Chapter 3: Basic Probability Concepts

• Probability:

- is a measure (or number) used to measure the chance of the occurrence of some event. This number is between 0 and 1.
- An experiment:
- is some procedure (or process) that we do.
- Sample Space:
- The set of all possible outcomes of an experiment is called the sample space (or Universal set) and is denoted by Ω

An Event:

is a subset of the sample space Ω

$$.\phi \subseteq \Omega$$
 is an event (impossible event)

$$\Omega \subseteq \Omega$$
 is an event (sure event)

Example:

Experiment: Selecting a ball from a box containing 6 balls numbered 1,2,3,4,5 and 6.

This experiment has 6 possible outcomes

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Consider the following events:

$$E_1$$
: getting an event number= $\{2, 4, 6\} \subseteq \Omega$

$$E_2$$
: getting a number less than $4 = \{1, 2, 3\} \subseteq \Omega$

$$E_3 = getting 1 \text{ or } 3 = \{1, 3\} \subseteq \Omega$$

$$E_4$$
 =getting an odd number = $\{1, 3, 5\} \subseteq \Omega$

Notation $n(\Omega)$ = no. of outcomes (elements) in Ω

$$n(E_i) = \text{no. of outcomes (elements) in } E_i$$

Equally likely outcomes:

The outcomes of an experiment are equally likely if the occurrences of the outcomes have the same chance.

Probability of an event:

If the experiment has N equally likely outcomes, then the probability of the event E is:

$$P(E) = \frac{n(E)}{n(\Omega)} = \frac{n(E)}{N} = \frac{no. \ of \ outcomes \ in \ E}{no. \ of \ outcomes \ in \ \Omega}$$

Example: In the ball experiment in the previous example, suppose the ball is selected randomly.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
; $n(\Omega) = 6$
 $E_1 = \{2, 4, 6\}$; $n(E_1) = 3$
 $E_2 = \{1, 2, 3\}$; $n(E_2) = 3$
 $E_3 = \{1, 3\}$; $n(E_3) = 2$

The outcomes are equally likely.

:.
$$P(E_1) = \frac{3}{6}$$
, $P(E_2) = \frac{3}{6}$, $P(E_3) = \frac{2}{6}$,

Some Operations on Events:

Let A and B be two events defined on Ω

Union: $A \cup B$

 $A \cup B$ Consists of all outcomes in A or in B or in both A and B.

 $A \cup B$ Occurs if A occurs, or B occurs, or both A and B occur.

Intersection: $A \cap B$

 $A \cap B$ Consists of all outcomes in both A and B.

A A B

 $A \cap B$ Occurs if both A and B occur.

Complement: A^{c}

- A^{c} is the complement of A.
- · A^{c} consists of all outcomes of Ω but are not in A.
- \cdot A^c occurs if A does not.

Example:

Experiment: Selecting a ball from a box containing 6 balls numbered 1, 2, 3, 4, 5, and 6 randomly.

Define the following events:

$$E_1 = \{2, 4, 6\}$$
 = getting an even number.
 $E_2 = \{1, 2, 3\}$ = getting a number < 4.
 $E_3 = \{1, 3\}$ = getting 1 or 3.
 $E_4 = \{1, 3, 5\}$ = getting an odd number.

(1)
$$E_1 \cup E_2 = \{1, 2, 3, 4, 6\}$$

= getting an even no. **or** a no. less than 4.

$$P(E_1 \cup E_2) = \frac{n(E_1 \cup E_2)}{n(\Omega)} = \frac{5}{6}$$

(2)
$$E_1 \cup E_4 = \{1, 2, 3, 4, 5, 6\} = \Omega$$

= getting an even no. **or** an odd no.

$$P(E_1 \cup E_4) = \frac{n(E_1 \cup E_4)}{n(\Omega)} = \frac{6}{6} = 1$$

Note:
$$E_1 \cup E_4 = \Omega$$

 E_1 and E_4 are called exhaustive events.

$$(3) E_1 \cap E_2 = \{2\}$$

= getting an even no. **and** a no.less than 4.

$$P(E_1 \cap E_2) = \frac{n(E_1 \cap E_2)}{n(\Omega)} = \frac{1}{6}$$

$$(4) E_1 \cap E_4 = \phi$$

= getting an even no. and an odd no.

$$P(E_1 \cap E_4) = \frac{n(E_1 \cap E_4)}{n(\Omega)} = \frac{n(\phi)}{6} = \frac{0}{6} = 0$$

Note: $E_1 \cap E_4 = \phi$

 E_1 and E_4 are called disjoint (or mutually exclusive) events.

