

4)

�
�
�
�
dx
dy

�
�
�
� =

�
�
�
�

d
dy

(e� y)

�
�
�
� =

�
� � e� y

�
� = e� y for 0 < y < 1 :

5) So f Y (y) = f X (x(y))

�
�
�
�
dx
dy

�
�
�
� for 0 < y < 1

= f X (e� y)e� y for 0 < y < 1 :

But X � Uniform(0; 1), so f X (x) = 1 for 0 < x < 1,
) f X (e� y) = 1 for 0 < y < 1 :

Thusf Y (y) = f X (e� y)e� y = e� y for 0 < y < 1 : SoY � Exponential(1):

Note: In changeof variable questions, you losea markfor:
1. notstatingg(x) is monotoneover therequiredrangeof x;

2. not giving the rangeof y for which the result holds, as part of the �nal
answer. (eg. f Y (y) = : : : for 0 < y < 1 ).
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Example 2: Let X be a continuousrandom variable with p.d.f.

f X (x) =

( 1
4x3 for 0 < x < 2;

0 otherwise:

Let Y = 1=X. Find the probabilit y density function of Y, f Y (y).

Let Y = 1=X . Thefunctiony(x) = 1=x is monotonedecreasingfor 0 < x < 2,
sowecanapplytheChangeof Variableformula.

Let y = y(x) = 1=x for 0 < x < 2.

Then x = x(y) = 1=y for 1
0 > y > 1

2; i.e. 1
2 < y < 1 .

�
�
�
�
dx
dy

�
�
�
� = j � y� 2 j = 1=y2 for 1

2 < y < 1 .

Changeof variableformula: f Y (y) = f X (x(y))

�
�
�
�
dx
dy

�
�
�
�

=
1
4

(x(y))3
�
�
�
�
dx
dy

�
�
�
�

=
1
4

�
1
y3 �

1
y2

=
1

4y5 for
1
2

< y < 1 :

Thus

f Y (y) =

8
><

>:

1
4y5 for 1

2 < y < 1 ;

0 otherwise.
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For mathematicians: pro of of the change of variable form ula

Separateinto caseswhereg is increasingand whereg is decreasing.

i) g increasing

g is increasingif u < w , g(u) < g(w): ~
Note that putting u = g� 1(x), and w = g� 1(y), we obtain

g� 1(x) < g� 1(y) , g(g� 1(x)) < g(g� 1(y))

, x < y;

so g� 1 is alsoan increasingfunction.

Now

FY (y) = P(Y � y) = P(g(X ) � y) = P(X � g� 1(y)) put
�

u = X ;
w = g� 1(y)

in ~ to seethis.

= FX (g� 1(y)) :

So the p.d.f. of Y is

f Y (y) =
d
dy

FY (y)

=
d
dy

FX (g� 1(y))

= F 0
X (g� 1(y))

d
dy

(g� 1(y)) (Chain Rule)

= f X (g� 1(y))
d
dy

(g� 1(y))

Now g is increasing,so g� 1 is also increasing(by overleaf), so d
dy(g� 1(y)) > 0,

and thus f Y (y) = f X (g� 1(y)) j d
dy(g� 1(y)) j as required.

ii) g decreasing, i.e. u > w ( ) g(u) < g(w). (?)

(Putting u = g� 1(x) and w = g� 1(y) gives g� 1(x) > g� 1(y) ( ) x < y,
so g� 1 is alsodecreasing.)

FY (y) = P(Y � y) = P(g(X ) � y)

= P(X � g� 1(y)) (put u = X , w = g� 1(y) in (?))

= 1 � FX (g� 1(y)) :

Thus the p.d.f. of Y is

f Y (y) =
d
dy

�
1 � FX (g� 1(y))

�
= � f X

�
g� 1(y)

� d
dy

�
g� 1(y)

�
:
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This time, g is decreasing,so g� 1 is alsodecreasing,and thus

�
d
dy

�
g� 1(y)

�
=

�
�
�
�
d
dy

�
g� 1(y)

� �
�
�
� :

So onceagain,

f Y (y) = f X

�
g� 1(y)

� �
�
�
�
d
dy

�
g� 1(y)

� �
�
�
� : �

4.10 Change of variable for non-monotone functions

Supposethat Y = g(X ) and g is not monotone. We wish to �nd the p.d.f. of
Y . We can sometimesdo this by usingthedistribution functiondirectly.

Example: Let X have any distribution, with distribution function FX (x).
Let Y = X 2. Find the p.d.f. of Y .

Clearly, Y � 0, soFY (y) = 0 if y < 0.

