Statistics 581, Problem Set 7

Wellner; 11/13/2002

Reading: Chapter 3, Section 2;

Ferguson, ACILST, Chapter 19, pages 126-132, Chapter 20, pages 133-134;

Lehmann and Casella, pages 113-129, and 439-443.

Due: Wednesday, November 20, 2001.

1. Compute and plot the score for location, -(f'/f)(x) when:

A. $f(x) = \phi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$, (normal or Gaussian);

B. $f(x) = \exp(-x)/(1 + \exp(-x))^2$, (logistic);

C. $f(x) = \frac{1}{2} \exp(-|x|)$, (double exponential);

D. $f = t_k$, the t-distribution with k degrees of freedom;

E. $f(x) = \exp(-x) \exp(-\exp(-x))$, Gumbel or extreme value.

- 2. Compute $I_f = \int (f'(x)/f(x))^2 f(x) dx$, the information for location, for each of the densities in problem 1.
- 3. Suppose that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, $\Theta \subset R^k$ is a parametric model satisfying the hypotheses of the multiparameter Cramér Rao inequality. Partition θ as $\theta = (\nu, \eta)$ where $\nu \in R^m$ and $\eta \in R^{k-m}$ and $1 \leq m < k$. Let $i = i_{\theta} = (i_1, i_2)$ be the corresponding partition of the (vector of) scores i, and, with $\tilde{l} \equiv I^{-1}(\theta)i$, the efficient influence function for θ , let $\tilde{l} = (\tilde{l}_1, \tilde{l}_2)$ be the corresponding partition of \tilde{l} . In both cases, i_1 , i_1 are m-vectors of functions, and i_2 , i_2 are k-m vectors. Partition $I(\theta)$ and $I^{-1}(\theta)$ correspondingly as

$$I(\theta) = \left(\begin{array}{cc} I_{11} & I_{12} \\ I_{21} & I_{22} \end{array}\right)$$

where I_{11} is $m \times m$, I_{12} is $m \times (k-m)$, I_{21} is $(k-m) \times m$, I_{22} is $(k-m) \times (k-m)$. Also write

$$I^{-1}(\theta) = [I^{ij}]_{i,j=1,2}.$$

Verify that:

A. $I^{11} = I_{11 \cdot 2}^{-1}$ where $I_{11 \cdot 2} \equiv I_{11} - I_{12}I_{22}^{-1}I_{21}$, $I^{22} = I_{22 \cdot 1}^{-1}$ where $I_{22 \cdot 1} \equiv I_{22} - I_{21}I_{11}^{-1}I_{12}$, $I^{12} = -I_{11 \cdot 2}^{-1}I_{12}I_{22}^{-1}$, $I^{21} = -I_{22 \cdot 1}^{-1}I_{21}I_{11}^{-1}$.

This amounts to formulas (5) and (6) of section 3.2, page 15.

B. Verify that

 $\widetilde{l}_{1} = I^{11}\dot{l}_{1} + I^{12}\dot{l}_{2} = I_{11\cdot 2}^{-1}(\dot{l}_{1} - I_{12}I_{22}^{-1}\dot{l}_{2}), \text{ and}$ $\widetilde{l}_{2} = I^{21}\dot{l}_{1} + I^{22}\dot{l}_{2} = I_{22\cdot 1}^{-1}(\dot{l}_{2} - I_{21}I_{11}^{-1}\dot{l}_{1}).$ The first of these is (7) on page 15, section 3.2.