(5)
$$E_1^c = \underline{\text{not}}$$
 getting an even no. = {1, 3, 5}
= getting an odd no.
= E_4

Notes:

- 1. The event A_1 , A_2 , ..., A_n are exhaustive events if $A_1 \cup A_2 \cup ... \cup A_n = \Omega$
- 2. The events A and B are disjoint (or mutually exclusive) if $A \cap B = \phi$

In this case:

- (i) $P(A \cap B) = 0$
- (ii) $P(A \cup B) = P(A) + P(B)$
- 3. $A \cup A^c = \Omega$, A and A^c are exhaustive events. $A \cap A^c = \phi$, A and A^c are disjoint events.

4.
$$n(A^c) = n(\Omega) - n(A)$$

 $P(A^c) = 1 - P(A)$

General Probability Rules:-

1.
$$0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$

3.
$$P(\phi) = 0$$

$$4. \qquad P(A^c) = 1 - P(A)$$

5. For any events *A* and *B*

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- 6. For disjoint events A and B $P(A \cup B) = P(A) + P(B)$
- 7. For disjoint events E_1 , E_2 , ..., E_n $P(E_1 \cup E_2 \cup ... \cup E_n) = P(E_1) + P(E_2) + \cdots + P(E_n)$

2.3. Probability applied to health data:-Example 3.1:

630 patients are classified as follows: (Simple frequency table)

Blood Type	O (E_1)	A (E ₂)	B (E ₃)	AB (E_4)	Total
No. of patient s	284	258	63	25	630

- Experiment: Selecting a patient at random and observe his/her blood type.
- · This experiment has 630 equally likely outcomes

$$\therefore n(\Omega) = 630$$

Define the events:

 E_1 = The blood type of the selected patient is O

 E_2 = The blood type of the selected patient is A

 E_3 = The blood type of the selected patient is B

 E_4 = The blood type of the selected patient is AB

$$n(E_1) = 284$$
, $n(E_2) = 258$, $n(E_3) = 63$, $n(E_4) = 25$.

$$P(E_1) = \frac{284}{630}$$
, $P(E_2) = \frac{258}{630}$, $P(E_3) = \frac{63}{630}$, $P(E_4) = \frac{25}{630}$

 $E_2 \cup E_4$ = the blood type of the selected patients is A or AB

$$P(E_2 \cup E_4) = \begin{cases} \frac{n(E_2 \cup E_4)}{n(\Omega)} = \frac{258 + 25}{630} = \frac{283}{630} = 0.4492 \\ P(E_2 \cup E_4) = \frac{or}{630} + \frac{25}{630} = \frac{283}{630} = 0.4492 \\ (\text{since } E_2 \cap E_4 = \phi) \end{cases}$$

Notes:

- 1. E_1 , E_2 , E_3 , E_4 are mutually disjoint, $E_i \cap E_j = \phi$ $(i \neq j)$
- 2. E_1 , E_2 , E_3 , E_4 are exhaustive events, $E_1 \cup E_2 \cup E_3 \cup E_4 = \Omega$

Example 3.2:

Smoking Habit

		Daily (B_1)	Occasionally (B_2)	Not at all (B_3)	Total
	20 - 29 (A ₁)	31	9	7	47
	30 - 39 (A ₂)	110	30	49	189
	40 - 49 (A ₃)	29	21	29	79
	50+ (A ₄)	6	0	18	24
	Total	176	60	103	339

Experiment: Selecting a physician at random $n(\Omega) = 339$ equally likely outcomes

Events:

• A_3 = the selected physician is aged 40 - 49

$$P(A_3) = \frac{n(A_3)}{n(\Omega)} = \frac{79}{339} = 0.2330$$

 \cdot B_2 = the selected physician smokes occasionally

$$P(B_2) = \frac{n(B_2)}{n(\Omega)} = \frac{60}{339} = 0.1770$$

 $A_3 \cap B_2$ = the selected physician is aged 40-49 **and** smokes occasionally.

$$P(A_3 \cap B_2) = \frac{n(A_3 \cap B_2)}{n(\Omega)} = \frac{21}{339} = 0.06195$$