For y � 0:

FY (y) = P(Y � y)

= P(X 2 � y)

= P(�
p

y � X �
p

y)

= FX (
p

y) � FX (�
p

y) :

PSfrag replacements
Y

X
0

y

p
y�

p
y

So

FY (y) =
�

0 if y < 0;
FX (

p
y) � FX (�

p
y) if y � 0:
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Sothep.d.f. of Y is

f Y (y) =
d
dy

FY =
d
dy

(FX (
p

y)) �
d
dy

(FX (�
p

y))

= 1
2y� 1

2 F 0
X (

p
y) + 1

2y� 1
2 F 0

X (�
p

y)

=
1

2
p

y

�
f X (

p
y) + f X (�

p
y)

�
for y � 0:

) f Y (y) =
1

2
p

y

�
f X (

p
y) + f X (�

p
y)

�
for y � 0, whenever Y = X 2.

Example: Let X � Normal(0; 1). This is the familiar bell-shapeddistribution (see
later). The p.d.f. of X is:

f X (x) =
1

p
2�

e� x2=2:

Find the p.d.f. of Y = X 2.

By theresultabove,Y = X 2 hasp.d.f.

f Y (y) =
1

2
p

y
�

1
p

2�
(e� y=2 + e� y=2)

=
1

p
2�

y� 1=2e� y=2 for y � 0:

This is in fact the Chi-squareddistribution with � = 1 degreesof freedom.

The Chi-squareddistribution is a special caseof the Gamma distribution (see
next section). This examplehas shown that if X � Normal(0; 1), then Y =
X 2 � Chi-squared(df=1).
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4.11 The Gamma distribution

The Gamma(k; � ) distribution is a very 
exible family of distributions.

It is de�ned as the sumof k independentExponentialr.v.s:

if X 1; : : : ; X k � Exponential(� )andX 1; : : : ; X k areindependent,
thenX 1 + X 2 + : : : + X k � Gamma(k; � ):

Special Case: When k = 1, Gamma(1; � ) = Exponential(� )
(thesumof a singleExponentialr.v.)

Probabilit y densit y function, f X (x )

For X � Gamma(k; � ); f X (x) =

(
� k

�( k) x
k� 1e� �x if x � 0;
0 otherwise.

Here, �( k), called the Gamma function of k, is a constant that ensuresf X (x)

integrates to 1, i.e.
R1

0 f X (x)dx = 1: It is de�ned as �( k) =
Z 1

0
yk� 1e� y dy :

When k is an integer, �( k) = (k � 1)!

Mean and variance of the Gamma distribution:

For X � Gamma(k; � ), E(X ) = k
� and Var(X ) = k

� 2

Relationship with the Chi-squared distribution

The Chi-squareddistribution with � degreesof freedom,� 2
� , is a special caseof

the Gamma distribution.

� 2
� = Gamma(k = �

2; � = 1
2).

So if Y � � 2
� , then E(Y) = k

� = � , and Var(Y) = k
� 2 = 2� .
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Gamma p.d.f.s

PSfrag replacements

k = 2

k = 5

k = 1

Notice: right skew
(long right tail);

�e xibility in shape
controlledby the2

parameters

Distribution function, FX (x )

There is no closedform for the distribution function of the Gammadistribution.
If X � Gamma(k; � ), then FX (x) can can only be calculated by computer.

PSfrag replacements

k = 5
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Pro of that E(X ) = k
� and Var( X ) = k

� 2 (non-examinable)

EX =
Z 1

0
xf X (x) dx =

Z 1

0
x �

� kxk� 1

�( k)
e� �x dx

=

R1
0 (�x )ke� �x dx

�( k)

=

R1
0 yke� y( 1

� ) dy
�( k)

(letting y = �x; dx
dy = 1

� )

=
1
�

�
�( k + 1)

�( k)

=
1
�

�
k �( k)
�( k)

(property of the Gamma function),

=
k
�

:

Var(X ) = E(X 2) � (EX )2 =
Z 1

0
x2f X (x) dx �

k2

� 2

=
Z 1

0

x2� kxk� 1e� �x

�( k)
dx �

k2

� 2

=

R1
0 ( 1

� )( �x )k+1e� �x dx
�( k)

�
k2

� 2

=
1
� 2

�

R1
0 yk+1 e� y dy

�( k)
�

k2

� 2

�
wherey = �x;

dx
dy

=
1
�

�

=
1
� 2

�
�( k + 2)

�( k)
�

k2

� 2

=
1
� 2

(k + 1)k �( k)
�( k)

�
k2

� 2

=
k
� 2

: �
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Gamma distribution arising from the Poisson pro cess

Recall that the waiting time betweenevents in a Poissonprocesswith rate �
has the Exponential(� ) distribution.