4. Suppose that we want to model the survival of twins with a common genetic defect, but with one of the two twins receiving some treatment. Let X represent the survival time of the untreated twin and let Y represent the survival time of the treated

1

twin. One (overly simple) preliminary model might be to assume that X and Y are independent with Exponential(η) and Exponential($\theta\eta$) distributions, respectively:

$$f_{\theta,\eta}(x,y) = \eta e^{-\eta x} \eta \theta e^{-\eta \theta y} 1_{(0,\infty)}(x) 1_{(0,\infty)}(y)$$

- A. One crude approach to estimation in this problem is to reduce the data to W = X/Y, the maximal invariant for the group of scale changes g(x, y) = (cx, cy) with c > 0. Find the distribution of W, and compute the Cramér-Rao lower bound for unbiased estimates of θ based on W.
- B. Find the information bound for estimation of θ based on observation of (X, Y) pairs when η is known and unknown.
- C. Compare the bounds you computed in A and B and discuss the pros and cons of reducing to estimation based on the W.
- 5. This is a continuation of the preceding problem. A more realistic model involves assuming that the common parameter η for the two twins varies across sets of twins. There are several different ways of modeling this: one approach involves supposing that each pair of twins observed (X_i, Y_i) has its own fixed parameter η_i , i = 1, ..., n. In this model we observe (X_i, Y_i) with density f_{θ, η_i} for i = 1, ..., n; i.e.

$$f_{\theta,\eta_i}(x_i, y_i) = \eta_i e^{-\eta_i x_i} \eta_i \theta e^{-\eta_i \theta y_i} 1_{(0,\infty)}(x_i) 1_{(0,\infty)}(y_i). \tag{0.1}$$

This is sometimes called a "functional model" (or model with incidental nuisance parameters).

Another approach is to assume that $\eta \equiv Z$ has a distribution, and that our observations are from the mixture distribution. Assuming (for simplicity) that $Z = \eta \sim \text{Gamma}(a, b)$ with density $g_{a,b}(\eta)$, it follows that the (marginal) distribution of (X, Y) is

$$p_{\theta,a,b}(x,y) = \int_0^\infty f_{\theta,z}(x,y)g_{a,b}(z)dz$$
$$= \frac{\theta}{b^2} \left(\frac{b}{b+x+\theta y}\right)^{a+2} \frac{\Gamma(a+2)}{\Gamma(a)}. \tag{0.2}$$

This is sometimes called a "structural model" (or mixture model).

- (a) Find the information for θ in the functional model.
- (b) Find the information for θ in the structural model.
- (c) Compare the information bounds you computed in (a) and (b). When is the information for θ in the functional model larger than the information for θ in the structural model?
- 6. Optional bonus problem: [This is example 7.2.5 and 7.2.7 in Lehmann and Casella, TPE, section 6.2; also see problems 6.2.12 6.2.14, Lehmann and Casella, TPE, page 501.] Suppose that X_1, \ldots, X_n are i.i.d. $N(\theta, 1)$ so $I(\theta) = 1$. Let 0 < a < 1 and define $T_n \equiv \overline{X}_n 1_{[|\overline{X}_n| \ge n^{-1/4}]} + a\overline{X}_n 1_{[|\overline{X}_n| < n^{-1/4}]}$. This is Hodges superefficient estimator of θ .
 - (a) Show that $\sqrt{n}(T_n \theta) \to_d N(0, V(\theta))$ where

$$V(\theta) = \begin{cases} 1, & \theta \neq 0 \\ a^2, & \theta = 0 \end{cases}$$

(b) Show that T_n is not a regular estimator of θ at $\theta = 0$, but that it is regular at every $\theta \neq 0$. If $\theta_n = t/\sqrt{n}$, find the limiting distribution of $\sqrt{n}(T_n - \theta_n)$ under P_{θ_n} . C. For $\theta_n = t/\sqrt{n}$ show that

$$R_n(\theta_n) = nE_{\theta_n}(T_n - \theta_n)^2 \to E(aZ + t(a-1))^2 = a^2 + t^2(1-a)^2$$

where $Z \sim N(0,1)$. This is larger than 1 if $t^2 > (1+a)/(1-a)$, and hence superefficiency also entails worse risks in a local neighborhood of the point(s) where the asymptotic variance is smaller.

7. Optional bonus problem:

Lehmann and Casella, TPE, Problem 6.6, page 142.