 $A_3 \cup B_2 =$ the selected physician is aged 40-49 **or** smokes occasionally (**or** both)

$$P(A_3 \cup B_2) = P(A_3) + P(B_2) - P(A_3 \cap B_2)$$

$$= \frac{79}{339} + \frac{60}{339} - \frac{21}{339}$$

$$= 0.233 + 0.177 - 0.06195 = 0.3481$$

 A_{Δ}^{c} = the selected physician is **not** 50 years or older.

$$P(A_4^c) = 1 - P(A_4)$$

$$= 1 - \frac{n(A_4)}{n(\Omega)} = 1 - \frac{24}{339} = 0.9292$$

 $A_2 \cup A_3 =$ the selected physician is aged 30-49 **or** is aged 40-49

= the selected physician is aged 30-49

$$\begin{cases} P(A_2 \cup A_3) = \frac{n(A_2 \cup A_3)}{n(\Omega)} = \frac{189 + 79}{339} = \frac{286}{339} = 0.7906 \\ or \\ P(A_2 \cup A_3) = P(A_2) + P(A_3) = \frac{189}{339} + \frac{79}{339} = 0.7906 \\ (\text{Since } A_2 \cap A_3 = \phi) \end{cases}$$

3.3. (Percentage/100) as probabilities and the use of venn diagrams:

$$P(E) = \frac{n(E)}{n(\Omega)} =$$

$$n(\Omega) = ??$$
 unknown $n(E) = ??$ unknown

 $\mathcal{L}(E)$ = Percentage of elements of E relative to the elements of Ω , $n(\Omega)$, is known.

$$\%(E) = \frac{n(E)}{n(\Omega)} \times 100\%$$

Example 3.3: (p.72)

A population of pregnant women with:

- 10% of the pregnant women delivered prematurely.
- 25% of the pregnant women used some sort of medication.
- 5% of the pregnant women delivered prematurely <u>and</u> used some sort of medication.

Experiment: Selecting a woman randomly from this population.

Define the events:

- \cdot D = The selected woman delivered prematurely.
- \cdot M = The selected women used some sort of medication.
- $D \cap M$ =The selected woman delivered prematurely <u>and</u> used some sort of medication.

$$%(D) = 10%$$

$$\%(M) = 25\%$$

$$\%(D) = 10\%$$
 $\%(M) = 25\%$ $\%(D \cap M) = 5\%$

$$\therefore P(D) = \frac{\%(D)}{100\%} = \frac{10\%}{100\%} = 0.1$$

$$P(M) = \frac{\%(M)}{100\%} = \frac{25\%}{100\%} = 0.25$$

$$P(D \cap M) = \frac{\%(D \cap M)}{100\%} = \frac{5\%}{100\%} = 0.05$$

A Venn diagram:

$$P(D) = 0.1$$

$$P(M) = 0.25$$

$$P(D \cap M) = 0.05$$

$$P(D^{c} \cap M) = 0.2$$

$$P(D \cap M^{c}) = 0.05$$

$$P(D^{c} \cap M^{c}) = 0.70$$

$$P(D \cup M) = 0.30$$

Probability given by a Venn diagram

A Two-way table:

	M	M^{c}	Total
D	0.05	0.05	0.10
D^c	0.20	0.70	0.90
Total	0.25	0.75	1.00

Probabilities given by a two-way table.

Calculating probabilities of some events:

$$M^c$$
 = The selected woman did not use medication $P(M^c) = 1 - P(M) = 1 - 0.25 = 0.75$

 $D^c \cap M^c =$ the selected woman din not deliver prematurely and did not use medication.

$$P(D^c \cap M^c) = 1 - P(D \cup M) = ??$$

 $D \cup M$ = the selected woman delivered prematurely or used some medication.

$$P(D \cup M) = P(D) + (M) - P(D \cap M)$$

= 0.1 + 0.25 - 0.05 = 0.3
\(\therefore\) P\(D^c \cap M^c\) = 1 - P\(D \cup M\) = 1 - 0.3 = 0.7

Note:

From the Venn diagram, it is clear that:

$$P(D) = P(D \cap M) + P(D \cap M^{c})$$

$$P(M) = P(D \cap M) + P(D^{c} \cap M)$$

$$P(D \cap M^{c}) = P(D) - P(D \cap M)$$

$$P(D^{c} \cap M) = P(M) - P(D \cap M)$$

$$P(D^{c} \cap M^{c}) = 1 - P(D \cup M)$$

3.4. Conditional Probability:

• The conditional probability of the event A given the event B is defined by:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad ; P(B) \neq 0$$