That is, if X i =time waited betweenevent i � 1 and event i , then X i � Exp(� ).

The time waited from time 0 to the time of the kth event is

X 1 + X 2 + : : : + X k, thesumof k independentExponential(� ) r.v.s.

Thus the time waited until the kth event in a Poissonprocesswith rate � has
the Gamma(k; � ) distribution.

Note: Therearesomesimilarities betweenthe Exponential( � ) distribution and the
(discrete) Geometric(p) distribution. Both distributions describe the `waiting
time' beforean event. In the sameway, the Gamma(k; � ) distribution is similar
to the (discrete)NegativeBinomial(k; p) distribution, asthey both describe the
`waiting time' beforethe kth event.

4.12 The Beta Distribution

The Beta distribution hastwo parameters,� and � . We write X � Beta(� ; � ).

P.d.f.
f (x) =

( 1
B(� ; � ) x � � 1(1 � x) � � 1 for 0 < x < 1;

0 otherwise.

The function B(� ; � ) is the Beta function and is de�ned by the integral

B (� ; � ) =
Z 1

0
x � � 1(1 � x) � � 1 dx; for � > 0; � > 0:

It can be shown that B(� ; � ) =
�( � )�( � )
�( � + � )

:
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Chapter 5: The Normal Distribution

and the Central Limit Theorem

The Normal distribution is the familiar bell-shaped distribution. It is probably
the most important distribution in statistics, mainly becauseof its link with
the Central Limit Theorem, which states that any large sumof independent,
identicallydistributedrandomvariablesis approximatelyNormal:

X 1 + X 2 + : : : + X n � approxNormal
if X 1; : : : ; X n arei.i.d. andn is large.

Beforestudying the Central Limit Theorem,we look at the Normal distribution
and someof its generalproperties.

5.1 The Normal Distribution

The Normal distribution hastwo parameters, themean,� , andthevariance,� 2.

� and � 2 satisfy �1 < � < 1 , � 2 > 0:

We write X � Normal(�; � 2), or X � N(�; � 2).

Probabilit y densit y function, f X (x )

f X (x) =
1

p
2� � 2

ef� (x � � )2=2� 2g

for �1 < x < 1 .

Distribution function, FX (x )

There is no closedform for the distribution function of the Normal distribution.
If X � Normal(�; � 2), then FX (x) can can only be calculated by computer.
R command: FX (x) = pnorm(x, mean=� , sd=sqrt( � 2)).
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Probabilit y densit y function, f X (x )

Distribution function, FX (x )

Mean and Variance

For X � Normal(�; � 2), E(X ) = �; Var(X ) = � 2:

Linear transformations

If X � Normal(�; � 2), then for any constants a and b,

aX + b � Normal
�

a� + b; a2� 2
�

:

In particular,

X � Normal(� � 2) )
�

X � �
�

�
� Normal(0; 1).
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Pro of:

Let a =
1
�

and b= �
�
�

. Let Z = aX + b=
�

X � �
�

�
. Then

Z � Normal
�

a� + b; a2� 2
�

� Normal
�

�
�

�
�
�

;
� 2

� 2

�
� Normal(0; 1):

Z � Normal(0; 1) is called the standardNormalrandomvariable.

General pro of that aX + b � Normal
�

a� + b; a2� 2
�

:

Let X � Normal(�; � 2), and let Y = aX + b: We wish to �nd the distribution
of Y. Use thechangeof variabletechnique.

1) y(x) = ax+ b is monotone,sowecanapplytheChangeof Variabletechnique.

2) Let y = y(x) = ax + b for �1 < x < 1 :

3) Then x = x(y) = y� b
a for �1 < y < 1 :

4)

�
�
�
�
dx
dy

�
�
�
� =

�
�
�
�
1
a

�
�
�
� =

1
jaj

.

5) So f Y (y) = f X (x(y))

�
�
�
�
dx
dy

�
�
�
� = f X

�
y � b

a

�
1

jaj
: (?)

But X � Normal(�; � 2), so f X (x) =
1

p
2� � 2

e� (x� � )2=2� 2

Thus f X

�
y � b

a

�
=

1
p

2� � 2
e� ( y � b

a � � )2=2� 2

=
1

p
2� � 2

e� (y� (a� + b))2=2a2� 2
:
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Returningto (?),

f Y (y) = f X

�
y � b

a

�
�

1
jaj

=
1

p
2� a2� 2

e� (y� (a� + b))2=2a2� 2
for � 1 < y < 1 :

But this is thep.d.f.of a Normal(a� + b; a2� 2) randomvariable.

So,if X � Normal(�; � 2), then aX + b � Normal
�

a� + b; a2� 2
�

.

Sums of Normal random variables

If X and Y are independent,and X � Normal(� 1; � 2
1), Y � Normal(� 2; � 2

2),
then

X + Y � Normal
�

� 1 + � 2; � 2
1 + � 2

2

�
:

More generally, if X 1; X 2; : : : ; X n are independent, and X i � Normal(� i ; � 2
i ) for

i = 1; : : : ; n, then

a1X 1+ a2X 2+ : : :+ anX n � Normal
�

(a1� 1+ : : :+ an� n); (a2
1�

2
1+ : : :+ a2

n� 2
n)

�
:

For mathematicians: prop erties of the Normal distribution

1. Pro of that
R1

�1 f X (x ) dx = 1:

The full proof that
Z 1

�1
f X (x) dx =

Z 1

�1

1
p

2� � 2
ef� (x� � )2=(2� 2)g dx = 1

relieson the following result:

FACT:
Z 1

�1
e� y2

dy =
p

� :

This result is non-trivial to prove. SeeCalculus coursesfor details.

Using this result, the proof that
R1

�1 f X (x) dx = 1 follows by using the change

of variable y =
(x � � )

p
2�

in the integral.
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2. Pro of that E(X ) = �:

E(X ) =
Z 1

�1
xf X (x) dx =

Z 1

�1
x

1
p

2� � 2
e� (x� � )2=2� 2

dx

Changevariable of integration: let z = x� �
� : then x = � z + � and dx

dz = � :

Thus E(X ) =
Z 1

�1
(� z + � ) �

1
p

2� � 2
� e� z2=2 � � dz

=
Z 1

�1

� z
p

2�
� e� z2=2 dz

| {z }
this is an odd function of z
(i.e. g(� z) = � g(z)), so it
integrates to 0 over range

�1 to 1 .

+ �
Z 1

�1

1
p

2�
e� z2=2 dz

| {z }
p.d.f. of N (0; 1) integrates to 1.

Thus E(X ) = 0 + � � 1

= �:

3. Pro of thatV ar (X ) = � 2.

Var(X ) = E
�

(X � � )2
	

=
Z 1

�1
(x � � )2 1

p
2� � 2

e� (x� � )2=(2� 2) dx

= � 2
Z 1

�1

1
p

2�
z2 e� z2=2 dz

�
putting z =

x � �
�

�

= � 2
�

1
p

2�

h
� ze� z2=2

i 1

�1
+

Z 1

�1

1
p

2�
e� z2=2 dz

�
(integration by parts)

= � 2 f 0 + 1g

= � 2: �
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5.2 The Central Limit Theorem (CL T)

also known as. . . the Piece of Cake Theorem

The Central Limit Theorem (CLT) is one of the most fundamental results in
statistics. In its simplest form, it states that if a large number of independent
randomvariablesaredrawn from any distribution, then the distribution of their
sum (or alternatively their sample average) always convergesto the Normal
distribution.

Theorem (The Central Limit Theorem):

Let X 1; : : : ; X n be independentr.v.s with mean� andvariance� 2, from ANY
distribution.
For example,X i � Binomial(n; p) for eachi , so � = np and� 2 = np(1 � p):

Thenthe sumSn = X 1 + : : : + X n =
P n

i=1 X i hasa distribution
thattendsto Normalasn ! 1 .

The mean of the Normal distribution is E(Sn) =
P n

i=1 E(X i ) = n�:

The varianc e of the Normal distribution is

Var(Sn) = Var

 
nX

i =1

X i

!

=
nX

i =1

Var(X i ) becauseX 1; : : : ; X n areindependent

= n� 2:

So Sn = X 1 + X 2 + : : : + X n ! Normal(n�; n� 2) as n ! 1 .
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Notes:

1. This is a remarkable theorem, becausethe limit holds for any distribution
of X 1; : : : ; X n.

2. A su�cien t condition on X for the Central Limit Theorem to apply is
that Var(X ) is �nite. Other versionsof the Central Limit Theorem relax the
conditions that X 1; : : : ; X n are independent and have the samedistribution.

3. The speed of convergenceof Sn to the Normal distribution dependsupon the
distribution of X . Skewed distributions convergemore slowly than symmetric
Normal-like distributions. It is usually safeto assumethat the Central Limit
Theoremapplieswhenever n � 30. It might apply for as little as n = 4.