 $P(A \mid B) = \text{the probability of the event } A \text{ if we know that the event } B \text{ has occurred.}$

Note:
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{n(A \cap B)/n(\Omega)}{n(B)/n(\Omega)}$$
$$\therefore P(A \mid B) = \frac{n(A \cap B)}{n(B)}$$

$$P(A \cap B) = P(B)P(A \mid B)$$

$$P(A \cap B) = P(A)P(B \mid A)$$
multiplication rules

Example:

Smoking Habbit

		Daily	Occasionally	Not at all	Total
		(B_1)	(B_2)	(B_3)	
Age	20-29 A ₁)	31	9	7	47
	30-39 (A ₂)	110	30	49	189
	40-49 (A ₃)	29	21	29	79
	50+ (A ₄)	6	0	18	24
		176	60	103	339

For calculating $P(A \mid B)$, we can use

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ or } P(A \mid B) = \frac{n(A \cap B)}{n(B)}$$

Using the restricted table directly

$$P(B_1) = \frac{176}{339} = 0.519$$

$$P(B_1 | A_2) = \frac{P(B_1 \cap A_2)}{P(A_2)} = \frac{0.324484}{0.557522} = 0.5820$$

$$P(B_1 \cap A_2) = \frac{n(B_1 \cap A_2)}{n(\Omega)} = \frac{110}{339} = 0.324484$$

$$P(A_2) = \frac{n(A_2)}{n(\Omega)} = \frac{189}{339} = 0.557522$$

OR

$$P(B_1 | A_2) = \frac{n(B_1 \cap A_2)}{n(A_2)}$$
$$= \frac{110}{189} = 0.5820$$

Notice that $P(B_1) \le P(B_1 | A_2)$!! ... What does this mean? **Independent Events**

There are 3 cases

$$(1) P(A | B) > P(A)$$

which means that knowing \boldsymbol{B} increases the probability of occurrence of \boldsymbol{A} .

$$(2) \quad P(A \mid B) < P(A)$$

which means that knowing B decreases the probability of occurrence of A.

$$(3) \qquad P(A \mid B) = P(A)$$

which means that knowing B has no effect on the probability of occurrence of A.

In this case A is independent of B.

Independent Events:

Two events A and B are independent if one of the following conditions is satisfied:

(i)
$$P(A \mid B) = P(A)$$

 \Leftrightarrow (ii) $P(B \mid A) = P(B)$
 \Leftrightarrow (iii) $P(B \cap A) = P(A)P(B)$
(multiplication rule)

Example:

also

In the previous, A_2 and B_1 are <u>not</u> independent because:

$$P(B_1) = 0.5192 \neq P(B_1 \mid A_2) = 0.5820$$

 $P(B_1 \cap A_2) = 0.32448 \neq P(B_1)P(A_2) = 0.28945$

Combinations:

•Notation: n factorial is denoted by n! and is defined by:

$$n! = n(n-1)(n-2)\cdots(2)(1)$$
 for $n \ge 1$
 $0! = 1$

Example: 5! = (5)(4)(3)(2)(1) = 120

• Combinations:

The number of different ways for selecting r objects from n distinct objects is denoted by $\begin{pmatrix} n \\ r \end{pmatrix}$ and is given by:

$$\binom{n}{r} = \frac{n!}{r! (n-r)!};$$
 $r = 0, 1, 2, ..., n$

$$\binom{n}{r}$$
 is read as "n" choose "r".

$$\binom{n}{n} = 1 \qquad \binom{n}{0} = 1 \qquad \binom{n}{r} = \binom{n}{n-r}$$

Example 3.9:

If we have 10 equal—priority operations and only 4 operating rooms, in how many ways can we choose the 4 patients to be operated on first?

Answer:

The number of different ways for selecting 4 patients from 10 patients is

$$\binom{10}{4} = \frac{10!}{4! (10-4)!} = \frac{10!}{4! 6!} = \frac{(10)(9)(8) \cdots (2)(1)}{(4)(3)(2)(1) (6)(5)(4)(3)(2)(1)}$$

$$= 210 \qquad (different ways)$$