The Central Limit Theorem in action : simulation studies

The following simulation study illustrates the Central Limit Theorem,making
useof several of the techniqueslearnt in STATS 210. We will look particularly
at how fastthedistributionof Sn convergesto theNormaldistribution.

Example 1: Triangular distribution: f X (x) = 2x for 0 < x < 1.

PSfrag replacements

x

f (x)

0 1

2

Find E(X ) and Var(X ):

� = E(X ) =
Z 1

0
xf X (x) dx

=
Z 1

0
2x2 dx

=
�

2x3

3

� 1

0

=
2
3

:

� 2 = Var(X ) = E(X 2) � f E(X )g2

=
Z 1

0
x2f X (x) dx �

�
2
3

� 2

=
Z 1

0
2x3 dx �

4
9

=
�

2x4

4

� 1

0
�

4
9

=
1
18

:
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Let Sn = X 1 + : : : + X n whereX 1; : : : ; X n are independent.

Then
E(Sn) = E(X 1 + : : : + X n) = n� =

2n
3

Var(Sn) = Var(X 1 + : : : + X n) = n� 2 by independence

) Var(Sn) =
n
18

:

So Sn � approxNormal
�

2n
3 ; n

18

�
for largen, by theCentralLimit Theorem.

The graphshowshistogramsof 10000valuesof Sn = X 1+ : : :+ X n for n = 1; 2; 3;
and 10. The Normal p.d.f. Normal(n�; n� 2) = Normal( 2n

3 ; n
18) is superimposed

acrossthe top. Even for n as low as 10, the Normal curve is a very good
approximation.
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Example 2: U-shaped distribution: f X (x) = 3
2x2 for � 1 < x < 1.

-1 10

PSfrag replacements

x

f (x)

We �nd that E(X ) = � = 0, Var(X ) = � 2 = 3
5. (Exercise)

Let Sn = X 1 + : : : + X n whereX 1; : : : ; X n are independent.

Then

E(Sn) = E(X 1 + : : : + X n) = n� = 0

Var(Sn) = Var(X 1 + : : : + X n) = n� 2 by independence

) Var(Sn) =
3n
5

:

So Sn � approxNormal
�
0; 3n

5

�
for largen, by theCentralLimit Theorem.

Evenwith this highly non-Normaldistribution for X , the Normal curveprovides
a good approximation to Sn = X 1 + : : : + X n for n as small as 10.
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Normal appro ximation to the Binomial distribution, using the CLT

Let Y � Binomial(n; p).

We can think of Y as the sumof n Bernoulli randomvariables:

Y = X 1 + X 2 + : : : + X n, whereX i =
�

1 if trial i is a “success”(prob= p),
0 otherwise(prob= 1 � p)

So Y = X 1+ : : :+ X n andeachX i has� = E(X i ) = p; � 2 = Var(X i ) = p(1� p):

Thus by the CLT,

Y = X 1 + X 2 + : : : + X n ! Normal(n�; n� 2)

= Normal
�

np;np(1 � p)
�

:

Thus,

Bin(n; p) ! Normal
�

np|{z}
mean of Bin (n;p)

; np(1 � p)
| {z }

var of Bin (n;p)

�
as n ! 1 with p �x ed.

The Binomial distribution is thereforewell approximated by the Normal distri-
bution when n is large, for any �xed value of p.

The Normal distribution is alsoa good approximation to the Poisson(� ) distri-
bution when � is large:

Poisson(� ) ! Normal(�; � )when� is large.
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Binomial(n = 100,p = 0:5) Poisson(� = 100)

Wh y the Piece of Cake Theorem?

� The Central Limit Theorem makeswhole realmsof statistics into a piece
of cake.

� After seeinga theorem this good, you deserve apieceof cake!

Example: Remember the margin of error for an opinion poll?

An opinion pollster wishesto estimate the level of support for Labour in an
upcomingelection. Sheinterviewsn peopleabout their voting preferences.Let
p be the true, unknown level of support for the Labour party in New Zealand.
Let X be the number of of the n peopleinterviewedby the opinion pollster who
plan to vote Labour. Then X � Binomial(n; p).

At the end of Chapter 2, we said that the maximum likelihood estimator for p
is

bp =
X
n

:

In a large sample(large n), we now know that

X � approxNormal(np; npq) whereq = 1 � p.

So

bp =
X
n

� approxNormal
�

p;
pq
n

�
(lineartransformationof Normalr.v.)
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So

bp � p
p pq

n

� approxNormal(0; 1):

Now if Z � Normal(0; 1), we �nd (using a computer) that the 95% central
probabilit y region of Z is from � 1:96 to +1:96:

P(� 1:96< Z < 1:96) = 0:95:

Check in R: pnorm(1.96, mean=0, sd=1) - pnorm(-1.96, mean=0, sd=1)

Putting Z =
bp � p
p pq

n

, we obtain

P

 

� 1:96<
bp � p
p pq

n

< 1:96

!

' 0:95:

Rearranging:

P
�

bp � 1:96

r
pq
n

< p < bp + 1:96

r
pq
n

�
' 0:95:

This enablesus to form an estimated95%con�dence interval for the unknown
parameterp: estimated95%con�denceinterval is

bp � 1:96

r
bp(1 � bp)

n
to bp + 1:96

r
bp(1 � bp)

n
:

The 95% con�dence interval hasRANDOM end-points,which dependon bp.
About 95%of the time, theserandomend-pointswill enclosethetrueunknown
value,p.

Con�denceintervalsareextremelyimportant for helpingusto assesshow useful
ourestimateis.

A narrow con�dence interval suggestsausefulestimate(low variance);
a wide con�dence interval suggestsa poorestimate(highvariance).

Next time you seethe newspapersquoting the mar gin of err or on an opinion
poll:

� Remember: margin of error= 1:96
q

bp(1� bp)
n ;

� Think: CentralLimit Theorem!

� Have: apieceof cake.
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Using the Central Limit Theorem to �nd the distribution of the mean, X

Let X 1; : : : ; X n be independent, identically distributed with mean E(X i ) = �
and variance Var(X i ) = � 2 for all i .

The samplemean,X , is de�ned as:

X =
X 1 + X 2 + : : : + X n

n
:

SoX =
Sn

n
, whereSn = X 1 + : : : + X n � approxNormal(n�; n� 2) by theCLT.

BecauseX is a scalar multiple of a Normal r.v. as n grows large, X itself is
approximatelyNormalfor largen:

X 1 + X 2 + : : : + X n

n
� approxNormal

�
�;

� 2

n

�
as n ! 1 :

The following three statements of the Central Limit Theoremare equivalent:

X =
X 1 + X 2 + : : : + X n

n
� approx Normal

�
�; � 2

n

�
as n ! 1 :

Sn = X 1 + X 2 + : : : + X n � approx Normal
�
n�; n� 2

�
as n ! 1 :

Sn � n�
p

n� 2
=

X � �
p

� 2=n
� approx Normal (0; 1) as n ! 1 :

The essential point to remember about the Central Limit Theoremis that large
sumsor samplemeansof independent random variablesconvergeto a Normal
distribution, whatever thedistributionof theoriginal r.v.s.

More general version of the CLT

A more general form of CLT states that, if X 1; : : : ; X n are independent, and
E(X i ) = � i , Var(X i ) = � 2

i (not necessarilyall equal), then

Zn =
P n

i=1 (X i � � i )p P n
i=1 � 2

i

! Normal(0; 1) as n ! 1 :

Other versionsof the CLT relax the condition that X 1; : : : ; X n are independent.
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Chapter 6: Wrapping Up

Probably the two major ideasof this courseare:

� likelihood and estimation;
� hypothesistesting.

Most of the techniquesthat we have studied along the way are to help us with
these two goals: expectation, variance, distributions, changeof variable, and
the Central Limit Theorem.

Let's seehow thesedi�eren t ideasall cometogether.

6.1 What's with estimators?

We have seenthat an estimator is a capital letter replacing a small letter.
What's the point of that?

Example: Let X � Binomial(n; p) with known n and observed value X = x.
� The maximum likelihood estimateof p is bp = x

n .

� The maximum likelihood estimator of p is bp = X
n .

Example: Let X � Exponential (� ) with observed value X = x.
� The maximum likelihood estimateof � is b� = 1

x .

� The maximum likelihood estimator of � is b� = 1
X .

Why are we interestedin estimators?

The answer is that estimators ar e random variables. This meansthey
have distributions, means, and varianc es that tell us how well we can
trust our singleobservation, or estimate, from this distribution.
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Go od and bad estimators

Supposethat X 1; X 2; : : : ; X n areindependent, and X i � Exponential (� ) for all i .
� is unknown, and we wish to estimate it.

In Chapter 4 we calculatedthe maximum likelihood estimator of � :

b� =
1

X
=

n
X 1 + X 2 + : : : + X n

:

Now b� is a randomvariablewith a distribution.

For a given value of n, we can calculate the p.d.f. of b� . How?

Weknow thatT = X 1+ : : :+ X n � Gamma(n; � ) whenX i � i.i.d. Exponential(� ).

So we know thep.d.f.of T .

Now b� = n
T :

So we can �nd the p.d.f. of b� using the changeof variabletechnique.

Hereare the p.d.f.s of b� for two di� erentvaluesof n:

� Estimator 1: n = 100. 100piecesof informationabout� .

� Estimator 2: n = 10. 10piecesof informationabout� .

l

l

True
(unknown)

f( )

p.d.f. of Estimator 1

p.d.f. of Estimator 2

l

Clearly, the more information we have, the better. The p.d.f. for n = 100 is
focusedmuch more tightly about the true value � (unknown) than the p.d.f.
for n = 10.
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It is important to recognisewhat we do and don't know in this situation:

What we don't know:
� thetrue � ;

� WHEREweareon thep.d.f.curve.

What we do know:
� thep.d.f.curve;

� weknow we'reSOMEWHEREon thatcurve.

So we need an estimator such that EVERYWHERE on the estimator's p.d.f.
curve is good!

l

l

True
(unknown)

f( )

p.d.f. of Estimator 1

p.d.f. of Estimator 2

l

This is why we are soconcernedwith estimatorvariance.

A good estimator has low estimatorvariance:everywhereon the estimator's
p.d.f. curve is guaranteed to be good.

A poor estimator hashighestimatorvariance:someplaceson the estimator's
p.d.f. curve may be good, while others may be very bad. Becausewe don't
know where we are on the curve, we can't trust any estimate from this poor
estimator.

The estimator variancetells us how much the estimator can be trusted.

Note: We werelucky in this exampleto happen to know that T = X 1+ : : :+ X n �
Gamma(n; � ) when X i � i.i.d. Exponential (� ), so we could �nd the p.d.f. of
our estimator b� = n=T. We won't usually be so lucky: so what should we do?
UsetheCentralLimit Theorem!
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Example: calculating the maxim um lik eliho od estimator

The following question is in the samestyle as the examquestions.

Let X be a continuousrandom variable with probabilit y density function

f X (x) =

8
><

>:

2(s � x)
s2

for 0 < x < s ;

0 otherwise:

Here, s is a parameter to be estimated, where s is the maximum value of X
and s > 0.

(a) Show that E(X ) =
s
3

.

UseE(X ) =
Z s

0
xf X (x) dx =

2
s2

Z s

0
(sx � x2) dx:

(b) Show that E(X 2) =
s2

6
.

UseE(X 2) =
Z s

0
x2f X (x) dx =

2
s2

Z s

0
(sx2 � x3) dx:

(c) Find Var(X ).

UseVar(X ) = E(X 2) � (EX )2. Answer:Var(X ) = s2

18.

(d) Supposethat wemakea singleobservation X = x. Write down the likelihood
function, L(s ; x), and state the rangeof valuesof s for which your answer is
valid.

L(s ; x) =
2(s � x)

s2
for x < s < 1 .

s

Li
ke

lih
oo

d

3 4 5 6 7 8 9

0.
0

0.
05

0.
10

0.
15

(e) The likelihood graph for a particular value of
x is shown here.

Show that the maximum likelihood estimator
of s is bs = 2X : You should refer to the graph
in your answer.
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L(s ; x) = 2s� 2(s � x)

So
dL
ds

= 2
�

� 2s� 3(s � x) + s� 2
	

= 2s� 3(� 2(s � x) + s)

=
2
s3(2x � s):

At theMLE,
dL
ds

= 0 ) s = 1 or s = 2x:

Fromthegraph,we canseethats = 1 is not themaximum.Sos = 2x:

Thusthemaximumlikelihoodestimatoris

bs = 2X :

(f ) Find the estimator variance,Var(bs), in terms of s. Hence�nd the estimated
variance,dVar(bs), in terms of bs.

Var(bs) = Var(2X )

= 22Var(X )

= 4 �
s2

18
by (c)

Var(bs) =
2s2

9
:

Soalso: dVar(bs) =
2bs2

9
:
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(g) Supposewemakethe singleobservation X = 3. Find the maximum likelihood

estimateof s, and its estimatedvarianceand standard error.

bs = 2X = 2 � 3 = 6:

dVar(bs) =
2bs2

9
=

2 � 62

9
= 8

se(bs) =
q

dVar(bs) =
p

8 = 2:82:

This meansbs is a POORestimator:thetwice standard-errorinterval would be
6 � 2 � 2:82 to 6 + 2 � 2:82: thatis, 0:36 to 11:64 !

Taking the twice standarderror interval strictly appliesonly to the Normal
distribution,but it is ausefulruleof thumbto seehow `good' theestimatoris.

(h) Write a sentence in plain English to explain what the maximum likelihood
estimate from part (g) represents.

Thevaluebs = 6 is thevalueof s underwhich theobservationX = 3 is more
likely thanit is atany othervalueof s.

6.2 Hyp othesis tests: in search of a distribution

When wedo a hypothesistest, weneeda test statistic: somerandomvariable
with a distribution that wecanspecifyexactly underH 0 and that di�ers under
H1.

It is �nding the distribution that is the di�cult part.

� Weird coin: is my coin fair? Let X be the number of headsout of 10
tosses.X � Binomial(10; p). We have an easydistribution and can do a
hypothesistest.

� Too many daugh ters? Do divershavemoredaughters than sons?Let X
bethe numberof daughtersout of 190diver children. X � Binomial(190; p).
Easy.
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� Too long between volcano es? Let X be the length of time between

volcanic eruptions. If we assumevolcanoes occur as a Poissonprocess,
then X � Exponential (� ). We have a simpledistribution and test statistic
(X ): we can test the observed length of time betweeneruptions and seeif
it this is a believable observation under a hypothesizedvalue of � .

More advanced tests

Most things in life are not as easyas the three examplesabove.

Here are someobservations. Do they comefrom a distribution (any distribu-
tion) with mean0?

3.96 2.32 -1.81 -0.14 3.22 1.07 -0.52 0.40 0.51 1.48
1.37 -0.17 1.85 0.61 -0.58 1.54 -1.42 -0.85 1.66 1.54

Answer: yes,they are Normal(0, 4), but how can we tell?

What about these?

3.3 -30.0 -7.8 3.4 -1.3 12.6 -9.6 1.4 -6.4 -11.8
-8.1 8.1 -9.0 8.1 -13.7 -5.0 -6.6 -5.6 2.5 9.0

Again, yes they do (Normal(0, 100) this time), but how can we tell? The
unknown variance(4 versus100) interferes,sothat the secondsampledoesnot
cluster about its meanof 0 at all.

What test statistic should we use?

If we don't know that our data areNormal, and wedon't know their underlying
variance,what can we useas our X to test whether � = 0?

Answ er: a clever person called W. S. Gossett (1876-1937)worked out an
answer. He calledhimselfonly `Student', possiblybecausehe(or his employers)
wanted it to be kept secretthat he wasdoing his statistical research aspart of
his employment at GuinnessBrewery. The test that `Student' developed is the
familiar Student's t-test. It was originally developed to help Guinnessdecide
how large a sampleof peopleshould be usedin its beer tastings!
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Student usedthe following test statistic for the unknown mean, � :

T =
X � �

q P n
i =1 (X i � X )2

n(n� 1)

Under H0 : � = 0, the distribution of T is known: T hasp.d.f.

f T (t) =

 
�

�
n
2

�

p
(n � 1)� �

�
n� 1

2

�

! �
1 +

t2

n � 1

� � n=2

for � 1 < t < 1 :

T is the Student's t-distribution, derived as the ratio of a Normal random vari-
able and an independent Chi-Squaredrandom variable. If � 6= 0, observations
of T will tend to lie out in the tails of this distribution.

The Student's t-test is exactwhenthe distribution of the original data X 1; : : : ; X n

is Normal. For other distributions, it is still approximately valid in large sam-
ples,by the Central Limit Theorem.

It looks di�cult

It is! Most of the statistical tests in common use have deep(and sometimes
quite impenetrable) theory behind them. As you can probably guess,Student
did not derive the distribution above without a great deal of hard work. The
result, however, is astonishing. With the help of our best friend the Central
Limit Theorem, Student's T-statistic gives us a test for � = 0 (or any other
value) that can be usedwith any large enoughsample.

The Chi-squaredtest for testing proportions in a contingency table also has a
deeptheory, but onceresearchershad derived the distribution of a suitable
test statistic, the rest was easy. In the Chi-squaredgoodness-of-�t test, the
Pearson'schi-squaretest statistic is shown to have a Chi-squareddistribution
under H0. It produceslarger valuesunder H1.

Oneinterestingpoint to note is the pivotal role of the Central Limit Theoremin
all of this. The Central Limit Theoremproducesapproximate Normal distribu-
tions. Normal randomvariablessquaredproduceChi-squaredrandomvariables.
Normalsdivided by Chi-squaredsproducet-distributed randomvariables. A ra-
tio of two Chi-squareddistributions producesan F -distributed randomvariable.
All thesethings are not coincidental: the Centr al Limit The or em rocks!


